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Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration
(AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species
(ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal
ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative
damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO
animal models.These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of
these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.

1. Introduction

Oxidative stress plays a pivotal role in the development
and progression of multiple neurodegenerative disorders,
including amyotrophic lateral sclerosis (ALS), Parkinson’s
disease (PD), Alzheimer’s disease (AD), and Huntington
disease (HD) [1, 2]. Oxidative stress and neurodegeneration
are also involved in several eye diseases, for which there are
many published reports [3–5]. Aging, gene abnormalities,
and excess exposure to exogenous oxidative stressors (e.g.,
a light exposure) increase oxidative stress in the eye. In this
review, we describe the relationship between oxidative stress
and retinal diseases, as well as the effects of the free radical
scavenger, edaravone.

2. Oxidative Stress

2.1. Reactive Oxygen Species (ROS). Oxidative stress is caused
by an imbalance between the antioxidant defense system and
the production of reactive oxygen species (ROS), including
superoxide anion (O

2

−∙), hydroxyl radical (∙OH), hydrogen
peroxide (H

2
O
2
), and singlet oxygen (1O

2
). In particular, the

superoxide anion (O
2

−∙) and hydroxyl radical (∙OH) with an
unpaired electron are also known as free radicals. Hydrogen

peroxide exhibits a low reactivity, but it can penetrate cell
membranes, including the inner and outer membranes of
mitochondria. Therefore, hydrogen peroxide (H

2
O
2
) can

react with cellular iron and generate hydroxyl radicals, the
most reactive form of oxygen, via the Fenton reaction: H

2
O
2

+ Fe2+ → ∙OH + −OH + Fe3+ [6].
These ROS are produced during the processes of several

enzymatic and oxidation reactions. The mitochondrial respi-
ratory chain is the main source of ROS production [7]. In the
inner membrane of mitochondria, electrons are transported
and oxygen is converted into water. Under hypoxic condi-
tions, this process is not performed to completion, resulting
in an increased production of superoxide anions (O

2

−∙).
Nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) is the source of ROS, derived primarily from
superoxide anions (O

2

−∙), via enzymatic reactions [8, 9].
As part of the NOX family, seven oxidases (NOX1–5 and
Duox1-2) are recognized [10]. Of these, NOX4 can produce
both superoxide anions (O

2

−∙) as well as hydrogen peroxide
(H
2
O
2
) [11, 12]. Nitric oxide (NO) is produced by the sequen-

tial oxidation/reduction of L-arginine to L-citrulline by nitric
oxide synthase (NOS), which exists in the form of inducible
NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS
(eNOS) [13]. NO can react with superoxide anions (O

2

−∙)
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and form peroxynitrite (ONOO−) which has a highly potent
oxidizing and nitrosating ability [14]. This reaction prompts
eNOS uncoupling, resulting in an increase in the formation
of superoxide anions (O

2

−∙) [15]. Moreover, peroxynitrite
(ONOO−) oxidizes the eNOS cofactor and further promotes
eNOS uncoupling [16].

2.2. Cigarette Smoking. Cigarette smoke is known as one of
the exogenous sources of ROS [17] and containsmultiple ROS
producers, such as nicotine and cadmium.Nicotine promotes
nitric oxide (NO) production and increases proangiogenic
factors [18] and cadmium accumulates preferentially in the
RPE and choroid and increases ROS production [19]. More-
over, hydroquinone (HQ) is also included in cigarette smoke.
HQ is an abundant oxidant in nature, found in processed
foods, plastic containers, and atmospheric pollutants. In
addition, cigarette smoke extract (CSE) has been shown to
induce alterations tomitochondrial integrity, increase in lipid
peroxidation, and significant human RPE cell death [20, 21].

Excess light exposure is also included as a source of ROS.
The energy contained in a photon of light changes electron
orbitals and can break bonds directly.

2.3. Light Exposure. Light exposure reduces lipofuscin aut-
ofluorescence [22]. Autofluorescence photobleaching is an
indication of lipofuscin photooxidation [23]. At a higher level
of light exposure, such as after prolonged exposure or being
subjected to blue light, RPE disruption occurs in a manner
which permanently alters the autofluorescence pattern [24].
Usually, autofluorescence photobleaching recovers after sev-
eral hours; however, the detailedmechanism remains unclear.
Excess light exposure induces cell death in a murine retinal
cone cell line (661W) and can cause a disruption in the
phagocytotic function of a human retinal pigment epithelial
cell line (ARPE-19) [25, 26].

Oxidative stress entails an excess amount of reactive
oxygen species (ROS) that leads to oxidative damage to DNA,
proteins, lipids, and mitochondria. Mitochondria become
progressively more incompetent with age. Therefore, oxida-
tive stress is associated with several age-related diseases. For
a detailed summary of the factors affected by ROS, please see
the review by Davalli et al. [27].

2.4. Endoplasmic Reticulum (ER) Stress. Oxidative stress is
closely linked to endoplasmic reticulum (ER) stress [28–
31]. During the induction of the unfolded protein response
(UPR), ROS are produced by protein disulfide isomerase
(PDI), endoplasmic reticulum oxidoreductin (ERO-1), and
NADPH oxidase complexes (i.e., NOX4) [32, 33]. ROS are
produced during the transfer of electrons from protein thiol
to molecular oxygen by ERO-1 and PDI and during protein
misfolding due to the depletion of glutathione (GSH) [34].
In addition, after utilizing GSH, thiols interact again with
ERO-1/PDI and are reoxidized. These chain reactions then
generate further ROS [34]. ROS can also be produced by
unfolded proteins independent of disulfide bond formation.
Unfolded proteins in the ER can lead to Ca2+ release
into the cytosol, which then increases ROS formation in
mitochondria [35]. ATP depletion caused by protein folding

and refolding processes in the ER lumen is also considered
to contribute to increased ATP and ROS production by
stimulating mitochondrial oxidative phosphorylation.

2.5. Inflammation. Oxidative stress is linked to inflammation
[36–39]. It has been reported that oxidative stress-induced
RPE cell death primarily due to necrosis induces the expres-
sion of an inflammatory gene, highmobility group protein B1
(HMGB1) [40]. Moreover, the inflammatory cytokine, tumor
necrosis factor- (TNF-)𝛼, is also induced inmacrophages and
healthy RPE cells by the medium of dying cells exposed to
oxidative stress [41]. Conversely, proinflammatory cytokines,
such as TNF-𝛼, interleukin-1𝛽 (IL-1𝛽), or interferon-𝛾 (IFN-
𝛾), induce intracellular and extracellular ROS production
in human RPE cells [42]. Indeed, these proinflammatory
cytokines are upregulated in the eyes of patients with glau-
coma, age-related macular degeneration, diabetic retinopa-
thy, or retinal vein occlusion [43–46].

In particular, endothelial cells are affected by inflam-
mation. Inflammation induces shifts in the endothelial cell
phenotype, increasing the expression of inflammatory medi-
ators, cytokines, and iNOS activation [47]. These events are
observed in both RPE cells and endothelial cells. More-
over, RPE interacts with endothelial cells (ECs) directly
and can enhance the proangiogenic potential of the ECs,
such as proliferation and migration. For example, TNF-𝛼
upregulates the expression of vascular endothelial growth
factor (VEGF), a major angiogenic factor, in RPE cells via
the ROS-dependent activation of 𝛽-catenin [48]. ROS also
affects VEGF-stimulated VEGF receptor 2 dimerization and
autophosphorylation. Conversely, VEGF further stimulates
ROS production through the activation of NOX in endothe-
lial cells [49]. It has been reported that hypoxia-induced
microRNA-424 (miR-424), a member of the miR-16 family
crucial for the regulation of cell differentiation [50, 51],
promotes hypoxia-inducible factor- (HIF-) 1𝛼 stability in
human umbilical vein endothelial cells (HUVECs). This is
achieved by inhibiting the expression of a scaffolding protein,
Cullin-2, which is essential for the assembly of the HIF E3
ubiquitin ligase complex [52]. ROS also inhibits the activity
of prolyl hydroxylase enzymes (PHD) and factor-inhibiting
HIF-1𝛼 (FIH) by reducing Fe2+ availability [53]. In addi-
tion, endothelial cell apoptosis is triggered by high glucose-
induced overexpression of iNOS in RPE cells activating the
PKR-like endoplasmic reticulum kinase (PERK) pathway
[54].

2.6. Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2).
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a nuclear
transcription factor regulating antioxidant defense. Nrf2
usually exists in the cytosol and interacts with Kelch-like
ECH-associated protein 1 (Keap1), an adaptor for a Cullin-3-
(Cul3-) based ubiquitin ligase [55]. Under normal condition,
the amount of Nrf2 is maintained at lower levels than that
of Keap1 and Cul3 proteins. However, under oxidative stress
condition, electrophilic agent increases Nrf2 much more
than Keap1 and Cul3 proteins, resulting in the accumulation
of Nrf2 in the nucleus. In contrast, Keap1 and Cul3 are
not changed in their abundance, subcellular localization,
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Figure 1: A hypothetical radical-scavengingmechanism of edaravone. Edaravone anion scavenges radicals (∙X) to produce anion bodies (X−)
and edaravone radicals. The final product is 2-oxo-3-(phenylhydrazono)-butanoic acid (OPB), which is without oxidation power.

and interaction in response to electrophilic stimuli [56].
The increased Nrf2 translocates into the nucleus, dimerizes
with Maf proteins, and binds to the antioxidant/electrophile
response element (ARE/EpRE) in the promoters of its target
genes. These genes encode protective proteins against oxida-
tive stress, including superoxide dismutase (SOD), catalase,
glutathione S-transferases (GST), NADPH quinine oxidore-
ductase (NQO-1), peroxiredoxin (PRX), heme oxygenase-
1 (HO-1), and thioredoxin reductase-1 (TXNRD1) [57–59].
Catalase and SOD directly neutralize hydrogen peroxide
(H
2
O
2
) and superoxide anion (O

2

−∙), respectively [60, 61].
GST and NQO-1 function as a detoxicating enzyme of elec-
trophilic substances and a xenobiotic-metabolizing enzyme,
respectively [62, 63]. HO-1 removes toxic heme, producing
iron ions (Fe2+), carbon monoxide (CO), and biliverdin [64].
Both biliverdin and its reductive form, bilirubin, are potent
antioxidants; bilirubin breaks the oxidation chain reaction of
polyunsaturated fatty acids [65].

3. Edaravone

Oxidative stress is highly complex and is linked to other forms
of stress and effects on various cells. There are two strate-
gies for reducing oxidative stress: (1) enhancing antioxidant
enzymes and (2) reducing ROS directly.

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, MCI-
186, Radicut�) is a free radical scavenger and a drug used
to treat acute ischemic stroke [66]. In Japan, edaravone is
administered via an intravenous infusion within 24 h of the
onset of acute ischemic stroke in patients with lacunae, large-
artery atherosclerosis, and cardioembolic stroke.

The hypothetical reaction mechanism of edaravone
involves the electron donation to free radicals.The final prod-
uct derived from edaravone is 2-oxo-3-(phenylhydrazono)-
butanoic acid which is without oxidation power (Figure 1)
[67–70]. The main metabolites consist of sulfoconjugate and
glucuronic acid conjugation. Edaravone quenches hydroxy
radicals (∙OH) and inhibits lipid peroxidation dependent
and independent of hydroxy radicals (∙OH) [67, 71, 72].
Indeed, we demonstrated that edaravone scavenged the
intracellular not only hydroxy radicals (∙OH) but also super-
oxide anion (O

2

−∙) and hydrogen peroxide (H
2
O
2
) [73].

Moreover, edaravone shows a neuroprotective effect against
ischemia/reperfusion brain injury and cardiopulmonary
resuscitation through a Bax/Bcl-2 dependent antiapoptotic

mechanism [74, 75]. Edaravone also ameliorates photorecep-
tor cell death after experimental retinal detachment through
increasing the level of the antiapoptotic Bcl-2 [76].

Edaravone has not only antiapoptotic effect but also
anti-inflammatory effect. In the brain with the treatment
of middle cerebral artery occlusion, the expression levels of
proinflammatory cytokines such as tumor necrosis factor-
alpha (TNF-𝛼), interleukin-1 beta (IL-1𝛽), and inducible
nitric oxide synthase (iNOS) were effectively suppressed by
edaravone [77]. In addition, the expressions of the inflam-
matory cytokines TNF-𝛼 and monocyte chemoattractant
protein-1 (MCP-1) in retinal lysateswere significantly reduced
by edaravone treatment [76].

Edaravone is a low-molecular-weight agent and exerts
potency both inwater andunder lipid soluble conditions [67].
Thus, edaravone is a free radical scavenger with properties
of both of vitamins C and E. In addition, edaravone readily
crosses the blood-brain barrier, which is unlike other free
radical scavengers. These properties of edaravone may be
important for its neurovascular protective effects observed in
patients with acute ischemic stroke.

Previously, our laboratory demonstrated that combina-
tion therapy with normobaric hyperoxia and plus edaravone
prevented neuronal damage following focal cerebral ischemia
and reperfusion in mice [78]. For a summary of multiple
reports on the protective effects of edaravone, please refer to
the review by Watanabe et al. [79].

This review describes the relationship between oxidative
stress and retinal disease, as well as the effect of edaravone
against retinal disease.

4. Age-Related Macular Degeneration (AMD)

4.1. Pathogenesis and Pharmacological Therapy. Age-related
macular degeneration (AMD) is the leading cause of blind-
ness in elderly individuals throughout the world, and approx-
imately 50 million people suffer from AMD worldwide [80].
In addition, the number of patients with AMD continues to
increase, and it is estimated that approximately 198 million
people currently suffer from AMD [81]. AMD is classified
into two types: “dry” and “wet.” In the dry-type AMD,
gradual vision loss and drusen, the yellow deposits located
under the retina, are diagnostic features [82]. Lipofuscin is the
main constituent of drusen and is produced during the reac-
tion of cell metabolites, such as lipid peroxidation [83, 84].
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Lipofuscin is deposited when the production of lipofuscin is
beyond the disposal capacity of the photoreceptor pigment in
RPE [85]. RPE is particularly susceptible to ROS formation
due to its high consumption of oxygen, high proportion of
polyunsaturated fatty acids, and constant exposure to light.
Drusen causes retinal pigment epithelium (RPE) degener-
ation and “geographic atrophy” appears as feature in eye
fundus. When it spreads to the fovea, rapid and severe vision
loss occurs. Some dry-type AMD pathology advances to wet-
type AMD pathology. The wet-type AMD accounts for 10–
15% of AMD patients, and choroidal neovascularization is
characterized. The vessels within Bruch’s membrane or the
sub-RPE space are very weak; therefore, hemorrhage and/or
vascular leakage cause damage to the retina leading to further
vision loss.

There are several events that occur during the develop-
ment of AMD, such as oxidative stress, the formation of
drusen and RPE dysfunction, apoptosis, activating immune
system, senescent loss of homeostatic control, and Bruch’s
membrane abnormalities. These events are highly complex
and involve crosstalk, as well as interaction with each other.
As the name indicates, AMD ismajor ocular disease in elderly
individuals [80]. With aging, antioxidant level declines and
ROS level increases, ensuring oxidative stress [86]. By aging,
macular carotenoids level [87], glutathione S-transferase-1
expression level [88], and vitamin E level [89] are decreased
and lipid peroxidation is increased [90]. In contrast, lipofus-
cin [91, 92], mitochondrial DNA damage in retina [93, 94],
advanced lipid peroxidation, and glycation end products [90,
95] are increased. Aging changes the homeostasis of these
factors, which means that the rate of AMD development is
high in elderly individuals.

Currently, there is no treatment available for the dry-
type AMD. In the Age-Related Eye Disease Study (AREDS),
antioxidant micronutrients, including 𝛽-carotene, vitamin
C, vitamin E, and zinc, showed a suppressive effect on
disease progression [96]. As a therapeutic drug for wet-type
AMD, the anti-VEGF antibody is commonly used. Anti-
VEGF antibody treatment is the current standard therapy
that improves the visual function in patients with wet-
type AMD [97]. Patients receive the anti-VEGF antibody
treatment via an intravitreal injection at regular intervals.
An intravitreal injection is the most common and widely
recommended route of drug administration to treat posterior
ocular diseases [98]. However, this method is highly invasive
and is associated with the risk of infection (0.02 to 1.6%) [99–
103]. In addition, the anti-VEGF antibody is very expensive,
and the financial burden on patients with the wet type of
AMD is extremely high. Therefore, the development of novel
therapeutic drug is an urgent need.

4.2. The Effects of Edaravone. We demonstrated that edar-
avone is effective against retinal degeneration both in vivo
and in vitro [104–106]. A model of light-induced retinal
degeneration in mice is commonly used for the evaluation
of retinal damage and photoreceptor cell death induced by
excess exposure to light [107–109]. Previously, we demon-
strated that oxidative stress was involved in light-induced
photoreceptor cell death [110–113]. An electroretinogram

(ERG) revealed that the intraperitoneal administration of
edaravone at a dose of 3mg/kg (30min before and just after
light exposure) inhibited visual dysfunction five days after
light exposure [104]. Moreover, it decreased the number
of apoptotic TUNEL-positive cells and was a marker of
oxidative damage toDNA, 8-hydroxy-2-deoxyguanosine- (8-
OHdG-) positive cells, and the expression of phosphorylated
JNK and phosphorylated p38, but not that of phosphorylated
ERK, in the whole retina after light exposure [104]. These
data suggest that oxidative stress is involved in light-induced
retinal degeneration, and the systemic administration of
edaravone may slow the progression of photoreceptor degen-
eration through antioxidative stress [73] and antiapoptotic
effects [74–76] (Figure 2). Moreover, this protective effect
of edaravone was also observed in N-methyl-N-nitrosourea-
(NMU-) induced retinal photoreceptor degeneration inmice,
a model of retinitis pigmentosa [114].

Next, we evaluated the effect of the edaravone eye drop,
consisting of edaravone-loaded submicron-sized liposomes
(ssLips). Eye drop administration is a noninvasive and simple
method of the delivery for patients. The protective effects
against visual dysfunction and apoptosis induced by light
exposure were shown by edaravone-loaded ssLips at a dose
that free edaravone could not prevent [105]. Moreover, the
edaravone-loaded ssLips used in the study exhibited a low
toxicity in ocular cell lines [105].

Edaravone also demonstrated its effectiveness in the wet-
type AMDmodel. A laser-induced choroidal neovasculariza-
tion (CNV)model was developed as an animal model of wet-
type AMD [115]. Laser photocoagulation ruptures Bruch’s
membrane and induces CNV, which is the main charac-
teristic feature of the disease [116]. Edaravone administered
intraperitoneally or intravenously reduced the CNV area
and vascular leakage [106]. Surprisingly, edaravone admin-
istered intravenously within 24 h after photocoagulation also
demonstrated an inhibitory effect [106]. The mechanism of
the effect mediated by edaravone is via the reduction of
ROS, lipid peroxidation, and VEGF-induced endothelial cell
proliferation. Moreover, edaravone was also found to reduce
the laser-induced CNV area in the common marmoset, a
small monkey [106]. Edaravone demonstrated effectiveness
against experimental laser-induced CNV in both rodents, as
well as primates, indicating that it may be effective against
wet-type AMD characterized by CNV (Figure 3).

Edaravone is already approved for the treatment of
acute ischemic stroke. This means that feasibility of clinical
application is high because its effectivity and tolerability are
very clear. If a combination therapy of anti-VEGF antibody
and edaravone exerts a great inhibitory effect against CNV,
edaravone would be a powerful candidate for AMD thera-
peutic medicine and could extend the period of intravitreal
injection.

5. Glaucoma

5.1. Pathogenesis and Pharmacological Therapy. Glaucoma
is an optic neuropathy, characterized by retinal ganglion
cell (RGC) death, optic nerve head cupping, and visual
dysfunction (e.g., scotoma) [117, 118]. Glaucoma is the second
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Figure 2: Protective effects of edaravone against light-induced retinal damage. Edaravone scavenges light-induced ROS and rescues light-
induced photoreceptor cell death by inhibiting phosphorylated JNK, p38 (but not ERK), and oxidative stress to DNA.

most common cause of blindness worldwide [119], and it
is expected that over 80 million people will suffer from
glaucoma by 2020 [119]. High intraocular pressure (IOP)
was considered as a major cause of developing glaucoma;
however, in some cases, RGC loss occurred despite a lower
IOP [120]. Therefore, IOP reduction alone may be not
sufficient for the treatment of glaucoma.

The axons of the RGCs located within the inner retina
constitute the retinal nerve fiber layer (RFNL) and merge
to form the optic nerve. Therefore, RGC loss causes a loss
of RFNL thickness and optic nerve head cupping [118]. The
mechanism of RGC loss remains unknown. Similar to age-
related macular degeneration, glaucoma is also associated
with oxidative stress [121–123]. Previously, our laboratory
demonstrated that antioxidant agents including Coenzyme
Q10, Astaxanthin, Zeaxanthin, and Docosahexaenoic acid
inhibited RGC death induced by H

2
O
2
or the glutamate

analog, N-methyl-D-aspartate (NMDA) [124–127]. In a pre-
clinical study, it was revealed that excitatory amino acids (e.g.,
glutamate and glycine) were increased and that oxidative
stress was one of risk factors for RGC death [128–130].
Moreover, oxidative stress leads to the early impairment of
trabecular meshwork (TM) cells which are responsible for

aqueous humor outflow and further elevation of the IOP
[123, 131]. Indeed, multiple reports have shown that, in the
aqueous humor of patients with glaucoma, there were lower
levels of antioxidants and elevated markers of oxidative stress
[132–134].

In preclinical studies, glutamate antagonists, neurotroph-
ic factors, antioxidants, calcium channel blockers, brimoni-
dine, and nitric oxide synthase inhibitors were shown to
exhibit the neuroprotective effects [124, 135–143]. A few
agents (e.g., brimonidine and memantine) were evaluated in
clinical trials. However, these data have not been conclusive
[144, 145].

5.2. The Effects of Edaravone. In the model of glaucoma,
NMDA-induced retinal damage in mice is commonly used.
NMDA induces calcium entry and ROS production, such as
NO and superoxide anions (O

2

−∙), and results in RGC death
[146, 147].

Edaravone in the form of 5 and 50 nmol intravitreous
injections or 1 and 3mg/kg intravenous injections signifi-
cantly protected against the NMDA-induced reduction of
retinal thickness [73]. Moreover, a 50 nmol intravitreous
injection of edaravone decreased the retinal expression of
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Figure 3: Protective effects of edaravone against laser-induced choroidal neovascularization. Edaravone scavenges laser-induced ROS and
rescues laser-induced choroidal neovascularization by inhibiting lipid peroxidation and endothelial cell proliferation.

TUNEL-positive cells, markers of oxidative stress (4-HNE
and 8-OHdG), and phosphorylated JNK and p38 but not
that of phosphorylated ERK (Figure 4) [73]. Another study
reported that an intraperitoneal injection of edaravone at a
dose of 3mg/kg also showed potent neuroprotective activity
in a hyaluronic acid-induced glaucoma model [148]. More-
over, edaravone-loaded liposomes suppressed the NMDA-
induced reduction of retinal thickness [149]. Elevated IOP
induces transient ischemic injury. Edaravone also decreased
retinal ganglion cell death induced by oxygen-glucose depri-
vation (OGD) stress in an ischemia-reperfusion injurymodel
in vitro [73].

6. Diabetic Retinopathy (DR)

6.1. Pathogenesis and Pharmacological Therapy. Oxidative
stress is also associated with diabetic retinopathy (DR)
[150, 151]. Diabetic retinopathy is one of the most common
complications of diabetes mellitus (DM) and the leading
cause of blindness and visual dysfunction in working-age
populations. Similar to AMD, the number of patients with
DM and DR is increasing globally. In the United States alone,
4.1 million people have DR, and the number of patients is
expected to double by 2025 [152].

Hyperglycemia induces the excess production of mito-
chondrial ROS. Increased ROS activates the poly-ADP-ribose
polymerase (PARP) pathway and decreases glyceraldehydes
3-phosphate dehydrogenase (GAPDH) activity, which leads
to the further activation of the polyol pathway, the protein
kinase C (PKC) pathway, advanced glycation end products
(AGEs) pathway, and the hexosamine pathway [151, 153,
154]. Under chronic oxidative stress conditions induced by
hyperglycemia, Sirt1 and Sirt6 are downregulated and result
in endothelial cell senescence [155, 156]. Moreover, increased
retinal ROS stabilizes hypoxia-inducible factor-1𝛼 (HIF-1𝛼)
and leads to the upregulation of angiogenic genes (e.g.,
VEGF). As a result, pathological angiogenesis is induced
[157–160]. Indeed, the concentration of VEGF was found to
be upregulated in the vitreous humor of patients with prolif-
erative diabetic retinopathy, compared to the controls with
a macular hole [161]. These pathological vessels can result
in a hemorrhage or vascular leakage due to its weakness;
therefore, such events causemacular edema, retinal ischemia,
and retinal detachment. Furthermore, hyperglycemia accel-
erates premature endothelial cell apoptosis via mitochondrial
dysfunction [162].

Increased hyperglycemia-induced ROS affects both
endothelial cells, as well as neuronal cells [163]. Increased
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NMDA-induced retinal ganglion cell death by inhibiting phosphorylated JNK, p38 (but not ERK), lipid peroxidation, and oxidative stress to
DNA.

ROS also decreases brain-derived neurotrophic factor
(BDNF) that regulates axonal growth, synaptic activity, and
neuronal survival. The damage to the synaptic transmitter
and degradation of neurotrophic factors causes neuronal cell
apoptosis and visual impairment [164].

Laser panretinal photocoagulation (PRP) is the primary
mode of therapy for neovascularization in proliferative
diabetic retinopathy (PDR). PRP treatment was proven to
decrease the frequency of severe visual loss in PDR with
high-risk characteristics (>50% decrease) [165]. Later, Early

Treatment Diabetic Retinopathy Study (ETDRS) demon-
strated that the frequency of severe visual loss in severe
nonproliferative DR (NPDR) and early PDR was decreased
by PRP [166]. However, in mild or moderate NPDR, adverse
effects of PRP on visual acuity and visual field were also
observed [166]. Therefore, for eyes with macular edema,
focal photocoagulation is effective in reducing the risk of
moderate visual loss. In recent years, anti-VEGF antibody
has received a lot of attention. Ranibizumab (Lucentis�)
monotherapy provided better visual outcome than standard
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focal laser in patients with diabetic macular edema (DME)
[167]. Moreover, aflibercept (Eylea�) also provided better
visual outcome than standard focal laser in patients with
DME [168] and was more effective in improving vision than
ranibizumab at worse levels of initial visual acuity [169].

6.2. The Effects of Edaravone. The injection of streptozotocin
(STZ) is commonly used for the model of type 1 DM. In this
model, retinal damage and visual impairment are observed.
An intraperitoneal injection of edaravone at a dose of 3mg/kg
was found to significantly attenuate diabetes-induced RGCs
death, the upregulation of ROS, ERK1/2 phosphorylation,
cleaved caspase-3, and the downregulation of BDNF [170].
These data suggest that oxidative stress is highly involved in
diabetic retinal damage and that the systemic administration
of edaravone may slow the progression of retinal neuropathy
induced by diabetes.

7. Branch Retinal Vein Occlusion (BRVO)

7.1. Pathogenesis and Pharmacological Therapy. RGC death
also occurs under the retinal ischemic conditions during
which ROS production is active. Studies have shown that
hydroxyl radical (∙OH) was generated in the retina during
ischemic conditions and remained elevated during the reper-
fusion period [171, 172]. Retinal vein occlusion includes both
a branch retinal vein occlusion (BRVO) and central retinal
vein occlusion (CRVO). In the United States, it is estimated
that approximately 100,000 people suffer from RVO.

Similar to DR, the condition including macular edema,
retinal ischemia, and fundus hemorrhage is observed. Retinal
ischemia impairs the integrity of the blood retinal barrier,
and RVO is a common complication of DR. Blood hyper-
viscosity is also observed in RVO pathology. In determining
blood viscosity, erythrocyte deformability plays a critical
role. In RVO patients, ROS production and membrane lipid
peroxidation, which are indicative of erythrocyte oxidative
stress, are observed and positively correlatedwith erythrocyte
membrane viscosity and deformities [173]. A study in young
adult CRVO patients revealed that the serum levels of an
antioxidant factor, paraoxonase-1 arylesterase (PON1-ARE)
activity, were negatively correlated with hyperhomocysteine-
mia and lipid peroxidation [174]. Moreover, a glucose-6-
phosphate dehydrogenase (G6PD) deficiency was associated
with increased erythrocyte vulnerability to oxidative stress
and developedCRVO [175]. Clinically, antiphospholipid anti-
bodies have been associated with the development of RVO,
since it induces oxidative stress in endothelial cells [176].

Anti-VEGF treatment is applied as the therapy for RVO.
An intravitreal injection of triamcinolone acetonide is also
applied due to the low cost and longer half-life. However, the
effects are not permanent, and there are some risks for the
development of adverse events, such as cataract formation
and elevated IOP [177].

7.2. The Effects of Edaravone. We have reported that the
intraperitoneal administration of edaravone at a dose of
1mg/kg significantly decreased the reduction of retinal thick-
ness and TUNEL-positive cells induced by the ligation of the

pterygopalatine artery (PPA) and the external carotid artery
(ECA), in a murine retinal ischemic model [178]. Moreover,
the intraperitoneal administration of edaravone at a dose of
3mg/kg lowered a marker of lipid peroxidation, malondi-
aldehyde (MDA), and enhanced superoxide dismutase (SOD)
in rodent retinal tissue [179]. MDA is a product of lipid
peroxidation and exhibits cytotoxicity. SOD is an antioxidant
enzyme that neutralizes superoxide anions (O

2

−∙). In addi-
tion, edaravone inhibited the retinal ischemia/reperfusion-
induced visual dysfunction and apoptosis of retinal neurons
within the inner nuclear, ganglion cell, and outer nuclear
layers [179]. These data suggest that edaravone scavenges
ROS, thereby reducing lipid oxidation, increasing the activity
of antioxidant enzyme, and decreasing the extent of cell death
and retinal thickness.

In a clinical trial, edaravone following arteriovenous
sheathotomy was effective against macular edema associated
with a branch retinal vein occlusion (BRVO) and improved
the best-corrected visual acuity [180].

8. Conclusions

Oxidative stress is highly complex and connected to other
factors, such as ER stress and inflammation. Moreover, in
retinal diseases, including age-related macular degeneration
(AMD), glaucoma, diabetic retinopathy (DR), and retinal
vein occlusion (RVO), oxidative stress plays pivotal roles in
the development and acceleration of these diseases. In the
treatment of these ocular diseases, a therapeutic strategy
which targets oxidative stress may be effective.

Edaravone demonstrates protective effects against AMD,
glaucoma, DR, and RVO models, suggesting that edaravone
may be promising as a novel therapeutic drug candidate.
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[108] C. Grimm and C. E. Remé, “Light damage as a model of retinal
degeneration,”Methods inMolecular Biology, vol. 935, pp. 87–97,
2013.

[109] M. Niwa, H. Aoki, A. Hirata, H. Tomita, P. G. Green, and A.
Hara, “Retinal cell degeneration in animal models,” Interna-
tional Journal ofMolecular Sciences, vol. 17, no. 1, article 110, 2016.

[110] K. Ojino, M. Shimazawa, Y. Ohno, T. Otsuka, K. Tsuruma,
and H. Hara, “Protective effect of SUN N8075, a free radical
scavenger, against excessive light-induced retinal damage in
mice,” Biological & Pharmaceutical Bulletin, vol. 37, no. 3, pp.
424–430, 2014.

[111] T. Imamura, T. Hirayama, K. Tsuruma, M. Shimazawa, H.
Nagasawa, and H. Hara, “Hydroxyl radicals cause fluctuation
in intracellular ferrous ion levels upon light exposure during
photoreceptor cell death,” Experimental Eye Research, vol. 129,
pp. 24–30, 2014.

[112] Y. Kuse, K. Ogawa, K. Tsuruma, M. Shimazawa, and H. Hara,
“Damage of photoreceptor-derived cells in culture induced by
light emitting diode-derived blue light,” Scientific Reports, vol.
4, article 5223, 2014.

[113] S. Fuma, H. Murase, Y. Kuse, K. Tsuruma, M. Shimazawa, and
H. Hara, “Photobiomodulation with 670 nm light increased
phagocytosis in human retinal pigment epithelial cells,”Molec-
ular Vision, vol. 21, pp. 883–892, 2015.

[114] K. Tsuruma, M. Yamauchi, Y. Inokuchi, S. Sugitani, M. Shi-
mazawa, and H. Hara, “Role of oxidative stress in retinal
photoreceptor cell death in N-methyl-N-nitrosourea-treated
mice,” Journal of Pharmacological Sciences, vol. 118, no. 3, pp.
351–362, 2012.

[115] H. E. Grossniklaus, S. J. Kang, and L. Berglin, “Animal models
of choroidal and retinal neovascularization,” Progress in Retinal
and Eye Research, vol. 29, no. 6, pp. 500–519, 2010.

[116] R. S. Shah, B. T. Soetikno, M. Lajko, and A. A. Fawzi, “A Mouse
model for laser-induced choroidal neovascularization,” Journal

of Visualized Experiments, vol. 2015, no. 106, Article ID e53502,
2015.

[117] H. A. Quigley, “Glaucoma,” The Lancet, vol. 377, no. 9774, pp.
1367–1377, 2011.

[118] H.A.Quigley, E.M.Addicks,W.R.Green, andA. E.Maumenee,
“Optic nerve damage in human glaucoma: II. the site of injury
and susceptibility to damage,” Archives of Ophthalmology, vol.
99, no. 4, pp. 635–649, 1981.

[119] A. Izzotti, A. Bagnis, and S. C. Saccà, “The role of oxidative
stress in glaucoma,” Mutation Research—Reviews in Mutation
Research, vol. 612, no. 2, pp. 105–114, 2006.

[120] R. F. Brubaker, “Delayed functional loss in glaucomaLII Edward
Jackson Memorial Lecture,” American Journal of Ophthalmol-
ogy, vol. 121, no. 5, pp. 473–483, 1996.

[121] L. A. Levin, “Direct and indirect approaches to neuroprotective
therapy of glaucomatous optic neuropathy,” Survey of Ophthal-
mology, vol. 43, no. 1, pp. S98–S101, 1999.

[122] V. Zanon-Moreno, P. Marco-Ventura, A. Lleo-Perez et al.,
“Oxidative stress in primary open-angle glaucoma,” Journal of
Glaucoma, vol. 17, no. 4, pp. 263–268, 2008.

[123] R. Fernández-Durango, A. Fernández-Mart́ınez, J. Garćıa-
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