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A Decision Rule for Determining the Optimal

Transplant Listing Window for Patients
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Abstract

The Fontan is a complex surgical procedure used as a palliative treatment for children with univentricular hearts. In
the past, the mortality rate was high and the associated comorbidities as a result of the Fontan circulation were
many. However, as research into the condition developed, better understanding has led to a massive reduction in
early mortality and a rapidly increasing population of such patients surviving well into adulthood. This has led to a
large surge in patients with congenital heart disease being referred for cardiac transplant assessment. According to
research, listing these patients at the optimal time is the key to improving transplant outcomes. However, determining
that optimal time is unclear and controversial. In this article, I address this issue by developing an optimal timing rule
that accounts for the factors faced by specialist cardiologists in determining when transplant ought to be considered
for this cohort of patients.
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Introduction

The Fontan is a surgical procedure that was initially
developed in 1971 as a palliative treatment for children
born with a heart with only one ventricle.1 The technical-
ities of the procedure are complex, and it was initially
associated with very high mortality rates and significant
postoperative complications. However, as research into
the procedure, and the associated condition of the patient
with acquired Fontan circulation progressed, mortality
rates have declined, and in the majority of cases, patients
grow and develop in a near-normal way and live with a
good quality of life.2 Coats and colleagues3 have reported
a ‘‘5-fold increase in Fontan patients, with a projected
60% increase over the next decade,’’ while Khairy and
colleagues4 and Gamba and colleagues5 report that
Fontan surgery survival exceeds 80% at 20 years postsur-
gery. However, they also point out that eventual failure
of the Fontan physiology is inevitable prompting referral

of the patient for assessment for heart transplantation.
Indeed, over the past 15 years, there has been a 40%
increase in transplantation of adults who were born with
a heart condition (Congenital Heart Disease [CHD]),*

and while the current proportion of transplants per-
formed for Fontan failure is unclear, it is predicted that
these patients will account for 70% to 80% of CHD
transplantation in the future.2,6

However, according to Crossland and colleagues,7

‘‘The Fontan group has significant comorbidity with lim-
ited options for medical therapy8–11 and optimal timing
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for listing and transplanting these patients is therefore
key to improving outcomes.’’ The point about optimal
timing is also mentioned in Kenny et al.,2 who say that
‘‘determining the optimal timing for transplant in these
patients remains unclear’’ and suggest that having an
understanding of this ‘‘can help guide decision making in
regards to listing.’’ Currently, the decision about the
optimal time to list is based on the specialist clinicians’
experienced judgement, but there is no objective bench-
mark guiding this decision. ‘‘The timing of transplant in
the late failing Fontan remains highly controversial and
an area of developing expertise.’’2 Indeed, according to
Polyviou and colleagues,12 there is a need for tools that
help guide them in the difficult decision-making around
listing this high-risk group for transplantation.

In this article, I develop a decision rule that clinicians
can use to determine the optimal time to list individual
patients with a Fontan physiology for heart transplanta-
tion. Clinical judgement based on experience is extremely
important in the decision to list and should not be dis-
counted, but having such a rule will be an additional tool
that can assist them in devising the optimal management
strategy for patients with a failing Fontan. The main
benefits of the rule I derive are that it is easy to apply
and serves as an objective benchmark. The reason this
research is so worthwhile is that in those patients with
Fontan failure who do survive a transplant, long-term
survival is comparable with other diagnoses,7 and
according to Burch and colleagues,13 long-term ‘‘cardiac
transplant (survival) for adult CHD is better than car-
diac transplant for all other causes.’’ However, to get to
this stage, Fontan patients must be listed and subse-
quently transplanted at the right time.

This rule must account for a number of factors. On
the one hand, transplantation carries huge risk for a
Fontan patient owing to multiple prior surgeries, immu-
nological sensitivities, and multi-organ involvement.2

According to Karamlou and colleagues,14‘‘Patients with
CHD wait longer on the list than non-CHD patients and
carry a higher waiting list mortality.’’ These considera-
tions, combined with the unrelenting progression of phy-
siological failure should prompt early consideration of
transplantation in apparently stable patients2,15 before
they become too unwell and their risk of death post-
transplant (if they get that far) is too high.

On the other hand, listing patients too early is not
ideal. Even for apparently stable patients, the surgery is
high risk. Posttransplant, the patient is on immunosup-
pression therapy for the rest of their lives, which places
them at high risk of serious infection. Indeed, this is only
one of a number of such considerations outlined in
Kenny et al.2

In terms of the model, the doctor has the choice to list
the patient at time t or to wait until some future time. In
making this decision, three features are very important:
1) irreversibility in the sense that once the patient is trans-
planted, this cannot be reversed*; 2) flexibility—if the
doctor decides not to list the patient at time t, she may
do so in the future so that it is not a now or never deci-
sion; and 3) uncertainty—the outcome from performing
the transplant is always uncertain ex ante. Thus, the doc-
tor’s choice about whether or not to list a patient is a real
option; that is, she has the option to list the patient now
or she can ‘‘watchfully wait,’’ which preserves the option
to list in the future. The important point about real
options is that waiting has value owing to the uncertainty
of the outcome and the irreversible nature of the deci-
sion. The idea is that deferring a decision may allow for
more information to be revealed that may be valuable
for the decision to list; for example, it may prevent a
patient from being put through a very risky procedure in
a suboptimal clinical state; or equivalently, the acquisi-
tion of more information may justify the decision to
transplant in the future. ‘‘With deferred treatment, the
passing of time offers a medical history and therefore
increases information upon which a clinical decision can
be made.’’16 In essence, the intention is to make a confi-
dent decision based on as much information as possible
and the option to defer is valuable because it allows doc-
tors to observe the progression on the Fontan failure as
well as to gain more information about the patient’s clin-
ical status. However, there is a cost to deciding to defer if
the progression of the failing state is rapid and the opti-
mal listing window is missed. The clinical status of the
patient may deteriorate during the waiting period which
may adversely affect the expected outcome. The value of
waiting must be derived, via a method known as dynamic
programming, by comparing these expected costs against
the expected benefit from deferring.
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* This does not imply the patient cannot be re-transplanted
in the future. While this is rare in cardiac transplantation, it
is not impossible. What irreversibility implies in this context
is that this specific very high risk transplant operation the
clinicians are making a decision about cannot be ‘‘undone’’
once it is performed.
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According to Driffield and Smith,16 immediate treat-
ment versus watchful waiting has been assessed in other
contexts. They give some examples of glue ear, small
abdominal aortic aneurysms, among others. However,
they also point out that these studies do not model defer-
ral properly because they fail to incorporate the fact that
should the clinical status of the patient begin to deterio-
rate significantly, the option to list can be exercised at
any time and patient can be immediately listed. The
model in this article overcomes this limitation because it
accounts for flexibility over timing in the sense that there
are no stipulations over when the patient can be listed.
One example of such a stipulation could be that listing
can only happen immediately or not at all.

The model is one of sequential sampling because it
allows for a multiperiod perspective and will enable me
to incorporate all of the dimensions just discussed. A
similar approach has been applied previously in the con-
text of health technology adoption.17 The approach has
also been applied in a wide range of other contexts to
problems in, for example, corporate finance,18 market
microstructure,19 migration,20 and the environment.21

The idea is that the cardiologist has a checklist of symp-
toms (which she determines) against which the clinical
status of an individual patient is checked. These, along
with the quality of the symptoms, that is, how good they
are at predicting posttransplant outcome, enable the clin-
ician to determine a patient-specific level that can be mea-
sured against two threshold values that are analytically
derived in this article. If the patient’s level is above the
upper threshold, the patient is deemed too well for trans-
plant and will be reassessed in due course. If the level is
below the lower threshold, the patient will be considered
too unwell for transplant. However, if the level is between
the two thresholds, the patient should be listed. During
the listing period, while the patient waits for transplant,
the patient will be routinely reviewed and his level will be
redetermined accordingly. If the patient’s clinical status
declines to the point of his level dropping below the lower
threshold, he should be removed from the list.

The model accounts for the rate of clinical decline,
that is, the number of comorbidities developed over a
predetermined period. If, for example, that period is 6
months, then a patient who is reviewed after 1 year and
has developed 2 comorbidities in that year has rate of
decline of 1 comorbidity per 6-month interval. In other
words, depending on the length of time between reviews,
the number of comorbidities developed will be adjusted
to a number per predetermined level; that is, it will be
adjusted to a rate. This ensures consistency across
patients who are reviewed at different intervals.

In principle, if their health subsequently improves, the
patient will be reviewed and the decision rule reapplied.
If the clinical status is such that he is well enough to be
listed again, he can be relisted. However, owing to the
nature of the disease progression of a failing Fontan, this
is unlikely to happen in practice very often. Moreover, it
is worth pointing out that, for cardiac transplantation in
the United Kingdom, at least, it is not the practice for a
patient to be listed if the clinician knows that if the
patient were to be offered an organ, they would not be
able to accept it. Indeed, if a listed patient develops an
infection, they will be removed from the list, even for just
a few days, and relisted once the infection clears.

The policy structure just described represents what hap-
pens in practical settings. Specialist cardiologists list patients
they deem to be ill enough, but not too ill. As discussed
above, if a listed patient becomes too ill, they are removed
from the list. The analytic aim of this article is to determine
points to delineate the boundaries of these regions.

I show that the longer the patient is expected to wait
on the list before getting an organ, the shorter is his life
expectancy if he does not have the transplant, and the
faster his rate of clinical decline, the earlier he should be
listed, that is, while he is still reasonably well. These
results are plausible and intuitive and suggestive of the
model’s usefulness in practice.

This article represents the first stage of a broader
research agenda to determine a decision criteria with
regard to optimal timing that specialist cardiologists can
use in clinical practice. I demonstrate in this article the
theoretical model underpinning the rule and examine it
hypothetically. However, to make it fit for practice, the
model needs to be incorporated in a simple software pro-
gram that calculates the optimal decision once clinicians
input the various parameter values pertaining to a spe-
cific patient. Moreover, some input parameters will
require empirical estimation from past data, which is dis-
cussed in a later section and, finally, there are some lim-
itations to the current model that are discussed in the
Conclusion. The model should be adapted so that there
are future versions of it that account for these limitations
and the software program updated accordingly.

I also wish to point out that the practical tool is
intended for use by cardiologists at specialist centers in
which there is the expertise and risk appetite for trans-
planting patients with Fontan physiology. While there
are a number of centers in the United Kingdom, for
example, that perform cardiac transplants, only the
Freeman Hospital in Newcastle upon Tyne performs
transplants on patients with Fontan physiology. As such,
it is the clinicians at that center that make the decision
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about listing such patients. Finally, it is worth pointing
out that the model here is derived with the listing of
Fontan patients for heart transplantation in mind.
However, the techniques used are not specific to this
issue and could be applied, in principle, to any decision
about when to treat a patient in a vast array of clinical
settings.

The rest of the article is organized as follows. In the
second section, the description of the model is outlined.
In the third section, the decision criteria are derived and
are explained via the use of an example in the fourth sec-
tion. In the fifth section, I discuss the model in terms of
its plausibility for clinical use and also how the input
parameters required can be estimated empirically. The
sixth section concludes with a discussion of some of some
of the limitations of the current model that ought to be
incorporated into future versions of the model.

The Model Outline

At some time t, the doctor considers whether or not to
list a patient for cardiac transplant. Note that t repre-
sents the time of any assessment that may come after or
include the initial assessment, where t = 0 is the initial
assessment. If the patient is listed and subsequently,
transplanted, his outcome will be Good or Bad. If the
outcome is Good, the patient has long-term transplant
survival leading to a life expectancy of LT .0. In this
case, his life expectancy from having the transplant sig-
nificantly exceeds his life expectancy from not having it.
I denote the life expectancy from not having the trans-
plant by LNT , such that 0\LNT\\LT . If, however, the
outcome is Bad, he dies during or shortly after the sur-
gery and his long-term life expectancy is zero.

Prior to transplant and, therefore, prior to listing,
there is uncertainty over the outcome of the transplant
for that patient. At the time of the first assessment,
before any tests on the patient have been conducted, the
doctor has a prior belief of p0 = 50% that the patient’s
outcome will be Good.

Tests are conducted and the results of the tests serve
as signals that are indicative of the patient’s posttrans-
plant outcome and, thus, help alleviate some of the doc-
tor’s uncertainty. There is a standard checklist for all
patients undergoing such assessment against which their
comorbidities are checked. This checklist accounts for
the factors suggested by Kenny and colleagues,2 which
must be considered (e.g., multi-organ involvement,
immunological sensitivities, and number of prior sur-
geries). Hereafter, I use the terms signals, comorbidities,
and symptoms synonymously. For example, Patient i

has the symptoms checked Yes in Table 1, and the exis-
tence (or not) of each symptom is deemed to be indica-
tive of a Good or Bad outcome.

In this example, the number of signals indicative of a
Good outcome (i.e., five symptoms) is exactly equal to
the number of signals indicative of a Bad outcome.
However, it is the quality of the signals that matter.
Signals are deemed to be of high quality if they are a cor-
rect reflection of the true outcome. For example, if the
acquisition of protein losing enteropathy (PLE) is indica-
tive of a Bad posttransplant outcome, and the outcome of
a high percentage of patients with PLE turns out to be
Bad, then PLE is a high quality signal. In the model, how-
ever, the quality parameter, which is denoted by u, is not
signal specific. I discuss in more detail in the discussion
section how the overall quality of the signals could be esti-
mated holistically, but for now, the signal quality is inter-
preted as the percentage of patients for whom the signals
are accurate predictors of the posttransplant outcomes. If
this proportion is high, the signal quality is high.

Another important point about the comorbidities is
that some are, naturally, more important than others.
This is easily accounted for by considering a specific
comorbidity in terms of its associated comorbidities.
Take PLE for example. This comorbidity could be con-
sidered in terms of, for example, 1) level of albumin \A,
2) massive ascites, 3) peripheral edema, 4) length of time
since diagnosis .L years, 5) effectiveness of other pallia-
tive treatments, and so on. If patient A has 1, 2, 3, and 4,
these are four bad signals associated with PLE. If, how-
ever, patient B has 2 and 4, then this represents two bad
signals associated with PLE, so while both have PLE,
patient A is sicker with it than patient B. In this way, the
importance of specific comorbidities would be relative
and, importantly, the model would account for how a spe-
cific comorbidity affects one patient relative to another.

For each patient, the number of signals, as well as
their quality, will determine, at the time of assessment t,

Table 1 Example of Symptom Checklist

Symptom Yes/No Good/Bad

Protein losing enteropathy Yes Bad
Preserved ventricular function Yes Bad
Exercise tolerance � Level X Yes Good
Central venous pressure � Level Y No Good
Number of prior surgeries � Z Yes Bad
Severe liver cirrhosis No Good
Kidney function: Creatinine � Level A Yes Bad
Healthy body mass index Yes Good
Support network Yes Good
High antibodies (= long wait expected) Yes Bad
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the doctor’s belief (i.e., probability) on a Good outcome
posttransplant. This probability is denoted by pt. In the
next section, I derive two decision bounds, denoted by pH

and pL with pH .pL, against which pt will be measured.
With regard to the decision bounds, let pL denote the

lower bound and pH the upper bound. pH is the bound-
ary between the clinical status of a patient that is too
well and one who ought to be listed. pL is the boundary
between the clinical status of a patient that should be
listed and a patient that is too unwell.

Patients can develop a new comorbidity at any time,
and if they do, the doctor’s belief in a Good outcome is
revised accordingly. For a patient that is listed, if their
clinical status declines such that the belief pt crosses the
pL threshold, then they are removed from the list. For a
patient that was deemed too well to be listed, if they
develop more comorbidities, pt may cross the pH thresh-
old so that the patient is listed. However, when a patient
is listed, it is because there are no more treatment
options available and the patient’s clinical status is
deemed not to improve in any meaningful way. As such,
it is very unlikely that he will recover enough to be
removed from the list by becoming too well. The deriva-
tion of pH in the section ‘‘Derivation of pH ’’ is under-
pinned by this assumption.

The decision bounds will account for a number of other
factors. For example, the expected waiting time on the list
is one such factor. If the patient is listed at time t, he will
receive his transplant at some uncertain future time tT so
that the expected length of time on the list is d : = tT � t.
It is, of course, logical to assume that LNT .d; in other
words, that his expected waiting time on the list does not
exceed his life expectancy without the transplant.

The cost, in terms of life expectancy, of being listed is
the patient’s current life expectancy without the transplant
(defined earlier as LNT ) less the amount of time on the list,
that is, C = LNT � d. For example, say LNT = 1 year and
the patient spends 8 months on the list so that d= 0:67

years. If the outcome is Bad and the patient dies shortly
after the transplant, then the patient loses 4 months of life
from being listed; that is, C = 1� 0:67= 0:33 years.

Another such factor is the rate of clinical decline of
the patient. The patient’s development of further comor-
bidities is random. I let the the number of comorbidities
they develop in, say, a 1-year horizon be denoted by m.

An important assumption underpinning the decision cri-
teria is that the doctor making the decision is risk-neutral.
The motivation for this is that the decision tool derived in
this article provides an objective benchmark for all such
specialist clinicians to use which does not take into account
individual doctors’ appetite for risk. This ensures that by

adhering to the rule, the decision by the doctor to list a
patient is based solely on the factual information she has
available about the patient’s clinical status and is not influ-
enced by her subjective preferences. Hence, two patients
with little clinical difference but with different doctors may
receive opposing management strategies if the doctors do
not adhere to such an objective criteria because, as long as
this is the case, the doctor’s own appetite for risk would be
a driving force underpinning the patient’s treatment. The
discount rate used by the doctor is denoted by r.

This section outlined in detail the input parameters to
the model that the doctors will use in determining the best
decision with respect to an individual patient. The techni-
cal analysis will follow in the next section. However, for
the reader’s convenience, I provide a comprehensive table
in the online appendix that summarizes the discussion in
this section.

Derivation of the Decision Criteria

In determining the optimal management strategy, the doc-
tor chooses the strategy that maximizes the life expectancy
of the patient. In this section, I derive the decision bounds
pH and pL, described in the section ‘‘The Model Outline.’’

Suppose that at some point in time, the belief in a
Good outcome is given by pt. Before proceeding with the
derivation of pH and pL, I derive the expression for pt

using Bayes’ rule. One thing to note is that the signals
(i.e., the comorbidities that are acquired) are binomially
distributed random variables with parameters u and n,
where u has been defined previously and n are the num-
ber of signals. Furthermore, I assume that if the patient
is too well for transplant in the sense that they have
developed few comorbidities (i.e., kt exceeds the upper
threshold kH , to be defined later), transplanting them
would be a Bad outcome because the risk of the opera-
tion is too high relative to their clinical status.
Therefore, in this instance, the acquisition of a comor-
bidity is indicative of a Good posttransplant outcome
because the benefit to them of a Good posttransplant
outcome is much higher than not having the trans-
plant. Hence, the probability in a Good outcome post-
transplant, conditional on the patient having acquired
b comorbidities out of a possible n on the checklist is
given by

pt =
ub(1� u)n�bp0

ub(1� u)n�bp0 +(1� u)bun�b(1� p0)

=
(1� u)kt

ukt +(1� u)kt

ð1Þ
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where kt : = n� 2b= Number of Good symptoms in
excess of the Number of comorbidities at time t and
p0 = 1=2 as mentioned in the previous section.

However, once a patient is listed, it is because they
have acquired enough comorbidities relative to the upper
threshold. When this is true, the acquisition of any fur-
ther comorbidities implies they are progressively worsen-
ing to the point where they may be too ill. Hence, in the
listing region, the acquisition of a comorbidity is indica-
tive of a Bad posttransplant outcome. To account for
this, u and 1� u are interchanged in the derivation of pt

above so that, in the listed region, the probability of a
Good posttransplant outcome is (1� pt).

I rewrite pt as p(kt) to highlight the dependence of pt

on kt, where kt is defined above and can be interpreted as
the clinical status of the patient at time t. Indeed, we can
rewrite Equation (1) so that it is given in terms of kt as
follows:

kt =
ln 1�pt

pt

� �
ln u

1�u

� � ð2Þ

such that u 2 (0, 1) and pt 2 (0, 1).
In the section ‘‘Derivation of pH ,’’ I derive the upper

decision bound pH , and in the section ‘‘Derivation of pL,’’
I derive pL. Note that kH and kL are the clinical status
bounds associated with pH and pL, respectively, as per
Equation (2).

Derivation of pH

To derive pH , we must consider the clinical status of the
patient in three different scenarios/regions.

Region 1: In this region, the clinical status of the patient
is such that they should be listed immediately; that is,
kt� kH .

His expected total life expectancy (TLE) from being
listed now with an expected waiting time of d is given by

VR1(kt)= 1� p(kt)ð Þ(LT � LNT + d)+ p(kt) 0� (LNT � d)ð Þ
= 1� p(kt)ð ÞLT + d� LNTð Þ ð3Þ

where d\LNT . If it were not the case that d\LNT , then
the patient’s life expectancy without the transplant is less
than his expected waiting time, and as such, listing would
have no value as it would be unlikely they would live long
enough to get the transplant.

Region 2: If this region, the clinical status of the patient
is such that they are much too well for transplant at
the time of assessment; that is, kt.kH + 1, where kH

denotes the net number of symptoms yielding the belief
level pH . They have the option of being listed in the
future if their clinical status declines significantly. The
value of such option has been derived in previous stud-
ies,18,22 but with two main differences: 1) if the patient’s
clinical status improves even more because, for exam-
ple, after the assessment, they are offered a new treat-
ment which cures any comorbidity they may have had
prior to assessment, the option to list them is less valu-
able; and 2) a Bad posttransplant outcome is associated
with few comorbidities for the reason explained above.

It is given by

VR2(kt)=
m

r +m
2p(kt)u+ 1� u� p(kt)ð ÞVR2(kt � 1)½

+ p(kt)+ u� 2up(kt)ð ÞVR2(kt + 1)� ð4Þ

subject to the condition that as kt ! ‘, VR2(kt)! 0. A
general solution, subject to this condition, is given by

VR2(kt)=
Ab

kt

1

ukt +(1� u)kt
ð5Þ

where A.0 is some constant to be determined and b1 is
the smaller root of the quadratic equation

b2 � r +m

m

� �
b+ u(1� u)= 0 ð6Þ

and 0\b1\u.

Region 3: In this region, the patient is too well for trans-
plant, but if they acquire one more comorbidity, they
should be listed; that is, kH\kt� kH + 1. The value of
the option is given by Equation (4), but with
VR2(kt � 1) replaced with VR1(kt � 1).

VR3(kt)=
m

r +m
2p(kt)u+ 1� u� p(kt)ð ÞVR1(kt � 1)+ p(kt)+ u� 2up(kt)ð ÞVR2(kt + 1)½ �

=
m

r+m

(1� u)uk + u(1� u)k

ukt +(1� u)kt

� �
1� p(kt � 1)ð ÞLT + d� LNTð Þ+ Ab

kt + 1
1

ukt +(1� u)kt

" # ð7Þ
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Note that this corresponds with Equation (11) from
Thijssen and colleagues,22 but with their kt + 1 replaced
with kt � 1 and vice versa. The reason is that in their
model, stopping is optimal (i.e., investing) after one more
good signal, whereas in my model, the stopping region
will be entered (i.e., it becomes optimal to list) after one
more bad signal (i.e., the acquisition of one more
comorbidity).

To determine pH , we solve for the following conditions
(cf. Thijssen et al.,22 p. 7):

VR1(kH )=VR3(kH ) ð8Þ

and

VR2(kH + 1)=VR3(kH + 1) ð9Þ

which yield

pH = C LT

LNT�d
� 1

� �
+ 1

h i�1
ð10Þ

where

C : =
r +m(1� b1)ð Þ r +muð Þ � m2u(1� u)

r+m(1� b1)ð Þ r +m(1� u)ð Þ � m2u(1� u)

ð11Þ

This belief is well-defined for 0\pH � 1. It is straight-
forward to verify that it is well defined for C � 0 since
d\LNT and LT ..LNT , as previously discussed. I show in
the online appendix that C � 0. Thus, pH is well-defined.

Derivation of pL

To derive pL, we must consider three additional regions
to those described above.

Region 4: Say the clinical status of the patient is such
that kL + 1\kt � kH . This implies that he should be
listed immediately, and even if he acquires one more
comorbidity, he will still not be removed from the list.
The value to the patient in this state is given by the
expected life expectancy from getting the transplant d

periods in the future plus the value of option to be
removed from the list should his status worsen
significantly.*

The value of the option to remove the patient from
the list is derived in a similar way to that in Region 2.
However, I assume that only negative signals arrive in
this region; that is, once kt reaches kH from above. In
other words, it is very implausible to assume that the
patient will recover enough to be removed from the list
by being deemed too well once he is listed. Recall, more-
over, that since the patient is listed in this region, we
replace p(kt) with 1� p(kt) in Equation (4) (p(kt) defined
by Equation 1).

This gives

VO4(kt)=
m

r+m
p(kt)+ u� 2up(kt)ð ÞVO4(kt � 1) ð12Þ

subject to the condition that limkt!�‘ VO4(kt)=‘.
Intuitively, the more comorbidities that are acquired
while waiting, the more valuable is the option to delist.

A general solution, subject to this condition is given by

VO4(kt)=
Bb

kt

2

ukt +(1� u)kt
ð13Þ

where B is some constant to be determined and b2 solves

� r +m

m

� �
b2 + u(1� u)= 0 ð14Þ

(cf. Equatios 7 and 8 in Thijssen et al.,22 but recall that
we do not consider positive signals so that their F(k + 1)
is zero in the context of this case.)

It is easily verified from Equation (14) that b2\u and
b2\(1� u). Therefore, by Equation (13), the boundary
condition is satisfied; that is, limkt!�‘ VO4(kt)=‘.

Therefore, the total value of being listed in Region 4 is
given by the combined value from his expected life expec-
tancy from being listed plus the value of the option to
delist. Note that the expected life expectancy from being
listed is given by Equation (3).

VR4(kt)= (1� p(kt))LT + d� LNTð Þ+ Bb
kt

2

ukt +(1� u)kt

ð15Þ

Region 5: Say the clinical state of the patient is such that
he is currently listed, but if he acquired one more
comorbidity, he should be removed from the list; that
is, kL\kt� kL + 1. If he is removed from the list, his
life expectancy is LNT . Therefore, the option to de-list
must satisfy Equation (12) with VO4(kt) replaced by
VO5(kt) and VO4(kt � 1)= LNT . Therefore,

* The patient is better off if the value of this option is low
because, in that case, his clinical status is better.
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VO5(kt)=
m

r+m
p(kt)+ u� 2up(kt)ð ÞLNT ð16Þ

and the total Region 5 value is given by

VR5(kt)= (1� p(kt))LT + d� LNTð Þ
+

m

r +m
p(kt)+ u� 2up(kt)ð ÞLNT ð17Þ

This is underpinned by the same intuition as that for
Equation (15). However, the difference is that in Region 4,
the acquisition of one more comorbidity does not result in
removal from the list, whereas it does in Region 5. As such,
the value of the options to delist differs in these regions.

Region 6: Say kt� kL. In this case, the patient is deemed
too unwell for transplant so he will not be offered a
place on the list. The value is represented by his life
expectancy without the transplant

VR6(kt)= LNT ð18Þ

To determine pL, the following boundary conditions
must be satisfied:

VR6(kL)=VR5(kL) ð19Þ

and

VR5(kL + 1)=VR4(kL + 1) ð20Þ

Replacing for VR4, VR5 and VR6 in these boundary equa-
tions (using Equations 15, 17, and 18, respectively) gives,
after some algebraic manipulation,

pL =
(r +m) d+ LTð Þ � 2r +m(2+ u)ð ÞLNT

(r +m)LT +m 1� 2uð ÞLNT

ð21Þ

This threshold is a probability level. Thus, to be well-
defined, it must be that 0\pL� 1. It is justifiable to
assume that the long-term life expectancy posttrans-
plant significantly exceeds the life expectancy without
the transplant; that is, LT ..LNT in order for the risk
of the operation and posttransplant complications to
be worthwhile. Moreover, I assumed previously that
d\LNT . Given this, it is easy to verify that pL is well-
defined.

Listing Criterion

The listing criterion can be given in terms of pt or kt.
However, since kt is easily observable by the doctor as

the number of Good signals in excess of Bad signals, we
give the criterion in terms of kt. However, as explained in
the previous section, p(kt) as given by Equation (1), must
be replaced by 1� p(kt) for the analysis of the lower
threshold. Therefore,

kL =
ln pL

1�pL

� �
ln u

1�u

� � ð22Þ

where pL is given by Equation (21). Moreover, from
Equation (2),

kH =
ln 1�pH

pH

� �
ln u

1�u

� �
and

pH = C
LT

LNT � d
� 1

� �
+ 1

� 	�1

with C given by Equation (11).
The optimal timing decision rule is given by

Criterion=

if kt � dkHe Too Well

if dkLe� kt �bkHc List

if kt�bkLc Too Unwell

8><
>: ð23Þ

Note that working out kH and kL will yield values that
can be any real number, when they should be discrete.
As such, the criterion is stated in terms of ceiling
and floor functions where, for some x 2 R, ceil (x)=
dxe : = minfy 2 Njy � xg; that is, as the smallest integer
greater than x, and floor(x)= bxc : = maxfy 2 Nj
y� xg; that is, the largest integer less than x.

Example 1: Consider patient X who presents with the
following characteristics. They are developing an aver-
age of m= 2 comorbidities per year, the quality of
their symptoms as being a correct reflection of their
posttransplant outcome is u= 80%, r = 10%, the
patient’s expected waiting time while on the list is
d= 0:5 year, their posttransplant long-term life expec-
tancy is LT = 10 years, and if they do not get the trans-
plant, they are expected to live for LNT = 2 years.
Plugging this information into Equations (10) and (21)
and from there into Equations (2) and (22), respec-
tively, gives kH = 2:93 and kL = 0:18. Thus, the patient
should be listed if kt �bkHc= 2, but if kt � dkHe= 3

he is too well for now. If, however, kt�bkLc= 0, he is
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too sick to be offered a place on the list, or if listed, he
should be removed from the list.

Discussion

In this section, I demonstrate that the implications
obtained from the theoretical model indicate its plausi-
bility for clinical use, and second, I discuss how the input
parameters that are required could be estimated.

First, however, I make the following important point
about the quality parameter u. kt increases in pt for
u\1=2 and decreases in pt for u.1=2 (see Figure 1). For
u= 1=2, kt is undefined.

As such, the model’s predicted effects of the para-
meters LNT , d, and m depend on whether we assume
u.1=2 or u\1=2.

The Scientific Registry of Transplant Recipients
(SRTR) maintains 43 risk-adjustment models for asses-
sing transplant program performance in the United
States.23 A feature of these models is the importance of
certain comorbidities in predicting transplant outcome
(analogous to the signal quality in this model). Snyder
and colleagues23 assess the performance of the SRTR
models and find that, in general, posttransplant out-
comes are difficult to predict. The C-statistics determin-
ing the models’ ability to distinguish between high- and
low-risk transplants are wide-ranging and can be low.
For the heart models, the C-statistics range between 0.67
and 0.83. Nevertheless, it is reasonable to assume that if
the clinician has, based on their own experience and
from the literature, chosen to include certain comorbid-
ities in the checklist, they must be good predictors of the

posttransplant outcome. Hence, I think it is appropriate
to interpret the effects of the above-mentioned para-
meters for u.1=2.

Model Implications

In Figures 2, 3, and 4, I show the impact, according to
the model, of the expected waiting time, the patient’s life
expectancy if they do not have the transplant, and their
rate of clinical decline, respectively, on the optimal listing
strategy. To interpret the findings, note that the higher
the value of bkHc, the earlier it is optimal to list the
patient, and the higher the value of bkLc, the earlier it is
optimal to remove the patient from the list. Earlier list-
ing and delisting correspond with a better clinical status.
Furthermore, the chosen parameter values are those
given in Example 1.

From Figure 2 (left hand plot), the model suggests
that the longer the patient is expected to wait on the list
before an organ becomes available, the earlier he should
be listed; that is, while he is still relatively well. This
makes sense because if the doctor were to wait too long,
she risks listing the patient when his clinical status is
poor, and in that case, with a long expected waiting time,
the patient may not survive long enough to get the organ.

On the other hand, from the right hand plot of Figure
2, if the patient is listed, a change in the expected waiting
time has no impact on the delisting threshold. Hence, if
their comorbidities are not too many, they should remain
on the list, irrespective of the expected waiting time. (d
actually has a positive impact on kL, but its effect is too
small to impact bkLc.)

From Figure 3, the shorter is the patient’s life expec-
tancy if he does not have the transplant, the sooner he
should be listed. This is again, intuitive, because of the
expected waiting time. Another way of looking at this is
that if the patient’s life expectancy is relatively long with-
out the transplant, he has time to wait, and therefore, he
does not have to be listed immediately.

Furthermore, a change in LNT does not affect bkLc,
and according to the model, the patient should remain
listed as long as the comorbidities are not too many.

Finally, from Figure 4, the more comorbidities the
patient is acquiring per year, the earlier he should be
listed; that is, if his clinical status is quickly deteriorating,
he should be listed promptly. Once again, this implica-
tion suggested by the model is plausible and intuitive.
Moreover, it upholds the suggestion by Kenny et al.2

and Everitt et al.15 that the unrelenting progression of
physiological failure should prompt early consideration
of transplantation in apparently stable patients.

Figure 1 The effect of pt on kt.

Delaney 9



However, a change in the rate of clinical decline has
no impact on the threshold at which the patient should
be removed from the list. This implies that if the patient
is listed, he should remain so until enough comorbidities
are realized (i.e., until kt�bkLc), even if his clinical status
is declining quickly.

To summarize, the three important factors that the
doctor ought to consider when deciding the best manage-
ment strategy for a given patient are the rate of clinical
decline, the patient’s life expectancy if he does not have
the transplant, and the length of time he is expected to
wait on the list are all incorporated into the model. The

Figure 2 The effect of d on bkHc and bkLc.

Figure 3 The effect of LNT on bkHc and bkLc.

Figure 4 The effect of m on bkHc and bkLc.
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effects of these factors on the optimal listing decision
implied by the model are plausible and realistic, which
further implies that this model is a credible one for use in
clinical practice.

Parameter Estimates

To calculate the kH and kL for each patient, we need to
estimate LT and LNT . Note that in the model, LT and LNT

are referred to in terms of survival, but in practice, LT

and LNT could alternatively be measured in terms of
QALYs (quality-adjusted life years), which is the stan-
dard measure used in economic evaluation of health care
to assess the value of medical interventions. Whatever
measure is used, the data for these values are available
from the transplant unit.

We also need to estimate d and m. m is patient specific.
It represents the patient’s rate of clinical decline and is
the simply the number of comorbidities the patient devel-
oped over the past, say, 1year. This is easily determined
from the patient’s history.

At any given point in time, the transplant coordina-
tors at the transplant center have a good idea of the
average waiting time for a patient about to be placed on
the list. Part of their job is to examine the national trans-
plant list on a daily basis so they always have a good
understanding of its current status. Furthermore, they
can personalize this estimate somewhat depending on the
individual patient. For example, they may be able to say
that an individual patient placed on the list on a given
day is expected to wait on average 2 months. However,
this estimate may be different for another patient with
unusually high antibodies if they were to be listed on that
same day. This is deemed to be a comorbidity because
such a patient is much harder to match, and anecdotal
evidence suggests they wait much longer than patients
with few antibodies. In that case, if such a patient was to
be listed immediately, the estimated waiting time for
them may be, for example, 2 months, rather than 2
months. Similarly, patients with more comorbidities will
be placed on the urgent list rather than the routine list
giving them priority. Hence, a patient on the routine list
has a longer expected waiting time than a patient on the
urgent list. As such, it is up to the transplant coordinators
to provide this patient specific estimate for d in the deci-
sion model when being applied to an individual patient.

Finally, we need an estimate for the signal quality
parameter u. This represents the adequacy of the
existence (or not) of certain comorbidities as accurate
predictors of the posttransplant outcome. It is less

straightforward to estimate than the other parameters.
Recall, first, that the parameter u is holistic. Second,
there is uncertainty over the quality in the sense that any
signal can give a false positive (negative) result. In other
words, a signal could be obtained that is indicative of a
Good (Bad) outcome, but the true outcome turns out to
be Bad (Good). A possible approach is to determine,
with the use of past data (which the transplant center
can access), the quality of each comorbidity (i.e., signal)
from the doctor’s checklist (such as that described by
Table 1) as an indicator of outcome. If the sample size is
limited, we could use Monte Carlo simulation to obtain
further estimates of comorbidities and outcomes. Indeed,
Wong and Koff24 considered the cost-effectiveness of
waiting versus immediate treatment for mild chronic
hepatitis C. They used data from a trial and performed
some Monte Carlo simulation to estimate prognosis
beyond the capacity of the trial. If a signal is deemed to
be Bad, for example, then its quality could be estimated
as the proportion of patients who had that comorbidity
when transplanted and their outcome was indeed Bad.
We could then combine these individual qualities into a
composite measure of quality that embraces all the rele-
vant comorbidities to the listing decision. This approach
is also suggested in a related paper by Driffield and
Smith,16 who advocate using ‘‘Monte Carlo simulation
to combine multiple sources of uncertainty into a com-
posite measure of well-being that embraces all considera-
tions relevant to the treatment decision.’’

Conclusion

This article views the decision to list patients with a
Fontan physiology for cardiac transplantation as a real
option. I develop a model to determine the optimal time
to list such patients in response to the various suggestions
in the literature that listing these patients at the optimal
time is ‘‘key to improving outcomes.’’7 However, as yet,
determining the optimal time remains unclear.2 This arti-
cle addresses this need by providing a timing model that
can be made easy to use in practice, and is plausible and
robust in terms of the underpinning intuition.

However, it is worth pointing out two important lim-
itations to this model that future versions will aim to
account for. The first is that there is no distinction
between the urgent and routine lists. Patients that are
deemed sick enough are placed on the urgent list where
they gain priority over less ill patients, even if those
patients were listed earlier. A future version of this model
could aim to separate the listing region into routine or

Delaney 11



urgent; that is, whether the patient should be urgently
listed or not. This has big consequences in terms of wait-
ing time, but also, patients who are urgently listed must
remain in hospital while they wait for the organ, whereas
routinely listed patients can wait at home living a rela-
tively more normal life.

A further limitation is the following. The Fontan cir-
culation has a significant impact on the liver owing to
increased portal hypertension. In some patients, this can
result in severe cirrhosis of the liver, and as such, some
patients undergoing transplant after a Fontan are
deemed to be in need of a heart and liver transplant.
Both organs must be from the same donor and the dou-
ble transplant is performed as a single operation and the
listing must be for two organs; in other words, a patient
needing both must be listed as needing both organs. The
current model is based on the assumption that the
patient in in need of just a heart, but a future version of
this model could potentially signal whether the patient
should be listed for just a heart or for both organs simul-
taneously. I would envisage that those patients deemed
to be in need of both should be listed earlier (i.e., with
fewer overall comorbidities) than those needing just a
single organ, according to the decision criteria to be
derived.
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