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ABSTRACT

Background. Fuzzy inference systems (FISs) based on fuzzy theory in mathematics were previously applied to infer
supplementary points for the limited number of monitoring sites and improve the uncertainty of spatial data. Therefore
we adopted the FIS method to simulate spatiotemporal levels of air pollutants [particulate matter <2.5 μm (PM2.5), sulfur
dioxide (SO2) and (NO2)] and investigated the association of levels of air pollutants with the community-based
prevalence of chronic kidney disease (CKD).
Methods. A Complex Health Screening program was launched during 2012–2013 and a total of 8284 community
residents in Chiayi County, which is located in southwestern Taiwan, received a series of standard physical
examinations, including measurement of estimated glomerular filtration rate (eGFR). CKD cases were defined as eGFR
<60 mL/min/1.73 m2 and were matched for age and gender in a 1:4 ratio of cases:controls. Data on air pollutants were
collected from air quality monitoring stations during 2006–2016. The longitude, latitude and recruitment month of the
individual case were entered into the trained FIS. The defuzzification process was performed based on the proper
membership functions and fuzzy logic rules to infer the concentrations of air pollutants. In addition, we used
conditional logistic regression and the distributed lag nonlinear model to calculate the prevalence ratios of CKD and the
95% confidence interval. Confounders including Framingham Risk Score (FRS), diabetes, gout, arthritis, heart disease,
metabolic syndrome and vegetables consumption were adjusted in the models.
Results. Participants with a high FRS (>10%), diabetes, heart disease, gout, arthritis or metabolic syndrome had
significantly increased CKD prevalence. After adjustment for confounders, PM2.5 levels were significantly increased in
CKD cases in both single- and two-pollutant models (prevalence ratio 1.31–1.34). There was a positive association with
CKD in the two-pollutant models for NO2. However, similar results were not observed for SO2.
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Conclusions. FIS may be helpful to reduce uncertainty with better interpolation for limited monitoring stations.
Meanwhile, long-term exposure to ambient PM2.5 appears to be associated with an increased prevalence of CKD, based
on a FIS model.

GRAPHICAL ABSTRACT

Keywords: air pollution, chronic kidney disease, fuzzy logic inference model, NO2, PM2.5

INTRODUCTION

Chronic kidney disease (CKD) is characterized by persistent ab-
normalities in kidney structure and function [1]. With >697 mil-
lion patients with CKD worldwide in 2019 [2], the increased dis-
ease burden with a lower social demographic index [3] poses a
major challenge to global public health [4, 5]. Exposure to par-
ticulate matter <2.5 μm (PM2.5) increases mortality as well as
the risk of vascular inflammation and atherosclerosis [6–8] and
it iswidely believed that PM2.5 adversely affects the development
and progression of cardiovascular disease [6, 9]. The kidney, a
highly vascularized organ,may also be susceptible to PM-related
small vessel dysfunction and large vessel atherosclerosis [10].

Hypertension, diabetes, ethnicity, age, smoking, episodes of
acute kidney injury, use of analgesic medications and genetic
factors [11] are widely recognized as risk factors for the develop-
ment of CKD. However, air pollution has been increasingly em-
phasized as a new risk factor for CKD [12, 13]. Experimental stud-
ies suggest that deregulation of renal hemodynamics, oxidative
stress and an inflammatory response occurred when exposed
to deeply inhaled particles. These particles damage renal tissue
and eventually exacerbate acute kidney injury (AKI) and CKD in
animal studies [8, 14, 15]. Mehta et al. [13] found that long-term
exposure to high PM2.5 levels led to longitudinal changes of the

estimated glomerular filtration rate (eGFR) in a regional cohort
of 669 elderly men. In another study, Xu et al. [16] reported that
long-term exposure to high levels of PM2.5 increased the risk of
membranous nephropathy. Finally, Bowe et al. [12] reported sig-
nificant associations between exposure to PM2.5 and the risk of
incident CKD, eGFR decline and end-stage renal disease (ESRD).

Several studies aimed to predict PM2.5 concentrations
through stationary monitoring data or satellite aerosol optical
depth with various spatial geostatistical algorithms and grid
sizes [12, 16]. Most stationary monitoring data applied in the
spatial interpolation of ambient pollutant measurements were
usually from a limited number of monitoring sites. Fuzzy in-
ference systems (FISs) based on fuzzy theory in mathematics
are frequently used to infer supplementary points for a limited
number of monitoring sites and improve the uncertainty of spa-
tial data [17, 18]. The FIS for exposure estimation can design
the input features, e.g. the geographic coordinates and months,
to infer the reasonable outputs, such as the pollutant concen-
trations of PM2.5. The inputs are expressed by the membership
functions (MFs) for fuzzification and follow the rule-based logics
for defuzzification to estimate the output [19, 20]. In our previous
study, we developed and validated the FIS model to improve the
uncertainty of spatial data and for application in interpolation of
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FIGURE 1: Study protocol of community-based participants recruited.

ambient levels of PM2.5 and lead [18]. Besides PM2.5, the FISmodel
was further extended in the present study to infer the levels of
multiple air pollutants including sulfur dioxide (SO2) and nitro-
gen dioxide (NO2). Furthermore, we explored the prevalence ra-
tios (PRs) of CKD associated with increasing concentrations of
ambient multipollutants (PM2.5, SO2 and NO2) through single-
and two-pollutant models in a community-based population.

MATERIALS AND METHODS

Study area and participants

Chiayi County, a typical agricultural county located in south-
western Taiwan, comprises 18 townships and cities covering
1901.67 km2 (i.e. ∼5.28% of the total area of Taiwan). Chiayi
County has a population of 500 000 people and the highest
percentage of elderly people (18.61%) in Taiwan. We imple-
mented a Community-based Complex Health Screening (CCHS)
program to investigate the effects of environmental issues on
long-term health risk assessments. Community recruitment
was conducted in 2012 and 2013 and included residents ≥40
years of age who lived in Chiayi County. A total of 8284 com-
munity residents participated in the study. Cases with missing
data of gender (n = 55), age <40 years (n = 462) and those who
did not live in Chiayi County (n = 975) were excluded. The
detailed recruitment protocol is presented in Figure 1. A total
of 6792 community residents were included in the present
study. All participants provided informed consent before study
enrollment and specimen collection. This study was approved
by the Research Ethics Committee of China Medical University
Hospital, Taichung, Taiwan (DMR101-IRB061).

Collection of questionnaire data and health
examinations

All community residents ≥40 years of age were invited to
participate in the anthropometric measurements and baseline
health examinations, which included height, weight and waist
and hip circumference, measured in the standing position with
a special tape to the nearest centimeter at the umbilicus (waist
circumference) and at the iliac spine (hip circumference). Blood

pressure in the right arm was measured by a standard mercury
sphygmomanometer to record the lowest value while the indi-
vidual was seated. A venous blood sample was taken after an
8-h fast to obtain the following biochemical parameters: plasma
levels of triglycerides, total cholesterol, low-density lipoprotein
cholesterol (LDL) and high-density lipoprotein cholesterol (HDL).
In addition, blood glucose and blood creatinine were also mea-
sured.Diabeteswas defined as fasting glucose≥ 126mg/dL or use
of insulin or oral hypoglycemic medicines. Hypertension was
defined as systolic blood pressure (SBP) >140 mmHg or diastolic
blood pressure (DBP) >90 mmHg or self-reported antihyperten-
sivemedication use.Hyperlipidemiawas defined as total choles-
terol ≥200 mg/dL or triglycerides ≥130 mg/dL or self-reported.
The presence of metabolic syndrome was further defined as in-
dividuals with three or more of the following abnormalities: SBP
≥130 mmHg or DBP ≥85 mmHg, waist circumference ≥90 cm
for men or ≥80 cm for women, blood triglyceride concentration
≥150 mg/dL, HDL <40 mg/dL for men or <50 mg/dL for women
or fasting glucose ≥100 mg/dL, using the National Cholesterol
Education Program’s Adult Treatment Panel III guidelines, mod-
ified for the Asian population from the International Diabetes
Federation [21]. Furthermore, the gender-specific Framingham
Risk Score (FRS) was calculated to assess the risk for each pa-
tient. The scores were further categorized based on the 10-year
risk of cardiovascular disease (<10%, 10–20% and >20% as low
risk, intermediate risk and high risk, respectively) [22].

Trained personnel interviewed each participant and com-
pleted a structured questionnaire based on the standardized as-
sessment. The assessment information related to demographic
and socioeconomic characteristics and lifestyle variables includ-
ing cigarette smoking and quantity of areca nut chewing, con-
sumption of alcohol and other beverages, participation in sports,
consumption of three regular meals per day and personal and
familial history of cancer or other related diseases. Prevalence
of heart disease, gout, chronic liver disease, arthritis and can-
cer was defined if cases self-reported ‘yes’ to the question ‘Have
you ever had heart disease?’ in the questionnaire on the disease
history of the individual.

Definition of CKD

We used the Chronic Kidney Disease Epidemiology Collabora-
tion equation to estimate the individual eGFR [23]. We further
defined the five stages of CKD according to the relevant Kid-
ney Disease Outcomes Quality Initiative guidelines from the
National Kidney Foundation. Study participants in stages 3–5
(eGFR <60 mL/min/1.73 m2) were defined as having CKD. In
the analysis, we included 640 CKD individuals and 2560 con-
trol subjects in a 1:4 ratio of cases:controls. Controls were re-
cruited participants whose age and gender matched the cases
with CKD, but with no evidence of CKD (eGFR ≥60 mL/min/
1.73 m2).

A FIS model for PM2.5, SO2 and NO2 estimation

Data on air pollutants including PM2.5, SO2 and NO2 were
collected from air quality monitoring stations (n = 73) in Taiwan
from 2006 to 2016. A map of the stationary monitors and study
area in Taiwan are shown in Supplementary data, Figure S1. The
monthly average concentration of PM2.5, SO2 and NO2 was esti-
mated in accordance with the FIS model. The detailed modeling
procedures for PM2.5 assessment were previously published by
Chung et al. [18]. In this study, similar methods were applied
to infer the concentration of SO2 and NO2 in Chiayi. Briefly, the
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FIGURE 2: Fuzzy inference frameworks for assessing levels of air pollutants (PM2.5, SO2 and NO2). MFs, membership functions.

analytical data of PM2.5, SO2 and NO2 from 2006 to 2014 with
filtration and imputation in data preprocessing were entered
into the FIS model for the data train. The FIS model consists of
four steps, as shown in Figure 2.

Step 1. Specify input and output features—the sets of ‘longi-
tude, latitude andmonth’ as well as ‘concentration’ were the re-
spective features for the input and output data of the individual
pollutants (PM2.5, SO2 and NO2).

Step 2. Design the fuzzy set with proper MFs—the MFs further
constitute the input features’ fuzzy set for the Mamdani-type
MF with the geometric shape while the output feature can be
converted to the Sugeno-type MF with a numerical crisp set. For
example, for PM2.5 we created the Gaussian MF of the month
feature corresponding to the regression distributions of the
studied pollutants during the four seasons,while the difference-
sigmoidal (d-sigmoid) MFs of the spatial features such as longi-
tude and latitude were designed in accordance with the concen-
tration distribution. Similarly, we considered the Gaussian MFs
for SO2 and the d-sigmoid MFs for NO2 cases with respect to
their regression distributions including the study area of Chiayi
as shown in Supplementary data, Figure S2.

Step 3. Define the fuzzy logic rules—the fuzzy logic rules are en-
abled with ‘if–then’ syntax to control the association between

the input and output features. The Mamdani-type FIS with the
appropriate rules would reduce the MFs of the output features
compared with the Sugeno-type FIS for the realizable inference
design within the same scope. In addition, the adaptive neuro-
FIS (ANFIS) can drive the data training process to optimize the
Sugeno-type FIS with the appropriate FIS parameters that can
be referred to as the equivalent Mamdani-type FIS. We used the
triangular MF to build the fuzzy set of output features (i.e. con-
centration level of pollutants).

Step 4. Infer the output results—the longitude, latitude and re-
cruitment month of the individual resident can finally be input
into the trained FIS that conducted the defuzzification process
with the fuzzy logic rules to deduce the concentration of PM2.5,
SO2 and NO2. We validated the output levels of PM2.5, SO2 and
NO2 with the average values of monitoring data from 2015 to
2016. The mean absolute error (MAE) and root mean square er-
ror (RMSE) of various air pollutants are shown in Supplementary
data, Table S1. Both Matlab and QGIS were employed to gen-
erate the FIS model and plot the geographic-related risk map,
respectively (Supplementary data, Figure S3). For every resident
we calculated the overall average value of PM2.5, SO2 and NO2

from 2006 to their corresponding year of recruitment. Descrip-
tive data of air pollutants in the full study population, includ-
ing PM2.5, SO2 and NO2, are presented in Supplementary data,
Table S2.
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Table 1. Descriptive characteristics between study participants with and without CKD

Variables Cases Controls Age- and sex-adjusted PR (95% CI)a

(n = 640) (n = 2560)

eGFR (mL/min/1.73 m2), mean ± SD 50.33 ± 9.66 74.27 ± 9.60
Age (years), mean ± SD 66.82 ± 8.93 65.84 ± 8.89
40–50, n (%) 14 (2.19) 56 (2.19)
50–60, n (%) 122 (19.06) 488 (19.06)
60–70, n (%) 267 (41.72) 1068 (41.72)
70–80, n (%) 202 (31.56) 808 (31.56)
≥80, n (%) 35 (5.47) 140 (5.47)

Sex, n (%)
Male 296 (46.25) 1184 (46.25)
Female 344 (53.75) 1376 (53.75)

Ethnicity, n (%)
Holo Taiwanese 564 (97.41) 2329 (97.37) Reference
Hakka Taiwanese 7 (1.21) 36 (1.51) 0.82 (0.36–1.85)
Mainland Chinese 8 (1.38) 27 (1.13) 1.07 (0.45–2.52)

Education, n (%)
Elementary school or below 408 (65.38) 1631 (64.72) Reference
High school 173 (27.72) 666 (26.43) 1.03 (0.81–1.30)
College or above 43 (6.89) 223 (8.85) 0.75 (0.52–1.08)

Marriage, n (%)
Married 517 (82.99) 2186 (87.51) Reference
Single 15 (2.41) 38 (1.52) 1.71 (0.90–3.24)
Widowed/divorced 91 (14.61) 274 (10.97) 1.42 (1.09–1.85)

Hypertension, n (%) 456 (71.92) 1,540 (60.87) 1.67 (1.38–2.03)∗∗

Hyperlipidemia, n (%) 459 (72.51) 1634 (64.33) 1.48 (1.22–1.80)∗∗

Diabetes, n (%) 210 (33.44) 584 (23.16) 1.70 (1.40–2.06)∗∗

Metabolic syndrome, n (%) 282 (44.06) 790 (30.86) 1.81 (1.51–2.17)∗∗

FRS, n (%)
<10% 114 (17.81) 684 (26.72) Reference
10–20% 214 (33.44) 868 (33.91) 1.80 (1.36–2.37)∗∗

≥20% 312 (48.75) 1008 (39.38) 2.72 (2.02–3.68)∗∗

Heart disease, n (%) 92 (14.77) 252 (10.04) 1.59 (1.23–2.07)∗∗

Gout, n (%) 99 (15.99) 199 (7.93) 2.24 (1.72–2.93)∗∗

Chronic liver disease, n (%) 27 (4.55) 90 (3.83) 1.20 (0.77–1.88)
Arthritis, n (%) 107 (17.23) 290 (11.59) 1.59 (1.24–2.04)∗∗

Cancer, n (%) 22 (3.53) 48 (1.91) 1.84 (1.11–3.08)∗

Blood pressure (mmHg), mean ± SD)
SBP 140.63 ± 19.56 138.40 ± 19.15 1.01 (1.00–1.01)∗∗

DBP 82.86 ± 11.46 82.41 ± 10.87 1.00 (0.99–1.01)
Biochemical parameters (mg/dL), mean ± SD
Triglycerides 142.04 ± 43.55 130.78 ± 48.26 1.01 (1.00–1.01)∗∗

Total cholesterol 195.39 ± 38.61 197.54 ± 38.10 1.00 (0.99–1.01)
LDL 107.25 ± 31.21 109.56 ± 37.64 1.00 (0.99–1.01)
HDL 55.58 ± 14.36 58.29 ± 15.17 0.99 (0.98–0.99)∗∗∗

Fasting glucose 108.28 ± 40.58 102.47 ± 32.99 1.00 (1.01–1.02)∗∗∗

aPRs and 95% CIs were calculated from conditional logistic regressions. ∗P >.01 – <.05, ∗∗P < .01. ***P < .001.

Statistical analysis

In this study, the continuous and categorical variables were
presented as mean [± standard deviation (SD)] and number
(percentage), respectively. We used the univariate and multi-
ple conditional logistic regression models to evaluate the PRs
and 95% confidence intervals (CIs) to evaluate the associations
between PM2.5, SO2 and NO2 with respect to the risks of CKD.
In addition, we considered the relevant risk factors in the re-
sults in Tables 1 and 2 and used stepwise logistic regressions to
identify the relevant confounders. Multiple logistic regressions
were then used to evaluate the risk of CKD as well as all in-
dices of air pollutants after adjusting for relevant confounders.
Furthermore, two-pollutant models were constructed to assess

the association between ambient PM2.5 and CKD by including
other individual indices of air pollutants in these models. Sim-
ilar methods were also applied to assess other pollutants. For
single pollutants significantly associated with CKD, we further
applied the distributed lag nonlinear model to explore the indi-
vidual exposure-response relationship between pollutants and
CKD prevalence [DLNM package in the R program (R Founda-
tion for Statistical Computing, Vienna, Austria)]. The pollutant–
health association was set as the natural spline (ns) func-
tion with 4 degrees of freedom in the analysis models. The
model selection was through the Akaike information criterion
(Supplementary data, Table S3). Finally, we used the stepwise
logistic regression model to identify the factors of importance
for increased risk of CKD. All data were analyzed and plotted
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Table 2. Distributions of lifestyle and dietary-related factors between study participants with and without CKD

Variable Cases Controls Age- and sex-adjusted PR (95% CI)a

(n = 640) (n = 2560)

Smoking, n (%)
No 511 (80.60) 2079 (81.82) Reference
Yes 123 (19.40) 462 (18.18) 1.12 (0.86–1.45)

Alcohol drinking, n (%)
No 539 (84.88) 2117 (83.58) Reference
Yes 96 (15.12) 416 (16.42) 0.88 (0.68–1.14)

Tea drinking, n (%)
No 434 (68.56) 1801 (71.13) Reference
Yes 199 (31.44) 731 (28.87) 1.13 (0.93–1.37)

Coffee drinking, n (%)
No 593 (93.39) 2366 (93.41) Reference
Yes 42 (6.61) 167 (6.59) 1.00 (0.70–1.42)

Betel consumption, n (%)
No 578 (90.88) 2315 (91.47) Reference
Yes 58 (9.12) 216 (8.53) 1.08 (0.77–1.50)

Sugary drink (bottles/week), n (%)
<3 553 (91.10) 2233 (92.58) Reference
3–7 33 (5.44) 121 (5.02) 1.14 (0.76–1.70)
≥7 21 (3.46) 58 (2.40) 1.45 (0.87–2.41)

Fried food consumption (frequency/week), n (%)
<1 429 (70.56) 1760 (72.52) Reference
≥1 179 (29.44) 667(27.48) 1.08(0.88-1.33)

Vegetables consumption (bowls/day), n (%)
<1 262 (41.46) 893 (35.20) 1.35 (1.12–1.62)∗

1–3 314 (49.68) 1443 (56.88) Reference
≥3 56 (8.86) 201 (7.92) 1.28 (0.92–1.77)

Fruit consumption (bowls/day), n (%)
<1 410 (64.87) 1507 (59.35) 1.31 (1.08–1.59)
1–3 189 (29.91) 904 (35.60) Reference
≥3 33 (5.22) 128 (5.04) 1.23 (0.81–1.86)

aPRs and 95% CIs were calculated from conditional logistic regressions. ∗P >.01– <.05; ∗∗P < .01; ***P < .001.

using the SAS statistical package (version 9.4; SAS Institute,Cary,
NC, USA) and R version 3.6.3. P-values of <.05 (two-sided) were
considered significant.

RESULTS

After excluding missing data on blood creatinine (n = 76), a total
of 6716 subjects with an approximate 1:1 gender ratio (640 CKD
patients and 2560 healthy controls) were included in this study.
The average age was 66 years (SD 8.9). In all, ∼75% of subjects
were 60–80 years old (Table 1). More than 95% of the study
population was Holo Taiwanese and ∼65% had an education
level of elementary school or below. A total of 85% of the sub-
jects were married. Study participants with heart disease, gout,
arthritis, metabolic syndrome, high FRS, hypertension, diabetes,
hyperlipidemia and cancer were associated with a 1.5–2.7-fold
increased risk of CKD (all P-values < .05). Additionally, the
estimated PRs of CKD were significantly increased per unit
increments for SBP, triglycerides and fasting glucose, as well as
low HDL.

We further explored the associations between CKD and no-
CKD patients in lifestyle and dietary factors in (Table 2). The re-
sults showed that ˃70% of the study population had no history
of cigarette smoking or alcohol, tea, coffee or betel consumption.
About 30% consumed fried food more than once per week. Half
of the study population consumed one to three servings of veg-
etables per day and 90% consumed less than three bottles of a
sugary drink per week.However,∼60% had less than one serving

Table 3.Associations between indices of air pollutants and CKD risks
from single- and two-pollutant models

Air pollutants PR (95% CI)a PR (95% CI)b

PM2.5 (μg/m3) 1.37 (1.23–1.53)∗∗∗ 1.31 (1.17–1.47)∗∗∗

+ SO2 1.37 (1.23–1.54)∗∗∗ 1.32 (1.18–1.48)∗∗∗

+NO2 1.40 (1.25–1.57)∗∗∗ 1.34 (1.20–1.51)∗∗∗

SO2 (ppb) 1.08 (0.99–1.17) 1.07 (0.98–1.17)
+PM2.5 1.08 (0.99–1.17) 1.08 (0.99–1.17)
+NO2 0.96 (0.65–1.42) 1.15 (0.77–1.71)

NO2 (ppb) 1.03 (1.00–1.07) 1.03 (0.99–1.06)
+PM2.5 1.04 (1.01–1.08)∗∗ 1.04 (1.01–1.08)∗

+ SO2 1.05 (0.90–1.21) 0.97 (0.84–1.14)

aAges and gender-adjusted conditional logistic regressions. bMultiple condi-
tional logistic regressions included confounding factors of FRS, diabetes, gout,
arthritis, heart disease, metabolic syndrome, vegetables consumption.
∗P >.01–<.05; ∗∗P < .01; ***P < .001.

of fruit per day. Among these lifestyle-related risk factors, peo-
ple who consumed less than one serving of vegetables per day
were associated with an increased PR of CKD [odds ratio (OR)
1.35 (95% CI 1.12–1.62)].

For single-pollutant models, study subjects with high PM2.5

per SD increment had a significantly increased 1.37-fold PR of
CKD (95% CI 1.23–1.53) (Table 3). In addition, we considered all
relevant risk factors of the above results from Tables 1 and 2 in a
stepwise logistic regression and found that the most important
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FIGURE 3: Associations between air pollutants (PM2.5, SO2 and NO2) and CKD
prevalence froma two-pollutantmodel by adjusting for FRS, diabetes, gout, heart
disease, arthritis, metabolic syndrome and consumption of vegetables.

FIGURE 4: Non-linear relationships of PM2.5 exposure with CKD prevalence after
adjusting for relevant confounders. Results are presented as PRs with 95% CIs.

factors for CKD were FRS, diabetes, gout, heart disease, arthritis,
metabolic syndrome and consumption of vegetables. Therefore
we adjusted these factors in the sequencing multiple condi-
tional logistic regression analysis. After adjusting for other
confounders, there were still positive associations between
PM2.5 [PR 1.31 (95% CI 1.17–1.47)] and CKD prevalence. For PM2.5,
positive associations were observed in the two-pollutant mod-
els with SO2 [PR 1.32 (95% CI 1.18–1.48)] and NO2 [PR = 1.34 (95%
CI 1.20–1.51)] after adjusting for other confounders (Figure 3
and Table 3). For NO2, a positive association was demonstrated
in the two-pollutant models with PM2.5 [PR 1.04 (95% CI 1.01–
1.08)]. Furthermore, we tried to explore the interaction effects
of PM2.5 and NO2 as well as PM2.5 and SO2 on CKD risk. The
results showed no positive interactions were observed (all
P-values for interaction terms in themultiplicative models >.05;
data not shown). Figure 4 shows the nonlinear dose-response
relationship between PM2.5 and CKD prevalence. The annual
average PM2.5 of the significant CKD prevalence was identified as
∼35.0–36.7 (PR range 1.01–1.42) and 39.03–40.7 μg/m3 (PR range
1.25–1.42) after adjusting for other confounders. Furthermore,
we analyzed the Spearman correlation between PM2.5 levels and
eGFR. The results presented a negative correlation of PM2.5 with
eGFR (r = −0.10; P < .0001).

Finally, we input all relevant risk factors (including tradi-
tional factors, PM2.5 and NO2) into the stepwise logistic regres-
sion model to identify the most important factors associated
with an increased CKD prevalence risk (Table 4). The results

Table 4. Stepwise logistic regression analysis for increased risk
of CKD

Variable PR (95% CI) P-value

Metabolic syndrome (yes versus no) 1.27 (1.01–1.60) .039
Arthritis (yes versus no) 1.37 (1.02–1.85) .035
Heart disease (yes versus no) 1.42 (1.05–1.92) .023
Diabetes (continuous) 1.32 (1.03–1.69) .029
Gout (yes versus no) 1.99 (1.44–2.76) <.001
FRS 2.52 (1.18–5.41) .017

<10%
10–20% 1.48 (1.08–2.03) .016
20% 1.68 (1.15–2.47) .008

Vegetables consumption (bowls/day)
<1 1.42 (1.16–1.75) .001
1–3 Reference
≥3 1.29 (0.90–1.86) .1720

PM2.5 (μg/m3) 1.29 (1.15–1.45) <.001

All relevant factors in Tables 1–3were included in the stepwise logistic regression
model.

indicated that PM2.5 had an important effect on increased PRs
of CKD. Other associated factors included metabolic syndrome,
arthritis, heart disease, diabetes, gout, FRS and daily vegetable
consumption.

DISCUSSION

This study constructed a FIS model to estimate the levels of var-
ious air pollutants and evaluate the relationship between air
pollutants and PRs of CKD in a community-based population in
Taiwan. The results suggest increased PRs of CKD with increas-
ing levels of ambient PM2.5 across univariate- andmultivariable-
adjusted models and in single- and two-pollutant models. For
the nonlinear dose–response relationship, the prevalence ratios
of CKD were significantly increased at two peak levels of PM2.5

at 35.0–36.7 and 39.03–40.7 μg/m3 of PM2.5.

We generated FIS models for multiple pollutants through the
adaptive neural fuzzy inference process by training open data
from a limited number of monitoring sites. The pollutant con-
centration at the geographic coordinates of residents could then
be estimated for risk assessment. The proposedmodel consisted
of MFs including Gaussian and d-sigmoid functions to simu-
late the spatiotemporal distribution of the measurement data
within the 16 inference grids. The simulation enabled the grids
with reasonable MF-based distribution to improve conventional
methods such as the Kriging interpolation and inverse distance
weighting (IDW), which regress an interpolation function be-
tween two known points [24, 25]. With reference to our previ-
ous study [18], the MAE and RMSE for the above evaluation of
PM2.5 could be reduced for the FIS model in relation to the Krig-
ing and IDW methods. In the current study, we applied consis-
tent MFs for a pollutant, as shown in Supplementary data, Table
S1 (Gaussian MF for SO2 and d-sigmoid MF for PM2.5 and NO2),
which details evaluation errors of the estimated concentrations
that correspond to the measured points from 2006 to 2016. The
FIS model can be used to estimate the concentration distribu-
tion in the grids with more variations based on the simulation
of multiple mathematical MFs. The FIS refers to a few known
points and drives the MFs to establish the distribution pattern
of most unknown points. In practice, the multiple MFs can be
combined in the grid of distributions to simulate the nonuni-
form diffusion mode of pollutants. The modeling may overes-
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timate the pollution concentration for risk assessment due to
the various distributions comparedwith the conventionalmeth-
ods, such as IDW based on the inverse of square root function or
Kriging based on the uniformdistribution function. For example,
the estimated levels of SO2 and NO2 would be higher than with
the Kriging and IDW methods. The ANFIS, which integrates the
artificial neural network and FIS, can train the abundant data
for machine learning to generate the prediction model. How-
ever, the FIS may have a defect to estimate the inputs out of the
MF’s distribution range. A conservative approach is limited to
the bounds of the known input points compared with the con-
ventional method that drives an interpolation function around
the measured points. The finer grids with combinative MFs are
helpful to improve the FIS model for the advanced application.
Further research is required to identify the appropriate MFs and
confirm the gas diffusion model.

Positive associations between CKD and NO2 exposure by
land-use regression model analysis were also presented in the
findings from Chen et al. [26] [OR 1.07 (95% CI 1.01–1.14)] for per
interquartile range increment of NO2]. Li et al. [27] acquired the
levels of PM2.5 by aerosol optical depth (AOD) data and clarified
the significant association of PM2.5 with CKD prevalence [OR 1.28
(95% CI 1.22, 1.35)]. In addition, various ambient levels of PM2.5,
PM10, SO2, NO2 and ozone (O3) were calculated by the Kriging
method in the study of Wang et al. and they found people’s ex-
posure to high levels of PM10 was associated with an increased
prevalence of CKD. At present, there is a conflict between the
consistency of air pollutant exposure and CKD risk, with differ-
ent methods to predict the ambient levels of the pollutants in
the air. In the present study, we aim to provide an additional
probability to infer the ambient levels of air pollutants. Also, the
finding of our study adds to the current body of literature by
providing further support for the link between long-term PM2.5

exposure and CKD prevalence. Furthermore, the levels of PM2.5

in our study area were between 34.4 and 41.5 μg/m3, which ex-
ceeds the air quality guideline from World Health Organization
(10 μg/m3) [28] and even higher than that in the USA [12, 13].
We tried to explore the non-linear relationship of PM2.5 expo-
sure with CKD prevalence; however, with limited numbers of
study participants, we merely observed two narrow ranges of
PM2.5 exposure (35.0–36.7 and 39.03–40.7 μg/m3) with increased
risk of CKD (Figure 4). In the future, it may be necessary to clar-
ify the nonlinear dose–response relationship for CKD risk with
a larger sample size. Overall, minimizing PM2.5 and NO2 levels
would benefit efforts for the prevention and control of CKD.

The mechanism underlying the relationship between PM2.5

and CKD remains unclear. Numerous studies of laboratory evi-
dence propose that exposure to PM causes renal hemodynamic
impairment and promotes oxidative stress, inflammation and
DNA damage in kidney tissue, which aggravates AKI and further
progresses to CKD in murine models [8, 14, 15]. In addition, it
is estimated that at least 0.2% of the inhaled nanoparticles will
transfer from the lungs to the systemic circulation [29]. The kid-
neys can only remove smaller particles (<6 nm) in the systemic
circulation [30–32]. Inhaled particles that cause renal function
deteriorationmay result from inflammation and oxidative stress
[13, 33, 34]. Furthermore, recent reports have speculated that the
pathogenesismechanism of PM2.5-related CKDmay be similar to
that of PM2.5-related cardiovascular disease [35, 36].

By using the FIS model, we can infer pollutants distributed
over the potential location for risk assessment. The large num-
ber of participants in our study area with a large number
of events identified provides sufficient power to determine
whether these patients are vulnerable with respect to the risk
of CKD in an environment with high levels of air pollution. In

addition, we extensively screened and ascertained each partici-
pant’s CKD risk by calculating eGFR to ensure an accurate diag-
nosis compared with self-reporting information. However, this
study also has several limitations. First, both, selection bias and
survival bias may exist because of the reliance on community
volunteers with better health, which may limit the generaliza-
tion of the study findings. Despite this, we still observed an as-
sociation between PM2.5 and CKD prevalence. Our results may
underestimate the PRs of CKD. In addition,more than half of the
study populationwas older populationwith a high prevalence of
comorbidities, including hypertension, hyperlipidemia and di-
abetes. Detailed information on medication usage was not ac-
quired in the present study. Furthermore, there were ∼80% non-
smokers in our population. Therefore, it is difficult to evaluate
the associations between the levels of PM2.5, cigarette smoking
and biochemical parameters, such as SBP. Second, only ambient
pollution concentrations at the place of residence were avail-
able, which could potentially cause exposure misclassification.
Factors such as the use of personal protective equipment and
time spent outdoors may affect personal exposure. Third, data
related to the development and progression of kidney diseases,
such as albuminuria and inflammatory factors, are not available
in this study. Finally, we constructed a FIS model using infor-
mation from the quality monitoring stations in Taiwan, there-
fore, we did not further validate the predicted levels of air pol-
lutants with monitoring values at distant locations. In addition,
we could not exclude the effects of other air pollutants such as
O3, carbon monoxide, etc. on CKD prevalence.

This study is the first to explore the association between
PM2.5 and PRs of CKD in a community-based population by con-
structing a FIS model. After considering the conventional risk
factors of CKD, there is an independent effect of PM2.5 on CKD
prevalence in either single- or two-pollutantmodels. CKD preva-
lence was significantly increased at two peak levels of PM2.5

(35.0–36.7 and 39.03–40.7μg/m3) with a nonlinear dose–response
relationship in the DLNM analysis. To support these findings,
further studies with different study designs are warranted.
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