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This review summarizes current knowledge of macrophages in helminth infections, with a focus not only on delineating the
striking similarities in macrophage phenotype between diverse infections but also on highlighting the differences. Findings from
many different labs illustrate that macrophages in helminth infection can act as anti-parasite effectors but can also act as powerful
immune suppressors. The specific role for their alternative (Th2-mediated) activation in helminth killing or expulsion versus
immune regulation remains to be determined. Meanwhile, the rapid growth in knowledge of alternatively activated macrophages
will require an even more expansive view of their potential functions to include repair of host tissue and regulation of host

metabolism.

1. Introduction

Since the discovery in the late 1980s that T helper cells exhibit
distinct cytokine profiles, the unique immunological profile
associated with helminth infection has been explained by
the activation of the Th2 cell pathway. In particular, the
dramatic increase in numbers of eosinophils, mast cells, and
IgE could be directly explained by cytokines produced by
the Th2 subset. More recently, we have come to appreciate
that in addition to eosinophils and mast cells, “alternatively-
activated” macrophages (AAMO) are a characteristic feature
of the polarized Th2 response. Macrophages at helminth
infection sites were termed AAM® because they exhibited
specific characteristics, such as arginase 1 production, that
had been observed when macrophages were exposed in vitro
to IL-4 [1-3]. Siamon Gordon and colleagues described this
as an alternative activation pathway that contrasted with
the “classical” activation by LPS and IFNy [4, 5]. With
further exploration of the in vivo phenotype, it has become
apparent that AAM® express a whole range of molecules
that distinguish them from classically activated macrophages
(CAMO) [6-9].

What has been remarkable is the consistency of the
findings between the diverse laboratories and infectious

models in which these cells have been studied, with iden-
tification of the same key molecules (arginase 1, resistin-
like molecule [RELM] «, Yml, etc.) expressed during
helminth infection (see table in Reyes & Terrazas review
[10]). This is remarkable because “helminths” represent
an enormously diverse range of pathogens with entirely
different phylogenetic origins and life histories. Indeed,
the AAM® phenotype seems to occur in any strong Th2
environment including allergy and some chronic microbial
infections [10-12]. The commonality of these finding has,
perhaps erroneously, suggested to us that we could define a
broad function for these cells analogous to microbial killing
for CAM®. However, despite an ever-broadening definition
of AAM® and their associated markers and characteristics,
we are still essentially ignorant of their in vivo function.
Perhaps it is time to explore the many differences between
the models used to study AAM® and consider that these cells
may function differently depending on context.

2. Helminths and Th2 Immunity

2.1. Helminth Phylogeny. Helminth parasites are routinely
used as models to study T helper cell polarization and
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as a result, our understanding of Th2 subset development
and control has become increasingly sophisticated [13-
17]. However, it is important to appreciate that to draw
broad conclusions from experiments with schistosomes and
then apply these to nematode parasites (or vice versa), is
potentially misleading. Despite the common terminology,
the only shared biological features of many “helminthes” are
their metazoan origins and the ability to infect mammals.
Schistosomes are part of the platyhelminths that include
the cestodes (tapeworms) and other trematodes (flukes or
flatworms). The phyla Nematoda (roundworms) include
hookworms, whipworms, and filarial parasites. The split
that led to Platyhelminthes and Nematoda occurred over 1
billion years ago, long predating the split between vertebrates
and invertebrates [18]. Nematodes are the most abundant
animal on earth both in terms of total numbers and numbers
of species. Within this group of animals, parasitism has
independently evolved many times [19] and parasitic nema-
todes represent an enormous burden in terms of human,
animal, and even plant health. In terms of human disease,
platyhelminths infect fewer numbers but are responsible for
higher levels of morbidity and mortality [20].

2.2. Th2-Biased Immunity. The utility of helminths as mod-
els to study Th subset bias stems from the striking feature
that, despite their phylogenetic diversity, they all induce
profound Th2 responses, characterized by CD4+ T cells
producing IL-4, IL-5, IL-9, IL-10, and IL-13 among others.
However, recently it has become apparent that even the
Th2 subset itself is enormously complex, with T cells that
specifically function to provide B cell help and produce IL-4
but not the other signature Th2 cytokines (follicular helper
cells) [15], specific IL-9 producing cells [21], and other T
helper subsets that produce Th2 cytokines such as the recent
discovery that IL-10 is produced by Thl cells [22]. In an
adaptive immune response, macrophages ultimately respond
to T cell derived cytokines, and a sustained alternative
activation phenotype absolutely requires CD4+ Th2 cells
[23]. Thus, differences in Th cell cytokine profiles in different
tissues and in response to distinct parasites will determine
differences in macrophage activation.

2.3. Nematodes, Trematodes, and Cestodes and the Induction
of the Th2 Response. Although virtually all helminths induce
Th2 cytokines, the pattern and magnitude of these responses
differ widely due to not only the vast differences in the
biology of the pathogens as mentioned above, but also
their broadly different migration and eventual host niche.
Nematodes typically drive strong type 2 cytokine responses
from the onset of infection. Indeed, within hours of infection
innate activation of the Th2 pathway can be detected [23—
26]. However, even within the nematode phyla the intensity
of this early type 2 response varies, perhaps reflecting
the differential ability of nematodes to inhibit the type 1
inducing cytokine, IL-12 [27].

Eggs released by the schistosome parasites are believed
to be the strongest known inducers of Th2 cytokines
in mammals, and yet the invasive cercariae induces only
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a moderate Th2 response that is matched by a Th1 response
of similar magnitude [28]. This initial mixed response is
swamped by the extraordinarily high Th2 response generated
to the eggs produced when the adult pairs reach sexual
maturity [29]. Because of its importance as a cause of human
morbidity and the availability of excellent mouse models,
far more is known about the immunology of schistosome
infection than other trematodes. However, Fasciola hepatica,
a liver fluke that predominantly infects sheep and cattle,
has also been studied in mouse models. Consistent with
indicators of type 2 immunity in cattle, E. hepatica infection
of mice results in a dominant Th2 response that has the
capacity to suppress Thl responses [30].

Cestodes are also dramatically understudied despite their
capacity to cause severe disease in animals and people.
Nonetheless, the data is consistent with the general helminth
literature in that cestodes by and large have a strong propen-
sity to drive Th2 immune responses. Similar to responses
to schistosomes, peritoneal implantation of BALB/c mice
with Taenia crassiceps metacestodes results in an initially
weak mixed Th1/Th2 response that becomes strongly Th2
dominated as infection progresses to the chronic phase [31,
32]. However, there are resistant mouse strains that expel
the parasite in the acute phase due to the dominance of
IFNy production [33]. Reponses to peritoneal infection with
Echinococcus granulosus protoscoleces are unusual in that the
initial Th2 responses that dominate early (week 1) become
more mixed, with emergence of IFNy production as infection
progresses (week 4) [34].

2.4. Protective Immunity against Nematodes, Trematodes, and
Cestodes. In addition to the differences in the kinetics and
magnitude of Th2 induction, the role of Th2 immunity in
host protection varies substantially between these different
parasites. Indeed, the paradigm that Th2 immunity is acting
to destroy or expel worms is by no means universal.

The scenario in which there is an absolute requirement
for Th2 immunity in host protection is that of the gastro-
intestinal nematodes. Expulsion of all GI nematodes studied
to date is exquisitely dependent on Th2 cells. However,
the specific cytokines (IL-4, IL-5, IL-9, IL-10, IL-13 among
others) and the effector cells on which they act (epithelial,
smooth muscle, mast cell, macrophage, nerve) vary tremen-
dously depending on the location of the parasite, as well
as its invasive properties. The situation with nematodes,
such as the filariae, that live entirely in the tissues is
somewhat different. Although Th2 responses are required
for worm killing [35], Th1 immunity and particularly IFNy,
rather than inhibiting the anti-parasite Th2 response, act
synergistically with IL-5 to kill the adult stage of the parasite
[36]. In the case of these tissue-dwelling nematodes, our
increased understanding of the cytokine pathways required
for parasite destruction has still left us in the relative dark as
to the actual killing mechanism(s).

During schistosome infection, Th2 responses are essen-
tial for host survival but this has little to do with detrimental
effects on the parasite. This is largely due to the fact that
pathology is the result of the egg deposition stage and
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it appears that in the absence of a Th2 response (or a
Thl response for that matter), the egg is highly tissue
destructive. Death can occur either due to overwhelming gut
inflammation and sepsis or liver damage [37]. Additionally,
Th2 responses to the egg promote fibrosis that itself can be a
major cause of morbidity [38].

Cestodes provide an unusual perspective, in that despite
inducing a potent Th2 response, protective immunity can
require Thl cells [33, 39]. Indeed, dominance of Th2
responses during infection with T. crassiceps leads to suscep-
tibility to infection mainly through the suppression of Thl-
driven nitric oxide (NO) production, a key effector molecule
against these parasites [32, 39]. However, cestodes are also
unusual in that there is little consistency in immunological
mechanisms that protect against infections within this
group. In this respect, resistance to E. granulosus actually
increases in the absence of NO production [40], possibly
due to the absence of the considerable suppressive effects on
proliferation that this molecule exerts in echinococcosis [41].

3. The Molecular Profile of AAM®

AAM® are becoming increasingly recognised as a key
effector arm of the Th2 immune response, but their actual
function in different helminth infections has yet to be
unravelled (see below) and is likely to be as diverse as the
role of Th2 immunity itself. The concept of “alternative
macrophage activation” was introduced by Siamon Gordon
and colleagues in the early 1990s to describe the in vitro
response of macrophages to the Th2 cytokines 1L-4 and
IL-13 [4, 5]. Significantly, the term AAM® was coined to
highlight the activated nature of these cells that distinguished
them not only from macrophages classically activated by
microbial products and Thl cytokines (CAM®), but from
deactivated macrophages in which costimulatory molecules
and class II expression are suppressed by down-regulatory
cytokines such as IL-10. The two features that distinguished
AAMO®O in vitro were the expression of arginase 1 and the
mannose receptor. The requirement for IL-4 and/or IL-13
was subsequently confirmed in vivo, using gene-deficient
mice [6, 11, 42, 43].

Realization that the AAM® described in vitro were a fea-
ture of helminth infection came from studies of Schistosoma
mansoni and Brugia malayi [6, 43]. Both studies verified IL-
4 dependent arginase 1 expression by macrophages in vivo,
but the B. malayi study additionally identified novel 1L-4
dependent genes associated with this phenotype including
Ym1 and RELMa/FIZZ1 [6]. The highly unique profile was
rapidly confirmed across the full range of helminth infections
[7, 44-48]. Although Ym1 and RELMa were discovered in
vivo, the direct induction of these genes by IL-4 and/or
IL-13 was also demonstrated in vitro [2, 3]. It should be
noted here that IL-4 and IL-13 both utilize the same signal
transducing receptor chain, the IL-4 receptor a (IL-4Ra),
which explains the considerable overlap in function of these
cytokines. Which of these cytokines is more important for
alternative activation of macrophages in vivo remains to
be fully determined, however, a recent report using mice

deficient for the IL-13 receptor wl subunit suggests that IL-
13 is dispensable for expression of Ym1 and RELMa but not
arginase in the liver during S. mansoni infection [49].

A molecular signature for AAM® (defined here as an IL-
4/IL-13 dependent phenotype) has arisen that is represented
by the three most abundant IL-4/IL-13 dependent gene
products: Ym1, RELMa, and arginase 1. Ym1I is a member
of the family 18 chitinases but has no chitinolytic activity
and is thus referred to as a chitinase-like molecule [50].
Other members of this family in mice include Ym2 and
acidic mammalian chitinase (AMCase), the later functioning
as a true chitinase. Ym2 and AMCase are also IL-4/IL-13
inducible proteins and the similarity between Ym1 and Ym2
is so high that most studies do not actually distinguish
between them. All antibodies to date recognize both, and
most PCR methods do not distinguish them, although
this is possible with careful primer design. Thus, unless a
study clearly identifies a specific Ym protein, it might be
appropriate to use the more ambiguous designation Ym1/2.
RELM « was first described in a lung asthma model, where it
was described as FIZZ1 [51], but was subsequently identified
as a member of a family of cysteine-rich molecules related
to resistin, a hormone involved in glucose metabolism [52].
Arginase 1 is the best studied of these proteins and has well-
established roles in regulating NO production by competing
with INOS for their common substrate L-arginine [1], as
well as inhibition of T cell responses through L-arginine
depletion [53]. The arginase pathway additionally leads to
the production of proline and polyamines, which contribute
to tissue repair and fibrosis [54]. Subsequently there has
been identification of numerous other markers associated
with the alternative activation phenotype [7, 9] and this
number is likely to grow as more extensive transcriptomic
and proteomic analyses are undertaken [55].

Macrophages with an AAM® phenotype characterized
mainly by arginase 1 production also arise in protozoan
(reviewed in [10]) and certain bacterial infections [56]. In
cutaneous leishmaniasis (Leishmania major), this AAM®
phenotype is dependent on signaling through the IL-
4R chain [57] as in helminth infection models [6, 11,
42]. However, a STAT6-independent pathway also leads
to arginase 1 expression during Mycobacterium tuberculosis
and Toxoxplasma gondii infections, which in the former is
dependent upon TLR signaling [56]. The main effect of
arginase 1 expression in all of these settings appears to be
an increase in susceptibility to infection through diversion
of L-arginine from production of the reactive nitrogen
intermediates that kill these pathogens [10, 56].

As interest in these cells grew, the term “alternatively-
activated” came to include any cell displaying an alternate
phenotype to CAM®. Subdivision of the M1 and M2
terminology has helped to address this issue with M1
equating with CAM® while M2 includes M2a, M2b, and
M2c. M2a most closely reflects the IL-4/13 dependent
phenotype originally associated with AAM®, while M2b
includes activation by other modulators such as immune
complexes that lead to high IL-10 production and M2c
reflecting the more deactivated phenotype associated with
IL-10 treatment in vitro [58]. Nonetheless, the difficulty in
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Ficure 1: RELMa and YM1/2 expression in the pleural cavity during L. sigimondontis infection. Left-hand plots: Flow cytograms depicting
side scatter (SSC) versus RELMa (a) or Ym1/2 (b) of pleural cavity cells 12 days post infection with L. sigmodontis. The gates for RELMa*
and Ym1/2* cells were set using isotype control staining. The proportion of cells positive for RELMa and Ym1/2 in naive mice was 1.5% and
0.05%, respectively. Right-hand plots: Siglec-F versus F4/80 expression on Ym1/2* or RELMa* cells. Numbers in italics represent percentage

of cells within the neighbouring gate.

finding appropriate terms is a reflection of the enormous
diversity in macrophage phenotype found both in vivo and
in vitro [59], as well as their capacity to rapidly alter their
expression profile in response to a new set of environmental
signals [60].

A current difficulty in delineating the functions of
AAMO is that many of the “signature” AAM® molecules are
not restricted to macrophages. The availability of good anti-
bodies for intracellular staining and fluorescence microscopy,
the creation of mice that report gene expression, and the
ability to sort cell subsets prior to gene expression analysis
have greatly increased our knowledge of the range of cells
that show an “alternative-activation” phenotype, as well

as the comparative breadth of expression of the different
AAM® markers. For example, in liver granulomas from mice
infected with S. mansoni, the main producer of RELM«
appears to be eosinophils rather than macrophages [61],
whilst in lung granulomas induced by i.v. injection of schis-
tosome eggs, RELMa™ cells are comprised of macrophages,
eosinophils, and airway epithelial cells [62]. In the serous
cavities of mice infected with Litomosoides sigmodontis or B.
malayi, we have observed a similarly broad pattern of RELMa«
expression, with mature macrophages (F4/80" Siglec-F~),
eosinophils (Siglec-F" F4/80'°), and F4/80°-ntermediate Giglec.
F~ cells that include DC, all capable of making this protein
(Figure 1(a) and data not shown). Expression of Ym1/2 is
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markedly different, being almost exclusively restricted to
F4/80" Siglec-F~ mature macrophages (90%), and with no
expression detectable in eosinophils (Figure 1(b)). However,
Ym1/2, like RELMa can also be expressed by epithelial cells
in the lung [61, 63, 64] and both Ym1/2 and RELMa« appear
to be a feature of many types of antigen presenting cell
found in the lymph nodes draining helminth infection sites
[46]. Thus, it is now apparent that many cell types can
show an “alternative-activation” phenotype, with chitinase-
and resistin-family members prominent. Epithelial cells in
particular express not only Ym1/2 and RELM« during Th2
immune responses but related family members including
the true chitinase, AMCase [63] and RELMJ [65]. Of the
three most abundant AAM® markers [6], arginase 1 appears
to have a more macrophage-restricted expression profile.
This was demonstrated by Reese etal. using mice that
contain an IRES-YFP knock-in allele that reports arginase
1 expression, in which extra-hepatic arginase 1 expression
was macrophage-restricted in the lung or peritoneum of
Nippostrongylus brasiliensis infected or chitin injected mice,
respectively [66].

Another major difficulty has been efforts to translate
our understanding of murine AAM® to humans, not
only because some of the mouse defined AAM® markers
are not present in the human genome, but because the
relevant tissues cannot be readily accessed. An example of
this problem has been the argument over whether human
macrophages express arginase 1, strongly reminiscent of
earlier arguments about NO production [67]. It may be that
arginase 1 expression is more limited in human macrophages
or that we have just not yet identified the right tissues.
Indeed, arginase 1 can be induced in human macrophages
by IL-4 [68] and can be observed in monocytes of filiarial-
infected individuals [69].

Even more problematic has been the realization that
Yml is not even present in the human genome. How-
ever, distribution of the family 18 chitinases (including
AMCase and Ym1/2) between different mammalian species
is a fascinating puzzle in itself. Mammals have two genes
encoding active chitinases that represent an ancient gene
duplication event and show high sequence homology to
chitinases of lower organisms. The mammalian chitinase-
like proteins (CLPs) that include Ym1, appear to represent
more recent gene duplication events with subsequent loss-
of-function mutations [70]. Thus all mammals express the
highly conserved active enzymes, chitotriosidase and acidic
mammalian chitinase (AMCase) but additionally express a
broad range of diverse CLPs, with each mammalian species
exhibiting a different complement of CLPs [70]. In mice
these include Ym1, Ym2, and YKL-40/BRP-39, which have all
been strongly implicated in Th2 conditions [50, 71]. Humans
express YKL-40 but also a distinct CLP, YKL-39 [70]. Because
no two mammals express the same set of these proteins and
CLPs appear to be undergoing remarkably active evolution,
no animal model can fully represent the human genes.
Studying mice should nonetheless be informative as one can
presume that despite species differences a common theme
lies behind the evolutionary forces driving the divergence of
CLbPs.

4, Functional Roles of AAMO®

As the molecular definition of AAM® becomes more refined,
our hope has been that an understanding of function would
follow. However, the functions of gene products associated
with alternative activation, such as RELM« and Ym1 remain
elusive and our full understanding of the contribution of
macrophages during helminth infection is an increasingly
active area of investigation. Considering the diversity of
helminth infection and the complexity of the associated Th2
response, a single well-defined role for AAM® is unlikely to
emerge.

4.1. Do M® Promote Helminth Killing or Expulsion? The
depletion of macrophages using clodronate-loaded lipo-
somes has provided a powerful tool by which to analyse the
function of these cells during helminth infection. This tech-
nique has provided evidence that macrophages play a central
role in nematode expulsion during intestinal infection, both
in the memory response to a secondary infection with
Heligmosomoides polygyrus [72], and in expulsion of primary
N. brasiliensis infection [73]. In both these settings, parasite
clearance is dependent upon a strong Th2 response, which
acts to rapidly recruit immune cells including macrophages
to the infection site and to stimulate their expression of
Arginase 1, RELMa, and Ym1/2 in a STAT-6 dependent
manner. Critically, blocking recruitment of macrophages
via depletion of monocytes resulted in prevention of worm
expulsion, whilst the Th2 response and recruitment of
other inflammatory cell populations were left intact. Our
understanding of macrophage function in filarial nematode
attrition is more limited. However, observations that worm
survival during murine peritoneal infection with either
Brugia pahangi or malayi L3 larvae is enhanced following
injection of carbon particles or carrageenan [74, 75] imply
an effector function for peritoneal macrophages. Consistent
with a role in filarial killing, macrophages make up signif-
icant proportion of the granulomas that encase dying B.
malayi and L. sigmodontis worms but the conundrum is: do
granulomas cause worm damage or form because the worms
are already damaged?

While there is evidence for macrophage effector function
during nematode infections, it is still unknown whether
this occurs via direct or indirect mechanisms. Macrophages
greatly increase the hypercontractility of intestinal smooth
muscle during N. brasiliensis infection, providing a poten-
tially indirect effector mechanism [73]. Because filarial
nematodes are restricted to tissue sites during infection, it is
likely a distinct though overlapping array of effector mech-
anisms is required to act against these nematodes. Perhaps
a more likely role for macrophages in these infections is
to recruit other Th2 effector cells important in nematode
attrition. In this respect, eosinophils have a well-documented
role in vivo, acting against larval stages of both B. malayi and
L. sigmodontis [76, 77], and recent data demonstrates that
recruitment of eosinophils to the peritoneal cavity following
N. brasiliensis infection or injection of chitin is dependent on
macrophages [66, 78]. An attractive possibility for a direct
anti-nematode effector function is the association of AAM®



with chitinases and chitinase-like molecules [50], which in
principle have the capacity to act on chitin-containing stages
of the parasite. However, as of yet, there is no direct evidence
to support this.

4.2. Is Alternative Activation Required for Anti-Worm Effec-
tor Function? Whilst macrophages can perform as anti-
nematode effector cells, the question remains whether they
need to alternatively activate to exert this function. Anthony
etal. , showed that, like macrophage depletion, an inhibitor
of arginase, S-(2-boronethyl)-I-cysteine, could impair worm
expulsion during secondary H. polygyrus infection [72].
Using the same technique, arginase I expression was also
implicated as mediating expulsion of N. brasiliensis, although
experiments were inconclusive since treatment only pre-
vented worm expulsion in 60% of the mice despite parasite
egg production and host smooth muscle hyper contractility
being greatly impaired [73]. The broad-acting nature of
this treatment (it blocks both arginase I and II and could
potentially act directly on worms in addition to other non
macrophage host cell sources) makes it hard to draw firm
conclusions. A stronger case against alternative activation
driving these macrophage effector mechanisms, is provided
by two earlier studies both of which used mice on the
same resistant BALB/c background as Zhao etal. [73].
These demonstrated that IL-4Ra need not be expressed
on macrophages/neutrophils or indeed any hematopo-
etic population in order for efficient expulsion of N.
brasiliensis [79, 80]. Using the same macrophage/neutrophil-
specific IL-4Ra-deficient mice, it has also been shown
that alternative activation of macrophages is not required
for expulsion of another intestinal nematode Trichinella
spiralis [81]. Other potential effector functions of “Th2-
associated” macrophages may also be independent of
alternative activation state, as for example, macrophage-
dependent-recruitment of eosinophils in response to chitin
injection is STAT6-independent [66]. It is quite conceivable
that in Th2 infections, macrophage effector function could
be completely independent of AAM®-associated molecules
or that expression of arginase 1 or other AAM®-associated
molecules could be induced by an IL-4Ra-independent
mechanism, for example via a TLR-dependent event [10, 56]
such as exposure to gut flora. Unfortunately, the expression
of either arginase 1 or other AAM® associated markers was
not investigated in the intestinal tissues of N. brasiliensis or
T. spiralis infected M®/neutrophil-specific IL-4Ra-deficient
mice [79, 81]. Comparative analysis of the susceptibly of
mice which lack, in macrophages specifically, either IL-
4Ra or “alternative activation” proteins such as arginase 1
would help considerably to resolve the issue of the function
of alternative activation “per se” in intestinal nematode
infections. Interestingly, a study with such mice has shown
that arginase 1 expression by AAM® has no host protective
effect against primary infection with the trematode S.
mansoni [82].

4.3. Can CAM® Act against Helminths? In contrast to the
ambiguity surrounding alternative activation in immunity to
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nematodes, it is clear that the reactive oxygen or nitrogen
species can damage most types of helminth parasites [39, 83—
86]. However, only in cestode infection do reactive nitrogen
species and CAM® appear to function against the parasite
in vivo. In murine cysticercosis (T. crassiceps) blocking of
iNOS using the inhibitor L-NG-monomethyl arginine leads
to increased parasite burdens [39]. Consistent with this,
induction of Th2 responses and STAT-6 signaling underlie
susceptibility to infection, whilst Th1 responses and STAT-4
signaling underlie resistance [32, 33]. However, as mentioned
above, this is not a requirement in immunity to all cestodes.
Indeed, NOS2 deficient mice, which are incapable of making
iNOS, are actually less susceptible to infection with the
cestode parasite E. multilocularis [40]. In this infection
CAMO appear to have a pathological effect, most likely
due to the direct immunosuppressive effect of NO on cell
proliferation [87].

Given the divergence of the helminth parasite phyla and
the host tissue sites they have chosen to infect, it is perhaps
unsurprising that diverse effector mechanisms are required
for immunity to different infections [44, 88]. However, a
common thread is that macrophages can act against both
nematode and platyhelminth infections, and there is still no
published evidence of any infection in which macrophages
can be dispensed at no cost to resistance. The mechanisms
employed by the macrophages though are seemingly dis-
parate. As discussed below, AAM® do play an important role
in protecting the host in schistosomiasis by limiting parasite-
mediated tissue damage rather than mediating killing [79].
Indeed as we struggle to identify direct antihelminth effects
of AAMQ, the evidence builds that the macrophage products
most associated with alternative activation such as arginase
1 and RELMa have profound inhibitory effects on host
immunity, including the Th2 response itself [61, 62, 82]. This
raises the possibility that the alternative activation state of
macrophages does not function primarily as an effector arm
but has critical regulatory or parasite disposal (rather than
killing) roles.

4.4. AAM® Are Potent Suppressors of Cellular Proliferation.
One property of activated macrophages that is consistently
observed in a wide variety of systems is the ability to
block the proliferation of cells with which they are cocul-
tured. This feature has been well described for CAM® in
which the antiproliferative properties of NO are responsible
[87]. Myeloid cells derived from helminth infected animals
also exhibit similar antiproliferative properties [60, 89-91].
Importantly, it can be replicated in vitro by treatment of
macrophages with IL-4 or IL-13 [2, 60] and in vivo is
reliant on IL-4 and/or IL-13 in certain settings [89]. Indeed,
the ability to inhibit cellular proliferation is a defining
characteristic of AAM®. Despite the near-universal finding
that AAM® suppress cellular proliferation ex vivo, the in
vivo significance is not known. Understanding the relevance
of this proliferative suppression has been complicated by the
fact that, unlike CAM®, a single mechanism for proliferative
inhibition has not been identified. Instead a multitude of
pathways have been found that differ depending on the infec-
tion context (reviewed in [44]) and include Programmed
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death ligand (PD-L) interactions [92, 93], TGF-f production
[94], lipid mediator release [95], IL-10 production [96, 97],
and L-arginine depletion [82]. There appear to be three
categories of proliferative suppression generally observed
during helminth infection: contact and IL-4 dependent,
contact dependent and IL-4 independent, and finally IL-4
dependent and contact-independent. No doubt the target
cells will also differ depending on the pathways involved,
with some mechanisms, such as the PD-L pathway seen
during infection with the platyhelminths, T. crassiceps, and
S. mansoni [92, 93], affecting predominantly T cells. Other
mechanisms have a broader target including even tumor
cells that typically have no restriction on cell division
[89].

One cannot overemphasize the diversity of suppressive
mechanisms observed. For almost every mediator identified
as critical for AAM®-mediated suppression of T cells, there
is another study that finds that mechanism dispensable. This
disparity could be due to the distinct biological mediators
released by these vastly different parasites, which presumably
all favour an immuno-suppressive environment. However,
many other factors could account for this diversity, from
differences in the magnitude and bias of the Th cell response
to tissue localization. Of interest, proliferative suppression is
also a feature of myeloid-derived suppressor cells (MDSC),
which share many features with AAM® but are associated
with cancer and other immune suppressive environments
rather than helminth infection [98]. T cell suppression by
MDSC is mediated by both iNOS-driven production of
NO and arginase 1-driven depletion of L-arginine [53]. L-
arginine is essential for T cell activation [99] but L-arginine
depletion could also lead to production of suppressive
reactive oxygen intermediates [95, 100]. This is similar to
recent data showing that macrophage-derived arginase 1
is required to suppress the proliferation of T cells from
S. mansoni-infected mice [82] but also during non-healing
Leishmania major infection, which is associated with AAM®
[1]. Although arginase 1 is emerging as one of the most
important mediators of proliferative suppression, it is not
the full story. Chemical blockade of arginase 1 had only
a small impact on suppression mediated by AAM® from
the peritoneal cavity of B. malayi implanted mice, and full
IL-4-dependent suppressive capacity was maintained when
arginase expression was reduced by LPS/IFNy treatment
[60].

Finally, it is important to consider that NO mediated sup-
pression, although most strongly associated with microbial
infection, also has a role to play during helminth infection.
As already mentioned, NO can act as an effector molecule
during infection with the cestode T. crassiceps [39]. How-
ever, within the same infection model [95], and infection
with E. multilocularis [41], NO mediated suppression by
peritoneal cells has been observed. Even in filariasis, where
the IL-4 dependent AAM® suppressive phenotype has been
well described, NO-mediated suppression can play a role
[101].

4.5. AAM® as Antigen Presenting Cells. In line with the
immuno-suppressive effects of AAM® described above, one

of the most consistent findings in human studies is that indi-
viduals infected with helminth parasites exhibit profound
defects in lymphocyte proliferation [102-105]. One popular
hypothesis has been that monocytes or macrophages from
infected individuals were somehow defective in their antigen
presentation capacity. However, as the discovery of alterna-
tive activation emerged and their capacity to actively block
cellular proliferation was revealed the expectation shifted
somewhat. Further, by definition AAM® are activated and
thus might be expected to express good levels of class IT and
costimulatory molecules. Not surprisingly, the analysis of
macrophage APC activation state during helminthiases has
been shown to vary considerably with infection. However,
expression of antigen presentation-associated molecules is
frequently intact or elevated, consistent with an “activa-
tion” profile. Mice carrying schistosome infections show
marked up-regulation of MHCII but not CD80 or CD86
by splenic macrophages [93]. Transient up-regulation of
co-stimulatory molecule and MHCII expression on lung
macrophages occurs during the period N. brasiliensis larvae
migrate through the lung but is quickly lost thereafter
[106]. Following peritoneal implant of adult B. malayi,
macrophages exhibit relatively high levels of MHCII, CD80,
and CD86 expression compared to thioglycollate elicited
M®, but not compared to LPS-stimulated cells [60]. Perhaps
the strongest activation is seen in T. crassiceps infected mice,
where MHCII, CD40, and CD86 but not CD80 are greatly
up-regulated over an 8-week period [91]. However, this is
by no means a feature of cestode infection, since the one
documented parasitic helminth that leads to a reduction in
activation state compared to naive M® is E. multilocularis
although only expression of CD40 is reduced whilst CD80
and CD86 remained unchanged [107].

A number of labs have investigated M® expression of
B7 family members PD-L1 and PD-L2, with a diversity
of findings in nematode, trematode, and cestode models.
Independent of parasite species, Loke etal. defined PD-
L2 as a marker for AAM®, specifically up-regulated by
IL-4 in a IL-4Ra/STAT-6 dependent manner and PD-L1
as a Thl-associated ligand [108]. However, neither PD-L1
or PD-L2 are up-regulated on peritoneal AAM® elicited
by the nematode B. malayi [60]. In contrast, both ligands
are up-regulated in the lung following but not during N.
brasiliensis larval migration [106]. Similar dichotomy exists
in the response to platyhelminths, with only PD-L1 up-
regulation in response to S. mansoni infection [93], yet PD-
L1 and PD-L2 up-regulation in response to T. crassiceps
[92]. Significantly in these two settings, PD-L1 and/or PD-
L2 act to potently block the proliferation of T cells and are
thus at least in part responsible for the contact-dependent
proliferative suppressive effect of AAM® discussed above.

How then do AAM® perform as APC? Given that AAM®
exhibit a profound ability to suppress cell division and
fail to induce naive T-cell proliferation, it was a surprise
when initial experiments showed that AAM® from B.
malayi infected mice were strong inducers of Th2 cytokine
production when cocultured with naive T-cells [109]. This
ability is also shared with AAM® from chronic late-stage
T. crassiceps infection [91]. Interestingly, the capacity to



drive Th2 cytokine production correlated with alternative
activation, as adherent peritoneal cells from early-stage
infection induce more of a mixed Th1/Th2 response while
showing much lower expression of RELMa and Ym1/2
[91]. It remains to be determined whether the ability
to drive Th2 cytokine production is a shared function
of AAM® from all helminth infections. The difficulty in
extracting AAM® in sufficient quantity from tissues, such
as the gut lamina propria, has so far prohibited analysis
of APC function in many settings, particularly intestinal
infections.

It is tempting to draw a parallel to dendritic cells (DC)
obtained from schistosome infected mice or exposed to
helminth products in vitro. These exhibit a muted activation
phenotype, with little change in expression of costimulatory
molecules, and limited up-regulation of MHCII. However,
they also efficiently promote Th2 polarisation and cytokine
production [110-112]. Furthermore, DC can exhibit an
alternative activation phenotype in vitro [46, 113] and dur-
ing infection [46] or allergy [114], up-regulating expression
of Ym1/2 and RELMu« in an IL-4/IL-13 dependent manner
[46, 113, 114]. Indeed, experiments looking at the ability
of “alternatively activated” DC to drive Th2 responses in
vitro and in vivo have identified Ym1/2 as a key molecule
involved in the process [113, 114]. Ym1/2 appears to exert
this effect by binding to 12/15-lipoxygenase and blocking
production of PPARy ligands [114], which are thought to
have immunoregulatory effects on macrophages and T cells
[115]. Given the large quantities of Ym1/2 produced by
AAMO® it is quite possible they also influence Th2 priming
via this molecule.

4.6. AAM® as Negative Regulators of Th2 Immunity

4.6.1. RELMa. The discovery that two novel proteins (Ym1
and RELMa«) were secreted in abundance by macrophages
activated during helminth infection [6] led rapidly to the
speculation that these would be effector molecules against
the metazoan invaders. This was supported by the realisation
that Ym1 was a member of a family of chitinases with pre-
sumed defensive roles against chitin-containing pathogens
such as nematodes. More direct (but still circumstantial)
evidence came with the recognition that RELMf, another
resistin family member, was abundantly secreted by epithelial
cells in the intestines of nematode infected mice and bound
directly to the chemosensory structures of the parasite
[65]. The expectation naturally followed that similar anti-
parasite roles would be identified for macrophage-derived
RELMa. However, two recent papers utilizing RELMa-
deficient mice have turned that idea on its head and
instead identified RELM« as a critical regulator of Th2
immunity [61, 62]. Using models of S. mansoni and N.
brasiliensis infection, and schistosome egg-induced lung
granuloma formation, RELM«a was shown to limit Th2-
mediated immune pathologies by suppressing Th2 but not
Thl cytokine production. Importantly, this was mediated
at least in part by a direct suppressive effect of RELMa on
cytokine production by Th2 cells, as RELMa bound to Th2
cells and could exert this suppressive effect on T cells cultured
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alone in vitro [62]. RELM« could also be detected bound
to other cells, including macrophages and DC (but not Th1l
cells) suggesting other non T cell mediated functions for this
molecule. It is worth noting that macrophages appeared to
be only a minor source of RELM« in the lung and liver in
these studies, perhaps explaining why Th2 responses remain
normal during S. mansoni and N. brasiliensis infections in
macrophage/neutrophil-specific IL-4R« deficient mice [79].

4.6.2. Arginase 1. Given that one of the downstream prod-
ucts of arginase-mediated L-arginine catabolism is a major
component of collagen, it has been widely assumed that
AAM® would promote the fibrotic pathologies associated
with chronic Th2 stimuli. However, a recent elegant study
using mice in which macrophages were deficient in arginase
1 expression has demonstrated that in fact, arginase 1
negatively regulates Th2 responses and actually suppresses
Th2-mediated fibrosis [82]. In contrast to the effects of
RELMa documented by Nair et al. [62], arginase 1 expres-
sion by macrophages impaired IFN-y production by T cells
in addition to down regulating output of Th2 cytokines.
T cell proliferation in the draining lymph node was also
exaggerated in the absence of arginase 1 expression by
macrophages [82]. Importantly, this data confirms an in vivo
role for arginase 1 in proliferative suppression mediated by
macrophages, but extends this to show that macrophages
also exert an inhibitory effect on cytokine production.
Critically, they demonstrate that macrophages exhibit an
overall inhibitory effect on fibrosis during schistosomiasis via
their production of arginase 1.

4.7. Summary of AAM® as Regulators of Th2 Immunity. One
caveat to the conclusion that AAM® have a critical function
in the regulation of Th2 cytokines in both nematode and
platyhelminth infections is the fact that Th2 generation in
both the secondary lymphoid organs and the infection site
(in which AAM® are present in greatest numbers) appeared
unaffected by either the absence of IL-4Ra signaling in
macrophages or the depletion of macrophages, during S.
mansoni, N. brasiliensis, and T. spiralis infection, and H.
polygyrus and N. brasiliensis infection, respectively, [72, 73,
79, 81]. It cannot be ignored that because the role of
macrophages in Th2 generation was not the main focus
of these studies, the methodology for assessing the quality
and quantity of the responses was not as thorough as that
described for the studies on the function of RELM« [61,
62], arginase 1 [82], and Ym1/2 [113, 114]. It is possible
though, that the removal of macrophages, or their alternative
activation state, takes away both negative (RELMa and
arginase 1) and positive (Ym1/2) regulatory signals such that
the net effect on Th2 responses is nil. Whilst an in vivo
role for arginase 1 production specifically by macrophages
in Th2 regulation during schistosome infection cannot be
denied, we await confirmation that RELMa and Ym1/2
production by these cells plays a major role in regulation
of Th2 cytokine production in vivo. It may well be that
“alternatively activated” DC and cells such as basophils play
the greater role in Th2 response induction, maintenance, and
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regulation. With the recent recognition that basophils are a
critical APC in promoting Th2 cell activation [14, 116], it
would be of interest to know whether Ym1/2 is produced by
these cells.

4.8. AAM® as Cells That Repair Damage to the Host. Much
of the data described above suggests that AAM® act as anti-
inflammatory down-regulatory cells, consistent with previ-
ously proposed functions for macrophages during helminth
infection [117, 118]. Additionally AAM® are important
sources of TGF-f and IL-10 [60, 109, 119], as well PGE2 [91]
and the IL-1 receptor antagonist [119, 120]. The chemokine
expression profile is also strongly associated with a nonin-
flammatory role [58] and with specific down-regulation of
key proinflammatory cytokines by IL-4 [6, 120]. It may seem
counter-intuitive that an activated cell population manifests
such profoundly suppressive features. However, this could
be in part explained if one sees tissue repair or wound
healing as a fundamental function associated with AAM®.
Effective tissue repair can only proceed if inflammation has
been stopped [119, 121] and thus all these anti-inflammatory
features may contribute to their role in repair. Early reviews
on AAM® ascribed them a wound healing phenotype
based on the production of arginase 1 [1] and angiogenic
factors [1] as well as extracellular matrix components and
fibronectin [122]. However, the specific role of IL-4/IL-13
in this healing phenotype versus glucocorticoids or IL-10,
which the authors also considered alternative activators, was
not immediately apparent. Furthermore, the relevance to
helminth infection was not obvious.

Two recent papers have provided evidence that there is
indeed very strong relevance to helminth infection. While
investigating the kinetics of alternative activation in a model
whereby B. malayi parasites are surgically implanted into
the peritoneal cavity of mice, we noted that control animals
who underwent only sham surgery exhibited transient up-
regulation of Ym1/2, RELMa, and arginase 1 in a strictly IL-
4Ra manner [23]. However, only when both the nematode
and Th2 cells were present was this alternative activation
response sustained. This suggested that the induction of
the signature molecules of AAM® was in fact an innate
response to direct injury. One feature all these helminths
have in common is the capacity to injure tissue in the
course of their migration through the host, providing a
possible evolutionary explanation for the association of
Th2 immunity and wound healing [123]. The strongest
evidence to date from helminth models that AAM® have
a combined anti-inflammatory/wound healing function is
in a study of S. mansoni infection in mice that lack the
IL-4Ra specifically on macrophages and neutrophils and
thus completely lack AAM® but have otherwise intact Th2
responses [79]. Following S. mansoni infection, these mice
died from overwhelming inflammatory responses in the
intestine and leakage of bacteria into the blood. Although
not conclusive evidence, the data strongly suggests that in
the absence of AAM®, these mice were unable to repair
the damage caused by egg migration through the intestinal
wall. Further supporting a direct role for AAM® in wound
healing, RELMa has angiogenic properties [124] and Ym1/2

has the ability to bind extracellular matrix [125]. The specific
roles these proteins play in the complex orchestra for tissue
repair and remodeling are still to be established.

5. Summary

Mast cells, basophils and eosinophils have long been con-
sidered the serious cellular players in the host response
to helminth infection. Previously ignored, the macrophage
is now taking center stage in this cellular family as one
of the most important targets of Th2 immunity. This is
fully appropriate when we consider that macrophages are
frequently the most abundant cell type recruited to the site
of helminth infection. However, it is only since the discovery
of AAM® in vivo less than 10 years ago that a focus on
these cells in helminth infection has begun. As a result,
we have a long ways to go before we attain the extensive
knowledge associated with CAM®. The challenge is to define
key roles for AAM® while accepting that these may differ
radically depending on infection stage, site, and parasite
species. Macrophages are the workhorse of the immune
system, and as such, can radically alter their phenotype
to adapt to environmental signals [55, 59, 60]. In turn,
they can actively regulate the inflammatory environment
to which they are recruited or the tissues in which they
reside. Using the tools available to modern scientists we can
now begin to define the environmental codes that alter the
AAMO expression profile, understand the function of the
products they produce, and decipher their communication
with other cells. Recent discoveries that AAM® are central to
the regulation of host metabolism [126] mean this cross-talk
is not only between cells of the immune system but with the
entire organism. Unravelling this amazing complexity will
keep helminth immunologists busy for years to come.
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