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Dengue: recent past and future threats

David J. Rogers†

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

This article explores four key questions about statistical models developed to

describe the recent past and future of vector-borne diseases, with special

emphasis on dengue:

(1) How many variables should be used to make predictions about the

future of vector-borne diseases?

(2) Is the spatial resolution of a climate dataset an important determinant of

model accuracy?

(3) Does inclusion of the future distributions of vectors affect predictions of

the futures of the diseases they transmit?

(4) Which are the key predictor variables involved in determining the

distributions of vector-borne diseases in the present and future?

Examples are given of dengue models using one, five or 10 meteorological

variables and at spatial resolutions of from one-sixth to two degrees.

Model accuracy is improved with a greater number of descriptor variables,

but is surprisingly unaffected by the spatial resolution of the data. Dengue

models with a reduced set of climate variables derived from the HadCM3

global circulation model predictions for the 1980s are improved when risk

maps for dengue’s two main vectors (Aedes aegypti and Aedes albopictus)

are also included as predictor variables; disease and vector models are pro-

jected into the future using the global circulation model predictions for the

2020s, 2040s and 2080s. The Garthwaite–Koch corr-max transformation is

presented as a novel way of showing the relative contribution of each of

the input predictor variables to the map predictions.

1. Introduction
When, in 1930, Wolgang Pauli first hypothesized the existence of a new particle

(later to be called the neutrino by Enrico Fermi) he wrote apologetically to his

fellow physicists:
I have done something very bad today by proposing a particle that cannot be
detected; it is something no theorist should ever do.
Pauli described his idea as ‘a desperate remedy’ to account in full for the

observed loss of energy during radioactive beta decay. Pauli was concerned

that if his new particle could not be detected his prediction could not be dis-

proved [1].

When ecologists and epidemiologists try to predict the future of biological

systems they are in a somewhat similar position to Pauli. They are making pre-

dictions which cannot be disproved until the future arrives. Predictions without

the possibility of disproof cannot be regarded as science, even if the methods

used to make them follow good scientific practices. It is difficult to know

which the greater sin is: to propose something you think can never be dis-

proved (Pauli), or to propose something you know cannot be disproved until

the distant future arrives (risk maps for diseases using future climate

predictions).

In this article, global risk maps are developed for the important vector-

borne disease dengue, using both recent past meteorological variables and

their predicted values under alternative future climate scenarios. This is done

not only to show risk maps for this disease in the recent past and future but

also, and more importantly, to examine some of the scientific practices used
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to make predictions about the future of all vector-borne dis-

eases, in order to answer the following important questions:
stb.royalsocietypublishing.org
Phil.
— How many variables should be used to make predictions

about the future of vector-borne diseases?

— Is the spatial resolution of a climate dataset an important

determinant of model accuracy?

— Does inclusion of the future distributions of vectors affect

predictions of the futures of the diseases they transmit?

— Which are the key predictor variables involved in deter-

mining the distributions of vector-borne diseases in the

present and future?
Trans.R.Soc.B
370:20130562
Here, only climatic constraints on vector and disease distri-

butions are considered, to highlight the complexities of the

limited set of questions posed. Other non-climatic variables

are often important for vector-borne diseases and some of

these are discussed elsewhere. For example, other environ-

mental and socio-economic changes are considered in this

special issue by Parham et al. [2] and elsewhere by [3,4],

public health policy by [5,6] and interactions between

water, agriculture, ecosystems and health (represented by

malaria) by Piontek et al. [7]. This article concentrates on stat-

istical descriptions of disease distributions; examples of

biological approaches to the same challenge are given here

in articles [6,8–10]. Here, only a single suite of future climate

scenarios are considered, not ensembles, in order to illustrate

the four key questions above; variability between ensemble

predictions and what we may learn from them are high-

lighted in article [11]. Finally, the models developed here

assume that the future is quantitatively different from the

past, but not qualitatively different. Evolution within and

between disease systems will introduce such qualitative

differences, as will the development of new vaccines, and

some of these issues are dealt with here in article [12]. Most

of these further complexities must eventually address

questions of a similar sort to those above.

Dengue is an important vector-borne tropical disease that

threatens one-third of humanity on the planet [13]. Because

of its importance, a number of attempts have been made to

produce global risk maps for it, based on what is known

about the relationship between dengue, climate and other

environmental factors [4,14–17]. While some of these maps

are based on our rather limited biological knowledge of the

key constraints operating on dengue and its vectors, most

use one or other of a variety of statistically based approaches,

including logistic regression [18], generalized additive

models [19], random forest models [13] or nonlinear discrim-

inant analysis [20], using as predictors climate or satellite

remotely sensed environmental and other data. A recent com-

parison between different dengue risk maps, using the Fleiss

kappa measure of similarity [21], showed only moderate

agreement between the predictions for Asia, fair agreement

for the Americas and only slight agreement for Africa; glo-

bally, the overall agreement was classified as only fair [20].

Differences between the risk maps can be attributed to the

use of different dengue databases, different modelling

approaches and different sorts of predictor variables. Such

disparity between various predictions of dengue’s distri-

bution at the present time, however, provides a strong

warning. If we cannot get the present right, what chances

are there that we can correctly predict the future?
2. Material and methods
(a) Disease and vector data
The databases for dengue and its two principal vectors, Aedes
(Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse)

(Diptera: Culicidae), were those used by Rogers et al. [20],

derived from literature searches restricted to the time period

1960–2010. References were searched for the geographical

location of the disease or vectors and place names were geolo-

cated using a variety of online gazetteers, resulting in a total of

1400 presence records for dengue (dengue fever or dengue haem-

orrhagic fever), 200 records for Ae. aegypti and 500 records

for Ae. albopictus, all at a geographical resolution of one-sixth

degree, the finest resolution used in the models developed

here. The original dengue and vector records were referred

either to point locations, or to polygon centres when the

observations came from areas rather than points, usually admin-

istrative level 2 (where administrative level 0 is the country). The

presence points for the three species are shown in map form in

the electronic supplementary material.

Most disease and vector databases contain few records of

confirmed disease or vector absence. For the present exercise,

sets of pseudo-absence points were generated for each database

by selecting at random points no less than 0.5 degrees and no

greater than 5 degrees away from any presence point. The

lower threshold ensures exclusion of absence points which are

likely to show similar climatic conditions to the nearby presence

points (a topic explored by Chefaoui & Lobo [22]) and the higher

threshold ensures that the sampled climatic conditions are not so

different from any presence area as to be unhelpful in discrimin-

ating precisely between areas of presence and absence. Other

ways of choosing pseudo-absence points are based on distance

in environmental as well as geographical space [20], but these

methods were not applied here, because all of the modelling

was done at a relatively coarse spatial resolution. Four thousand

random pseudo-absence points were generated for dengue, 3000

for Ae. aegypti and 4000 for Ae. albopictus. The full collection of

presence and pseudo-absence points for each situation is referred

to here as a ‘training set’.

(b) Environmental data
In a previous paper, the author used satellite derived environ-

mental data at a resolution of 1/15th of a degree to make

global risk maps of dengue [20]. For present purposes, however,

series of ground-based, long-term meteorological data were

selected, or the output of global circulation models (GCMs) pre-

dicting the climate both of the recent past and in the future under

various scenarios of climate change.

(c) Meteorological data
For comparison with previous predictions of dengue’s distri-

bution using a meteorological dataset [18], the present analysis

used one-sixth degree ‘climate norms’ (i.e. synoptic monthly

averages) for climate of the recent past, 1961–1990 [23], a dataset

which includes monthly values of precipitation, wet-day

frequency, temperature, diurnal temperature range, relative

humidity, sunshine duration and ground frost frequency. Hales

et al. [18] had used an earlier version of the same dataset (with

vapour pressure instead of relative humidity), covering the

same 1961–1990 period, at a coarser spatial resolution of 0.5

degrees [24,25].

(d) Global circulation model climate data
GCMs are built upon descriptions of energy fluxes in the global

atmosphere interacting with land and sea masses according to

well-defined physical principles. An accurate GCM should be



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130562

3
able to predict the future of the Earth’s climate, with or without

anthropogenic forcings, and can therefore forewarn of the likely

dangers of such forcings in the present century and beyond. The

complexity of global systems, however, means that early GCMs

were unable to capture many features of the Earth’s climate,

especially regional or hemispheric events with global conse-

quences (such as El Niño, or the North Atlantic oscillation,

NAO). More recent models are more accurate although they

still cannot capture the full extent, precise timing or location of

such events [26,27]. Whereas earlier versions of GCMs made pre-

dictions of future climate by adding the modelled differences

between the future and present day to the observed present

day climate (the latter from meteorological records), many of

the more recent GCMs claim sufficient accuracy of prediction

for their outputs to be used to describe directly both the present

day and future climates under a variety of future scenarios. The

third generation of the Hadley Centre model (HadCM3) is of

this type [28]. The model is able to show what have been the

effects on current climate of human-generated greenhouse gas

emissions over the past century (i.e. the model is run with

and without these emissions, and the results compared). The

model is then allowed to run on into the present century, to

make predictions of future climates assuming various emissions

scenarios. Model outputs are available at a variety of temporal

and spatial resolutions.

For present purposes, a range of the HadCM3 model outputs

were selected (http://www.metoffice.gov.uk/research/model

ling-systems/unified-model/climate-models/hadcm3). These

have been used in the last three IPCC assessment reports (AR3

to the current AR5). While the HadCM3 model has been devel-

oped (to HadCM4) since the publication of the IPCC fourth

assessment report (AR4), there are questions about the accuracies

of some of the predictions of the latter model. HadCM3 still

ranks highly compared with other GCM models [29].

Full details of the HadCM3 model are given in reference

[28]. Data from the A1F1, A2, B1 and B2 scenarios were found

on the IPCC Data Distribution Centre website (http://www.

ipcc-data.org/, last accessed February 2014), for the periods

centred on the recent past (the 1980s, hereafter referred to as

the ‘present day’), the 2020s, the 2040s and the 2080s. Most

(though not quite all) scenarios and periods had predictions

for mean, maximum and minimum temperature, for relative

humidity and for precipitation. All of these files were down-

loaded and turned into image files (the original files are in text

format) at the native resolution of 3.75 by 2.5 degrees and then

cubic spline-interpolated to a resolution of 0.5 degrees before

further processing.

GCM predictions for present-day climate are very similar

under the different emissions scenarios because they are all iden-

tically forced up to 1989 [28]. The predictions diverge more, the

more into the future they are projected. Although the precise

rank ordering of effects in the different scenarios changes a

little over time, in general, scenario B1 (based on maximum

reduction of emissions) shows the smallest changes (for example

an increase in surface air temperature of 1.548C by the 2040s and

2.388C by the 2080s), whereas scenario A1F1 (with relatively

unrestrained emissions) shows the largest changes (increases of

2.038C and 4.268C for the same periods). These figures are for

global (land þ sea) temperatures, and we are currently more

interested in increases on land. By the 2040s, land air tempera-

tures rise by 3.378C in the B1 scenario and 6.208C in the A1F1

scenario (table 4 in reference [28]). These changes are consider-

able and must have an impact on many biological processes.

There are, in addition, commensurate changes in other variables,

for example a slight decrease in rainfall on land (20.004 mm per

day) in scenario B1 and a slight increase (þ0.014 mm per day) in

the A1F1 scenario by the 2040s. Hence, a multivariate approach

to predicting dengue futures must be adopted.
All dengue or vector species’ models were run using only the

meteorological or the A1F1 or B1 scenario GCM output data.

Both altitude and other variables such as human population

density are thought to be important in determining dengue’s dis-

tribution at the present time [20]. These variables were not used

in the present models, however, because altitude is clearly a

proxy for a mixture of temperature, rainfall and other climatic

variables, and the future relationship between altitude and all

these variables is uncertain. While predictions have been made

about the future abundance and distribution of humans, there

is similar uncertainty in these figures which only adds to the

uncertainty of predictions based only on climate futures. Thus,

the present models examine the more limited impacts of future

climates alone.

(e) Environmental data processing
All original meteorological and GCM output data were synoptic

monthly averages for January to December. These data were tem-

porally Fourier processed [30] to extract from each time series a

set of orthogonal (i.e. uncorrelated) data to be used as descriptor

variables in the vector and disease models, as described in refer-

ences [30,31]. Temporal Fourier variables included the mean

value, the amplitudes and phases of the annual, bi-annual and

tri-annual cycles of change, the Fourier minimum and maximum

and the variance of the original data series, a total of 10 variables

from each observed climate or GCM variable and therefore a

grand total of 70 variables from the seven selected variables of

the 1961–1990 meteorological dataset. This collection of vari-

ables forms a unique ‘finger-print’ of the climatic conditions in

any particular site, each variable amenable to a simple, biologic-

ally relevant interpretation, unlike the products of other data

reduction and ordination techniques such as principal

components analysis.

( f ) Distribution modelling
Rogers et al. [20] provide a brief review of spatial modelling tech-

niques (dealt with in more detail in reference [32]) and many of

the available statistical models have been compared quantitat-

ively by Elith et al. [33–36] in a series of valuable papers.

Furthermore, some of the topics covered here for vector-borne

diseases have already been investigated for species in general,

such as the effect of spatial resolution on model accuracy

[37,38], and the effects of selecting pseudo-absence sites in differ-

ent places [22]. Other important topics tend to be very specific

to the species distribution model applied; for example, the

estimation of predictor variable importance [39].

The technique of nonlinear discriminant analysis is used for

all the models presented here [30,31,40]. This approach sits con-

veniently between the many, purely statistical models of species’

distributions and the very many fewer biologically based

models. Statistical models have been criticized because it is

claimed that they cannot take into account biologically important

thresholds, breakpoints and nonlinear relationships between the

environment and key demographic variables that are at the heart

of many biological processes. While this criticism is valid for

some statistical approaches, such as various tree-based modelling

approaches (where each node on the tree identifies a key value of

one or more environmental variable that splits a subset of the

data into presence and absence categories; the same variable

may appear in several different places and levels within the

tree, and with different key values, making biological interpret-

ation difficult), nonlinear discriminant analysis is based on the

assumption of a multivariate normal response of a species to cli-

matic variables, and can allow for thresholds, breakpoints and

nonlinearities. Key here is the fact that nonlinear discriminant

analysis allows the observations to be split into a number of

clusters (for both presence and absence observations), thus

http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadcm3
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadcm3
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accommodating a limited but realistic variety of responses of

species to environmental variables.

Briefly, data were extracted for all the Fourier processed vari-

ables at each presence and pseudo-absence site in the three

training sets. Before analysis, the data were clustered, using the

k-means clustering algorithm in SPSS v22 (qIBM Corporation

and others), into between one and eight clusters each for pres-

ence and absence. Obviously, the more clusters used, the more

likely it is that each cluster will be multivariate normal, and

therefore the more appropriate will discriminant analytical

methods be. Too many clusters, however, will reduce the

sample size of each cluster, and make biological interpretation

of the results difficult. In the present models, either two absence

and one presence clusters were used (all Ae. aegypti models), or

three absence and two presence clusters (all Ae. albopictus
models), or three absence and three presence clusters (dengue

models). These cluster numbers were chosen after initially

running models with a variety of cluster combinations and

examining the accuracy of the outputs.

With one exception (model results shown in figure 5), all

models were run using a bootstrap approach whereby a series

of subsamples (usually 300 presence and 300 pseudo-absence

points; or 200 of each for the coarsest resolution model in

figure 2) were selected from each training set (points selected

at random, with replacement) and a model developed for each

subsample. One hundred such models were run for each situ-

ation, and the results combined at the end to produce a single

output risk map.

Each model was run using a stepwise inclusion method for

variable selection. Thus, on the first round, in each model, each

available environmental variable was examined in turn to see

how well it could discriminate between presence and absence

points. At the end of the round, the best discriminating variable

was selected and the second round began. This second round

selected from among all remaining variables the single one

that, together with the first variable, again gave the best

discrimination of presence and absence points. This continued

until 10 variables were selected for each model.

There are many criteria for deciding on the goodness of fit

during each round of modelling (see, for example, table 1 and

discussion in [31]). The present models either maximized kappa,

the index of agreement between prediction and observation

[41], or minimized the corrected Akaike information criterion

(AICc), a statistic that is penalized on the basis of the number

of predictors (environmental variables) within the model, and

so allows choice of the optimum number of predictor variables

rather than any higher number that tends to result in over-fitting

[42]. Stepwise inclusion allowed the eventual calculation of the

importance of each predictor in the bootstrap models. Thus,

the first selected variable was given a rank of one, the second a

rank of two and so on; variables not included in the selected

set of 10 variables were given a rank of 11. At the end of each

100 bootstrap model run, the average ranks were calculated for

each variable in turn to identify which variables overall were

most important in the risk map predictions. It should be noted

that stepwise inclusion as applied here does not encounter the

common problem of stepwise methods used elsewhere in ecol-

ogy [43] because it does not involve frequentist statistical tests

to accept or reject variables.

While variables were selected according to one or other of the

above criteria, each output model also gave a fuller variety of

accuracy measures, including percentage correct predictions,

positive and negative predictive values (PPV and NPV, some-

times referred to as the consumer’s accuracy for presence and

absence, respectively), percentage false positives and negatives,

sensitivity, specificity, the area under the curve (AUC), all

defined and referenced in reference [31], and the true skill

statistic (TSS [44]).
T ( s I
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(g) Discriminant analysis model details
In discriminant analysis, a key step of the calculations involves

the Mahalanobis distance (D2
12), a measure of separation in

multivariate space, calculated as follows

D2
12 ¼ (�x1 � �x2)0C�1

w (�x1 � �x2) ¼ d0C
�1
w d, (2:1)

where the subscripts refer to groups 1 (e.g. for vector absence)

and 2 (e.g. for vector presence), �x1 and �x2 are mathematical vec-

tors of the mean values of the variables defining each group

(i.e. its centroid), d ¼ (�x1 � �x2) and C�1
w is the inverse of the

within-groups covariance (dispersion) matrix [40] (the prime indi-

cates the transpose of a row or column vector). When all variables

are first standardized to their global mean values (mean ¼ 0, s.d. ¼

1.0), which is assumed hereafter, C�1
w is the inverse of the corre-

lation matrix. Thus, D2 is the Mahalanobis distance (MD)

between the sample centroids adjusted for their common covari-

ance (D2 remains the same whether or not variables are first

standardized). In the simple case where the variables are not corre-

lated (and therefore the correlation matrix consists simply of ones

on its diagonal, and zeroes elsewhere), D2 reduces to the squared

Euclidean distance between the centroids.

Equation (2.1) is written using the mathematical vectors of

the centroids of the two distributions, and thus measures the sep-

aration between two groups of points. If one or other �x vector is

replaced by the vector of values of a single point, the MD is then

the distance between that single point and the centroid of the

other cluster of points. This is the routine calculation carried

out during the making of predictive risk maps. The MD of any

new point (e.g. a pixel in a series of climatic image files) is calcu-

lated to each of the clusters defined by the training set. The point

may then be assigned to the cluster to which it is closest (lowest

MD). More precisely, the MD may be turned into the posterior

probability of belonging to the different clusters in the analysis.

This is achieved effectively by inserting the MD into the equation

for the standard normal distribution of which the clusters are

samples, using the following equations

P(1jx) ¼ p1e�D2
1=2

P2
g¼1 pge�D2

g=2

P(2jx) ¼ p2e�D2
2
=2

P2
g¼1 pge�D2

g=2

9>>>>=
>>>>;

, (2:2)

where P(1jx) is the posterior probability that observation x

belongs to group 1 and P(2jx) the posterior probability that it

belongs to group 2 [40] (the exponential terms in equation (2.2)

are those of the multivariate normal distributions defining

groups 1 and 2; all other terms of the multivariate distributions

are the same in the numerator and denominator and therefore

cancel out [45]). In equation (2.2), p1 and p2 are the ‘prior prob-

abilities’, that is, the probabilities with which any observation

might belong to either group given prior knowledge or experi-

ence of the situation. In the absence of any prior experience, it

is usual to assume equal prior probabilities; thus, in the simple

case of two-group discrimination, p1 ¼ p2 ¼ 0.5. This assumption

of equal prior probabilities is made more appropriate by ensur-

ing equal numbers of presence and absence observations in the

models, for example during the selection of bootstrap samples.

It has previously been shown that equal sample sizes also

improve model accuracy [46].

Clearly, equation (2.2) involves a normalization step where a

function of the individual cluster membership probability (the

numerators in equation (2.2)) is divided by the total of all probabil-

ities (denominators in equation (2.2)), so that they sum to 1.0. In

other words, the assumption is being made that any observation

must belong to one or other of the clusters defined in the model.

This emphasizes the importance of carefully selecting the training

set to be representative of all possible presence and absence sites,

not just some of them. In general, it is advisable to produce
along with the output image of predicted probabilities a second

image of the MD to the nearest cluster in the training set, that is,

the cluster to which each pixel is assigned. This image can then

be examined to find areas where the MDs are very large and there-

fore where predictions are likely to be inaccurate. Alternatively,

images may be produced of the MDs to the nearest (in environ-

mental space) presence cluster; such images show the

environmental suitability of each site for the vector or disease con-

cerned and may be used to predict and monitor the spread of

invasive vectors or diseases (an example is given in reference [20]).

When predictions are being made about places that are very

different from any in the training set, or they are being made

using climatic variables predicted under future climate scenarios,

care should be taken with any predictions based on MDs that are

greater than any observed in the training sets of data. In all the

present models, therefore, records were kept of the maximum

MD of any training set point from its cluster centroid; if sets of

climatic conditions from other places or times into the future

gave MD values greater than these maxima, the output pixel

was classified as ‘no prediction possible’ (and coloured grey in

the output imagery).

Equations (2.1) and (2.2) should be modified when the

assumption of a common covariance for all clusters is obviously

invalid. Not only may areas of presence and absence differ in

their environmental characteristics, but different parts of a

species’ range may also show more subtle differences, requiring

separate multivariate descriptions of their climatic conditions.

Each cluster (either for presence or absence) must then be treated

as a separate multivariate normal distribution, with its own

covariance characteristics. Posterior probabilities are then

calculated in an analogous way, by summing across all distri-

butions. In the case of two groups only (one for presence and

one for absence), equation (2.2) is then modified as follows

P(1jx) ¼ p1jC1j�1=2e�D2
1
=2

P2
g¼1 pgjCgj�1=2e�D2

g=2

P(2jx) ¼ p2jC2j�1=2e�D2
2=2

P2
g¼1 pgjCgj�1=2e�D2

g=2
,

9>>>>>=
>>>>>;

(2:3)

where jC1j and jC2j are the determinants of the covariance

matrices for groups g ¼ 1 and 2, respectively. The MDs in

equation (2.3), calculated from equation (2.1), are evaluated

using the separate within-group covariance matrices C1 and C2

[45]. When there is more than a single class of presence or

absence data (e.g. multiple clusters), the summation in the

denominators of equation (2.3) covers the entire set of g . 2

groups, and there are as many posterior probability equations

as there are groups. With unequal covariance matrices, the discrim-

inant axis (strictly speaking a plane) that separates the two

groups in multivariate space is no longer linear, and equation

(2.3) then effectively defines the maximum-likelihood solution

to the problem [47].
(h) Models using meteorological variables
In order to answer the first question in §1, three bootstrapped

models were made for dengue using the meteorological dataset

at its full resolution of one-sixth of a degree of longitude and lati-

tude. The first model used a single climate variable, mean

monthly relative humidity, for direct comparison with the results

in [18]; the second model always used the same five variables;

mean monthly values of relative humidity, rainfall, maximum,

minimum and mean temperature, again for comparison with

[18]. In the third model, all 70 Fourier variables were made

available to each bootstrap model, which selected a maximum

of 10. This third model should therefore show the best perform-

ance possible with this meteorological dataset, for comparison

with the other two models with restricted datasets.
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To answer the second question in §1, models were run with

both the training set data and the meteorological data succes-

sively aggregated into pixel sizes of one-third, one half, one

and two degrees’ resolution. The training set data were first

simply projected onto a blank image at each resolution; multiple

hits of points on a single pixel were recorded only as presence or

as absence in that pixel, and presence always took priority over

absence; thus, a training set was created for each resolution,

but derived from the full resolution training set of both presence

and absence points. The meteorological data were simply aver-

aged from the original resolution of these data (one-sixth of a

degree) to the target pixel sizes, taking care to exclude any sea

pixels from the averaging process.
 il.Trans.R.Soc.B
370:20130562
(i) Models using global circulation model predictions of
climate futures

The third and fourth questions in §1 involved use of the GCM

predictions for present and future climates. Models were

first made for dengue on its own (i.e. without the vectors) and

for each of the two vector species, all based on the GCM pre-

dictions of the present-day climate (i.e. the 1980s). These

models, for both dengue without vectors and for the two

vector species, are based on a maximum of nine variables (the

mean, maximum and minimum values of rainfall, relative

humidity and temperature). Once the vector models were com-

pleted, they were used in a further set of dengue models

(dengue þ vectors) which also included the same nine climatic

variables (i.e. 11 variables in total). The dengue þ vector

models might therefore include the predicted vector distri-

butions; they would only do so if the vector layers were useful

as predictors discriminating dengue presence and absence

areas which, often, they were.

All models were then re-run using the established relation-

ships between dengue or its vectors and climate but with the

future climate scenarios as the climate predictor layers. This

gave a series of predictions of the future distribution of the two

vector species on their own and of dengue, with or without its

vectors, under the two selected scenarios of climate change for

the 2020s, 2040s and 2080s. Thus, predictions were made for

(dengue þ climate change), or for (dengue þ vectors þ climate

change). These two predictions for the future distribution of

dengue will differ only if the vectors respond differently to cli-

mate change than does dengue. Any differences between

predictions will determine how much in future statistical

models for vector-borne diseases need to consider both the dis-

eases and their vectors when making predictions of the effects

of changing climates.

When making predictions in the GCM series of models, it

was decided to restrict the number of predictor variables in

each bootstrapped model to the optimum number as determined

by the AICc values for that model. This was often very many

fewer than the maximum number of variables available, because

there are strong correlations (r . 0.9) between some of the input

variables (for example between the mean and both the maximum

and minimum of each climate variable), rendering them more or

less redundant for prediction purposes.
( j) Establishing the importance of predictor
variables—the Garthwaite – Koch transformation

The final question in §1, about how to identify the most impor-

tant predictor variables determining a species’ presence or

absence in an area, would be easy to answer if all the predictors

were orthogonal to (i.e. uncorrelated with) each other, and the

MD reduced to the Euclidean distance. It is less easy to answer

when variables are correlated with each other. What is needed
is a decomposition of the MD of equation (2.1) along the

following lines:

D2
12 ¼W0W, (2:4)

where W is a mathematical vector with as many terms as there

are variables contributing to D2
12. Equation (2.4) is suitable for

present requirements if and only if (i) the components of W are

uncorrelated with each other and (ii) each one of them can be

uniquely associated with one, and only one, of the x variables

contributing to D2
12: Garthwaite and Koch, developing from

[48], have recently proposed a method called the corr-max trans-

formation that achieves these objectives [49]. They show that W

can be calculated from:

W ¼ (SS1S)�1=2S(X ��x ), (2:5)

where S is a diagonal matrix of the inverses of the standard devi-

ations of the x variables, S1 is the correlation matrix , �x is a

mathematical vector of the mean values of the x variables and

X is a vector of values of the sample point giving the observed

value of the MD to the centroid defined by �x. The individual

elements of W show a close correspondence (high correlation)

with the individual x variables (in fact, the correlation between

xi and wj is the (i,j) element of (SS1S)1=2, and the transformation

maximizes the sum of the xi–wi correlations).

When there is a strong correlation (greater than 0.9) between

some of the original x variables, the right-hand side of equation

(2.5) should be pre-multiplied by an orthogonal matrix that

rotates the correlated variables (and only them). This effectively

replaces, for example, two correlated variables with two new

variables, their sum and their difference, which will be less cor-

related. Interpretation of the resulting values in W remains the

same except that the respective components now refer to the

importance of the sum and difference of the correlated variables

[49]. In the examples given here, care was taken to use predictor

variables that were not strongly correlated with each other.

The values of the squared components of W (on what will be

referred to as the Garthwaite–Koch scale) can be examined for

their relative contribution to the overall sum (of all squared

values). This is a measure of the relative contribution of the orig-

inal x variables to the MD. In the present case, images were

produced in which each pixel identified the single input variable

contributing most to the MD of that pixel from the nearest (in

environmental space) presence cluster centroid. The pixel’s

value was given the sign of the difference between the pixel’s

variable value and the relevant centroid’s value (i.e. one element

of the final bracketed term in equation (2.5)), so that the resulting

images could be interrogated to answer the following question:

‘Which of the input variables is most responsible for the pre-

dicted presence or absence of the disease at this particular site,

and is its value higher or lower than that of the closest centroid

for presence?’ This therefore provides an answer to the fourth

question posed in §1.

(k) The coincidence of disease and climate data
Many of the records in the dengue database post-date the period

for which the meteorological data apply (1961–1990). It is pos-

sible that dengue has spread beyond its 1961–1990 limits in

response to recent climate changes, thus making it inappropriate

to use the older climate records on the newer dengue data.

Although many publications report an increasing threat of

dengue globally [50,51], these threats are mostly within dengue’s

recent historical limits. The mean latitudes of the dengue and

Aedes records in the present database were calculated for the

five decades from 1960 to 2010. While there was a small pole-

ward shift of the mean absolute latitude of the Ae. albopictus
records between the periods 1961–1990 and 1991–2010 (from

22.14+12.04 s.d. degrees to 24.58+ 12.16 s.d.), there were

small equator-ward shifts of the mean absolute latitude records
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of both Ae. aegypti (from 17.42+8.47 s.d. degrees to 15.95+
8.06 s.d.) and all records of dengue (i.e. both dengue and

severe dengue, DHF) (from 16.51+ 7.41 s.d. degrees to 14.55+
7.49 s.d. degrees). The decadal changes in mean latitudes are

shown in the electronic supplementary material. Thus, it seems

acceptable to produce presence/absence risk maps for dengue

and its vectors using a climate database from the 1961–1990

period, and GCM predictions for the 1980s.

(l) The meaning of statistical models of disease
distributions

The question often arises as to what exactly statistical models

based on observed records of species are predicting. In contrast

to biological or process-based models, which are generally pre-

dicting the species’ ‘fundamental niche’ (i.e. its distribution

constrained only by its physiological tolerance of temperature,

humidity, etc.), statistical models are more nearly predicting

the species’ ‘realized niche’, the fundamental niche modified

by all non-climatic variables, including competitors, predators,

parasites and, in the case of vector-borne diseases, various

human activities which either directly (e.g. insecticides) or

indirectly (e.g. the provision of safe, piped water supplies; or

changing agricultural practices [52]) affect the vectors’ or dis-

ease’s distribution. Regions to which a species is adapted but

which it has not yet colonized are also not included in the real-

ized niche. Thus, the realized niche determines what we see

and measure of a species’ distribution on the ground at the pres-

ent time. Describing such realized niches by modelling is, of

course, equivalent to trying to hit a moving target, because real-

ized niches change over time, as development proceeds. In the

case of vector-borne diseases, for example, realized niches have

tended to contract towards tropical regions. Thus, dengue and

numerous other vector-borne diseases historically had much

wider distributions than they do today, including temperate as

well as tropical regions [53]. The present models are for the

observed global distribution (i.e. realized niche) of dengue and

its vectors in the second half of the twentieth century. Projections

of models into the future assume that similar levels of develop-

ment will in the future be affecting the realized niches of these

species in the same way that they do today. Thus, it is assumed

that whatever affects dengue’s realized niche at, for example,

208C today will operate in regions experiencing 208C in the

future. This seems to be a more preferable starting point for

such studies than any based on either fundamental niche predic-

tions (which then need to incorporate all the factors limiting this

to the realized niche) or on making other assumptions about how

development in each climatic regime will change as those

regimes shift geographically.
3. Results
The results section addresses in turn each of the questions

posed in §1.

(a) How many variables should be used to make
predictions about the future of vector-borne
diseases?

Figure 1 shows predictive risk maps for dengue from models

using one, five (always the same) and a maximum of 10

(selected from a total of 70) predictor variables and table 1

shows the accuracy metrics for this series of models. Relative

humidity was chosen as the single predictor (figure 1a)

because this is related to vapour pressure, the single variable
used by Hales et al. [18] in their models of dengue, in which

they claimed an over-riding importance of vapour pressure.

Figure 1a shows the average of 100 bootstrap model results,

the only difference between models here being the bootstrap

samples from the training set. In the tropics, dengue occurs in

areas of higher rather than lower humidity (hence model pre-

dictions tend to be correct for these regions), but areas of high

humidity also occur at high latitudes which are therefore also

predicted, incorrectly, to be suitable for dengue.

The five variables selected for the next model (figure 1b
and table 1) were mean monthly rainfall, mean monthly rela-

tive humidity, maximum, minimum and mean monthly

temperature. Again, these were chosen on the basis of their

similarity to variables used by [18] and they were all included

in each bootstrap model in a stepwise fashion. In all 100 boot-

strap models, relative humidity was never chosen first, but

usually came second to rainfall which was always selected

as the best discriminating variable. Spatial predictions of

these models were much better, with no false positive

predictions at high latitudes (figure 1b and table 1).

Finally, when the models could select from the full range

of Fourier processed meteorological variables (figure 1c and

table 1), the annual amplitude of rainfall was often selected

as the best variable (mean rank across 100 models of 3.13,

s.d. ¼ 3.72, thus s.e. ¼ 0.37), followed by the bi-annual ampli-

tude of rainfall (mean rank of 6.7, s.d. ¼ 3.51) and rainfall

maximum value (mean rank of 7.89, s.d. ¼ 4.58); the remain-

ing variables referred to wet-day frequency, temperature,

humidity, sunshine hours and rainfall again (minimum).

Clearly, this list is dominated by rainfall and its variability

or duration, and by moisture, indicating dengue’s sensitivity

to these variables. Spatial predictions in these models were

more restricted than in the previous model (cf. figure 1c
and b), following the training set (electronic supplementary

material, figure S1d) more accurately (table 1).

As the figures suggest, model accuracy progressively

improved with increasing numbers of predictors and accord-

ing to all accuracy metrics (table 1). Thus, for example, kappa
increased from 0.31 to 0.46 to 0.72 and AUC increased from

0.74 to 0.8 to 0.91 in the models with one, five or 10 predict-

ors, respectively (standard deviations of all mean values are

given in table 1).

(b) Is the spatial resolution of a climate dataset an
important determinant of model accuracy?

Figure 2 and table 2 show the risk mapping results when

both training set and predictor variable spatial resolutions

are progressively down-graded from one-sixth degree

(figure 1c) to two degrees (figures 2a–d ). Although there

are some differences between the averaged final output

maps these are not very great, and differences between the

accuracy metrics are also very slight (table 2), regardless of

whether the models are run at one-sixth or at two degrees

of resolution, a 144-fold change in individual pixel area.

There was also consistency in the variables selected across

this range of resolutions. Thus, for example, the annual

amplitude of rainfall had the highest mean rank (of between

1.4, s.d. ¼ 1.97, and 4.0, s.d. ¼ 4.26) at all resolutions and bi-

annual rainfall amplitude and rainfall maximum were

selected in second and third places in the models at the

three highest resolutions; mean temperature and mean rainfall

were in these positions at one degree resolution and annual
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for risk map at the original resolution of one-sixth degree and table 2 for accuracy statistics of this series of models.
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variance of rainfall and bi-annual amplitude of rainfall in the

same positions in the two degree resolution models. In all

cases, the second and third most important variables had con-

siderably lower mean ranks than the first selected variable (6.7,

s.d.¼ 3.51, to 7.9, s.d.¼ 4.04, for the second variable and 7.9,

s.d.¼ 4.58, to 8.8, s.d.¼ 4.16, for the third).
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(c) Does inclusion of the future distributions of vectors
affect predictions of the futures of the diseases they
transmit?

Figure 3 shows series of model predictions for Ae. aegypti,
Ae. albopictus and for dengue with and without these two

mosquito layers as predictor variables, using GCM data scen-

ario B1a for the present day, and for the year 2080 (the

electronic supplementary material gives images for the inter-

mediate years 2020 and 2040), and for the difference between

these two time points (20802present day predictions).

Figure 4 shows the equivalent predictions under the high

emission A1F1 scenario and table 3 gives accuracy statistics

for both sets of models.

Under present-day climate scenarios, mean temperature

and relative humidity minimum variables were in the top

two positions for the 100 bootstrap models for Ae. aegypti
under both B1a (mean ranks for these two variables of 1.62,

s.d.¼ 1.54, and 2.39, s.d.¼ 2.42, respectively) and A1F

(mean ranks of 1.36, s.d. ¼ 1.15, and 2.69, s.d. ¼ 2.65, respect-

ively) scenarios, and they were both selected in more than 90

models in each series. Similarly, relative humidity mean and

temperature maximum were selected as the top two variables

in more than 90 of the Ae. albopictus models (mean ranks of

2.11, s.d.¼ 2.92, and 2.24, s.d. ¼ 1.19; and 1.78, s.d.¼ 2.59,

and 2.4, s.d.¼ 1.78, in the B1a and A1F models, respectively).

Average kappa and AUC values indicated a rather better fit for

Ae. albopictus (kappa ¼ 0.646, AUC¼ 0.896 in B1a and kappa¼
0.657, AUC ¼ 0.897 in A1F) than for Ae. aegypti (kappa ¼ 0.475,

AUC ¼ 0.806 in B1a and kappa ¼ 0.47, AUC ¼ 0.804 in A1F;

further details, with s.d. values, in table 3). Thus, both mosquito

vector species’ distributions depend on temperature and rela-

tive humidity. Maximum precipitation was the most

important rainfall variable for Ae. aegypti in the B1a scenario,

but had a low mean rank of 7.07, s.d. ¼ 3.19, and mean precipi-

tation the highest rainfall variable in the A1F scenario (again

with a low mean rank of 7.67, s.d.¼ 3.48). For Ae. albopictus,
maximum precipitation was also the most important rainfall

variable under both scenarios, again with a low mean rank

(6.14, s.d. 3.21, in B1a and 6.09, s.d. ¼ 2.97, in A1F). These low

average ranks for rainfall for both mosquito species’ models

indicate that this is not a critical variable for these two species.

For the dengue models without vectors, precipitation

maximum and relative humidity minimum were selected in

more than 80 of the B1a scenario models (mean ranks of 1.9,

s.d.¼ 2.88, and 4.15, s.d. ¼ 3.41, respectively; mean kappa¼
0.397, AUC ¼ 0.757) and again in more than 65 of the A1F

scenario models (mean ranks of 2.1, s.d.¼ 3.14, and 5.19,

s.d.¼ 4.04, respectively; mean kappa ¼ 0.389, AUC ¼ 0.755).

These accuracy statistics are considerably lower than those

from the meteorological records based models (table 2), but

it should be remembered that a very reduced variable dataset

was available from the GCM-based models, from which often

no more than three to six variables were selected to provide an

optimum fit for the bootstrapped samples (table 3, nvar
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column). A better comparison is therefore with the five-vari-

able model in table 1. In these dengue models (i.e. without

vectors), minimum temperature was the most important temp-

erature variable in both scenarios, with a low mean rank of

8.43, s.d.¼ 3.87, and 8.58, s.d.¼ 3.79, in the B1a and A1F

scenarios, respectively.

Addition of the two mosquito vector layers resulted in

Ae. aegypti being selected both in the B1a models, along

with precipitation maximum and relative humidity minimum

in more than 70 models (mean ranks of 1.1, s.d. ¼ 1.00, 4.41,

s.d. ¼ 3.40, and 4.51, s.d. ¼ 3.98, respectively; mean kappa ¼
0.427, AUC ¼ 0.771) and in the A1F models along with rela-

tive humidity minimum and precipitation maximum, again

in more than 70 models (mean ranks of 1.22, s.d. ¼ 1.42,

4.74, s.d. ¼ 4.13, and 5.16, s.d. ¼ 3.82, respectively; mean

kappa ¼ 0.443, AUC ¼ 0.780). The mean ranks of the Ae. albo-
pictus layer in the dengue models were low, 9.23, s.d. ¼ 3.13,

in the B1a scenario and 8.69, s.d. ¼ 3.52, in the A1F scenario,

indicating a much less important role for this vector in pre-

dicting dengue globally. Minimum temperature (the highest

ranking thermal variable) had an even lower mean rank in

these models, of 10.3, s.d. ¼ 2.15, in the B1a scenario and

9.76, s.d. ¼ 2.75, in the A1F scenario Thus, dengue’s distri-

bution is best described by its main vector’s distribution

along with rainfall and relative humidity; temperature is

much less important.

Given that the dengue models without vectors depend

mostly on precipitation and humidity but in the presence of

vectors depend rather heavily on Ae. aegypti, we might

expect a difference in the predictions of dengue’s future dis-

tribution under both emissions scenarios when the mosquito

predictor layers are available to the models compared with

when they are not. This is shown in figures 3 and 4. The fol-

lowing conclusions are drawn mostly from the high emission

A1F scenario models (figure 4), but the same, less pro-

nounced trends can also be seen in the lower emissions

scenario models (figure 3). Dengue models without vectors

show a contraction of dengue’s distribution in some areas

in the future (e.g. the Amazon basin in South America) and

an expansion in others (e.g. along the southeast coast of

Africa, and into mainland China). Dengue models with vec-

tors show many of the same trends but these are more

pronounced in most areas (e.g. the contraction in the

Amazon and expansion in China) and, in addition, new

areas are deemed to become suitable (e.g. the eastern USA

and the east coast of central South America). There is also a

marked change towards increasing suitability in a band run-

ning from Europe eastwards, probably driven by the

increasing suitability in these same areas for the two vector

species (the green areas in figure 3, right-hand panels). In

many of these areas, however, suitability does not increase

enough to give a prediction of presence, either for the vectors

or the disease.
(d) Which are the key climate variables involved
in determining changes in the distributions
of vector-borne diseases in the future?

To illustrate the Garthwaite–Koch method proposed in

Material and methods (§2) to identify key variables in the

sorts of predictions presented in §3c, a version of the A1F

scenario dengue model was run again, this time as a single
model using all the presence points and an equal number

of pseudo-absence points. Initial inspection resulted in the

removal of some highly correlated environmental variables,

leaving the following variables in the model: both of the mos-

quito vector species, precipitation maximum, temperature

minimum and relative humidity maximum and minimum.

This model was run under present-day conditions and then

under the predicted future conditions of the 2080s. The

results are shown in figure 5. The first thing to note in

figure 5 is that the predictions of dengue’s distribution from

this single model are very similar to the results of the equiv-

alent bootstrapped series (figure 4), both at the present time

and in the 2080s (figures 5a,b). Figure 5c shows the difference

image between figures 5a and b (for comparison with

figure 4d ) and figure 5d,e shows the maps arising from the

corr-max procedure (Material and methods, §2) applied to

the models of figure 5a,b. The colour coding is on a rainbow

scale; red, orange, yellow, green, blue and violet correspond-

ing to the six key variables (the order is given in the legend in

figure 5), with darker shades of each colour indicating posi-

tive values. Thus, for example, the colours red or pink refer

to the first variable, Ae. aegypti. Pink patches in figure 5d,e
indicate areas where the absence of Ae. aegypti was the

most limiting variable in making the risk map predictions,

for example in central/southern Africa and in much of

western Europe. The blue or pale blue areas in these

figures indicate where minimum temperature is limiting. In

high northern latitudes, in both North America and Asia,

conditions are below the minimum temperature requirements

for dengue (indicated by the pale blue colouring), but in the

southern Sahara minimum temperature conditions are well

above those that are suitable for dengue (indicated by the

dark blue colouring).

Perhaps the most striking difference in figure 5 is shown

in the Amazon basin of South America, where dengue is pre-

dicted present under current conditions but absent by the

2080s. Figure 5d shows that quite a number of the input vari-

ables contribute most to the MD values at the present time,

but all of these are small enough such that the low total

MD results in a prediction of dengue presence. By the

2080s, however, when dengue is predicted to be absent

from this area, a smaller number of variables are involved;

pink, Ae. aegypti; pale green, relative humidity minimum;

and dark blue, temperature minimum. The first two of

these have negative signs: Ae. aegypti is absent from these

areas by the 2080s and the minimum relative humidity pre-

dicted for that period is much lower than that required by

dengue. But the third variable has a positive sign, indicating

that the 2080s predicted temperature minimum is much

higher than dengue requires; in these areas, therefore, by

the 2080s, it becomes too dry and too hot for dengue (and

its major vector). The electronic supplementary material

shows additional versions of figure 5d,e split according to

predicted presence or absence.

4. Discussion and conclusion
The four key questions posed at the start of this article have

thrown some light both on the future of dengue globally and,

more importantly, on some of the processes and decisions

involved in making such predictions for the future.

In a review of the possible impacts of climate change,

the United States National Research Council included the
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following statement about modelling the future of diseases of

various types:
stb.royalsocie
In general, the simpler a model is, the better we understand its
implications. The assumption that more complex models will
more closely approximate reality is not justified in cases where
there is a paucity of data on relevant ‘measurables’ [54, p. 64].
 typublishing.org
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This statement is clearly a plea for parsimony in model build-

ing although it has also been taken to justify the use of only a

single predictor variable in a widely quoted model of dengue

futures [18]. Figure 1 shows that it is unlikely that a single

variable can capture the complexities of the distribution of

any disease, let alone a vector-borne one, and that adding

more variables tends to increase the accuracy of the models.

The question then becomes ‘How many is too many?’

In statistical models, new variables should only be added if

they increase the fit of the models, best measured using infor-

mation theoretic criteria [42]. In biological or process-based

models, simply choosing the ‘obvious’ variables such as

temperature and rainfall runs the danger of omitting less

obvious variables which may be equally important in deter-

mining species’ distributions; for such models the obvious

question might be ‘How few is too few?’.

Parsimony, which is intrinsically good for the reasons out-

lined in the NRC quote, is in fact forced upon the present work

using statistical models because of the rather limited number

of climate variables available from GCMs. The variables avail-

able, however, may not be the right ones for the disease in

question. In addition, as the present analysis has shown,

some of the available GCM variables are very highly correl-

ated with each other, reducing the number of useful

variables still further. Statistical modellers predicting the

future of diseases might therefore re-phrase St Augustine’s

plea to the Almighty (about remaining chaste) in the following

terms: ‘Make us parsimonious, but not yet’.

Another problem with GCMs is their intrinsically poor

spatial resolution. Initial GCM models had resolutions of

more than two degrees of both latitude and longitude.

Model resolution has improved dramatically in recent years

(currently to about half of one degree for global models)

but this is still too coarse to predict fine details of any species’

distribution. What was surprising in this study was that pre-

dictive model accuracy remained high from the original

spatial resolution of the meteorological dataset of one-sixth

of a degree right up to the sort of spatial resolution of

GCMs (two degrees, figure 2), something already noted

more generally in species’ distribution modelling when the

resolution of the observations on species distributions are of

a coarser grain size than the finest resolution of the predictor

variables [37]. The present exercise may, however, give a false

impression about the (?in)significance of spatial resolution in

all situations, because the original meteorological data used

here were of relatively fine resolution, and the averaging pro-

cess involved in making the larger pixels would have

incorporated some of this detail in the overall average. In con-

trast, GCM model predictions are made for points on a coarse

global grid. The half-way line between grid points deter-

mines the size of the pixels to which that single grid value

is applied; conditions across the pixel are therefore con-

sidered uniform. Any scaling of the results to a finer spatial

resolution (for example as here, using cubic spline inter-

polation) is making some fairly strong assumptions about

the nature of the variation between grid points, which is

assumed to be smooth and regular. This is unlikely to
apply universally, or even at all. Thus, one should not

expect to retain the same degree of model accuracy across

a range of down-scaled GCM data as is maintained across a

range of up-scaled meteorological data.

GCM models, although improving all the time, still

cannot mimic observed climates with complete accuracy.

Therefore, application of GCMs to models involving cli-

mate-sensitive insect vectors should not be expected to give

the same sorts of accuracy as application of equivalent

observed meteorological data. A comparison of more or

less equivalent models of dengue produced using either

observed meteorological data (e.g. the five variable model

of table 1) or GCM predictions for the present day

(e.g. either scenario ‘Dengue without vectors’ models in

table 5) shows a greater accuracy of the former (kappa ¼
0.46, AUC ¼ 0.8 versus kappa ¼ 0.40, AUC ¼ 0.76 for the

B1a scenario), but the differences are not huge. What is

clearly required, therefore, is the output of a greater variety

of meteorological variables from GCM models, so that more

can be used in disease distribution models of the future.

The role of vectors in vector-borne diseases is obviously

crucial. In the R0 biological model for a standard vector-

borne disease such as malaria, six of the seven key parameters

and variables are related to vectors, their abundance, mortality

or susceptibility to disease [31,55]. Thus, it should not be sur-

prising that vector distributions, when available, are often

selected even in statistical models for vector-borne diseases.

There is clearly an effect of vectors in the models described

here (contrast, for example, figures 3 and 4, rows (c) and (d))

and this effect is likely to have been underestimated because

of the limited variety of climate predictors available for both

vectors and disease. Among this limited set, temperature

seems to be more important in determining vector distri-

butions than dengue distribution on its own, and rainfall is

much more important for the disease on its own (i.e. in statis-

tical models without the vectors). This difference in

importance may help to explain why dengue models with

the mosquito vector layers gave different predictions from

those without (the usefulness of vector layers in the former

is confirmed by the fact that they are often selected as the

most important predictor variable). Nevertheless, a wider

range and type of predictor variable might highlight even

more the different climatic requirements of dengue and its vec-

tors, and therefore the difference between dengue models with

and without the mosquito distributions as predictor variables.

It could, of course, be claimed that both sorts of model are

intrinsically statistical and therefore that the dengue models

without the mosquito vectors will find some proxy among the

available climatic variables to replace the vector layers as

useful predictors. If this were the case, however, we might

expect the dengue models without vectors to select, as a

proxy for the vectors themselves, the same sorts of climate

variables that are important in determining the vectors’ distri-

bution. The models here did not seem to be doing this,

though whether this is because the vectors have a much more

widespread distribution than does the disease (mosquito distri-

butions extend into colder areas, where temperature conditions

are more likely to be limiting, and therefore temperature

variables are more likely to be required to model them) or

because of intrinsic differences between dengue and its vectors

within the areas where both occur, remains to be demonstrated.

As pointed out in §1, many other factors (landscape,

environmental, socio-ecological) affect the current distribution
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of dengue globally and are likely to operate in the future. Stat-

istical models using only climate variables to define dengue’s

realized niche may find among the climate dataset proxies

for those non-climatic constraints (i.e. climate variables corre-

lated with important landscape or other variables) which

may be used in their place, but this is clearly not ideal. The chal-

lenge now is to discover how the selected climate variables

operate on the dengue system, and to discover new, non-cli-

mate variables that increase model accuracy still further.

Identifying the key model variables involved in predict-

ing the changing spatial pattern of vector-borne diseases

over time is now made possible by the Garthwaite–Koch

technique, used here for the first time in predictive risk map-

ping, of corr-max transformation (figure 5), and calculating

weightings of the input variables on the Garthwaite–Koch

scale. There are a number of subtleties in this technique

that make it promising for future use. For example, it is

easy to calculate variance inflation factors that identify

which correlated variables need to be rotated in order to

reduce the correlation between them [49]. When correlated

variables are rotated, the results for all the other variables

remain exactly the same. Maps such as those shown in

figure 5 are useful to demonstrate that a variety of predictor

variables may be limiting the disease, even across areas

where it is uniformly present or absent. Figure 5 identifies

only the most important variable determining the size of

the MD (the corr-max technique itself is able to rank and

quantify all variables with respect to their importance); the

second and subsequent variables may be almost as important,

or of much lesser importance, and so figure 5 should be taken

only as a guide to aid understanding of why diseases may

expand or contract over time. Within a geographic informa-

tion system, it is possible to use a multilayered version of

figure 5d,e, so that the Garthwaite–Koch weightings of all

the variables can be examined simultaneously.

Predictions are often made for the future of vectors or dis-

eases on the basis of a variety of statistical, mechanistic or

process-based models, and the results are often believed

before they are properly understood. As pointed out in §1,

predictions that cannot be disproved are unscientific and

take us almost into the realm of alchemy. Isaac Newton,

one of the first great scientists, was also called the last alche-

mist. For men of his time, the idea that white light could be

turned into rainbow colours on passing through a prism

was just about as likely as it was that base metal could be

turned into gold, or that a panacea existed for all diseases.

We now distinguish among this multitude of possibilities

by using the scientific method to disprove things that

cannot possibly be true and to fail to disprove other things

that might possibly be true [1]. The possibility of disproof
is therefore critical in distinguishing fact from fiction, or

science from non-science. In the field of predictions about

the future, disproof at the present time is clearly impossible.

We must therefore be especially careful with such predic-

tions, and with any recommendations for action that might

arise from them.

Instead of believing model predictions for the future

before understanding them we should seek the more defens-

ible goal of understanding them in order to believe.

Understanding why models for the future behave in the

ways that they do will allow us to check this understanding

against not only our current knowledge of vector-borne dis-

ease epidemiology, but also our current experience of the

manifold ways in which key elements in transmission path-

ways can change, sometimes rapidly, to alter the nature or

extent of the diseases at the present time. Diseases can

adapt to new vectors in different places, or can change

rapidly through the spread of mutations, making them

more infectible to the vectors they already have. How both

vectors and diseases might adapt their thermal tolerances

as climates change is relatively unknown. As has been

pointed out elsewhere, vector-borne diseases involve a

number of factors, some of which will increase transmission

as temperatures rise (e.g. decreasing intrinsic incubation

periods in the vectors) and some of which will decrease it

(e.g. increasing vector mortality rates) [55]. The balance that

is struck between these will vary from one disease to another,

from one place to another and also from one time to another.

We do not have to apply the equivalent of Pauli’s

‘desperate remedy’ to the problem of predicting the future

of vector-borne diseases (i.e. to suggest the existence of some-

thing that cannot be proven) but we must be much more

circumspect in the claims we make for any prediction of

disease futures.
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