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A deep learning model 
for detection of cervical spinal cord 
compression in MRI scans
Zamir Merali1, Justin Z. Wang1, Jetan H. Badhiwala1, Christopher D. Witiw1,2, 
Jefferson R. Wilson1,2 & Michael G. Fehlings1,3*

Magnetic Resonance Imaging (MRI) evidence of spinal cord compression plays a central role in the 
diagnosis of degenerative cervical myelopathy (DCM). There is growing recognition that deep learning 
models may assist in addressing the increasing volume of medical imaging data and provide initial 
interpretation of images gathered in a primary-care setting. We aimed to develop and validate a deep 
learning model for detection of cervical spinal cord compression in MRI scans. Patients undergoing 
surgery for DCM as a part of the AO Spine CSM-NA or CSM-I prospective cohort studies were included 
in our study. Patients were divided into a training/validation or holdout dataset. Images were labelled 
by two specialist physicians. We trained a deep convolutional neural network using images from the 
training/validation dataset and assessed model performance on the holdout dataset. The training/
validation cohort included 201 patients with 6588 images and the holdout dataset included 88 
patients with 2991 images. On the holdout dataset the deep learning model achieved an overall AUC 
of 0.94, sensitivity of 0.88, specificity of 0.89, and f1-score of 0.82. This model could improve the 
efficiency and objectivity of the interpretation of cervical spine MRI scans.

Degenerative cervical myelopathy (DCM) is a condition that results in progressive non-traumatic compression 
of the cervical spinal cord1. Globally, DCM is the most common cause of spinal cord impairment and can result 
in significant decline in function and quality of life among affected patients2. Magnetic Resonance Imaging 
(MRI) plays a central role in the diagnosis of DCM3. An MRI showing compression of the cervical spinal cord 
by extrinsic tissues such an intervertebral disk, ligament, or bone is highly suggestive of a clinical diagnosis of 
DCM and often results in referral to a spine surgeon4.

Cervical spine MRI scans are often acquired in a primary care or emergency room setting and interpreted 
manually by radiologists. There is growing recognition that computer models may assist in the initial inter-
pretation of medical imaging studies and rapidly flag studies with pathologic findings5–9. Deep convolutional 
neural networks (deep learning methods) have shown promise in this area and have been tested in a variety of 
pathology categories such as pulmonary nodule detection with Computed Tomography (CT) and intracranial 
bleed detection with CT10,11.

Researchers have made use of convolutional neural networks (CNNs) for automated segmentation of spinal 
imaging12,13. In addition, previous studies have utilized computer vision methods, including CNNs, to extract 
quantitative parameters from cervical spinal cord MRI scans14,15. No studies to date, however, have attempted to 
use deep learning methods to detect spinal cord compression in a population of patients with DCM.

In the present study, our aim was to develop a novel deep learning model to detect cervical spinal cord 
compression in patients with DCM in T2 weighted MRI scans. As DCM is a heterogenous condition we aimed 
to develop a model that would have similar performance in patients with various demographics, disease char-
acteristics and on images gathered with various MRI scanners. After developing a model we attempted to gain 
insights into how the model functioned using analytic techniques.

Materials and methods
Data acquisition.  This study involved retrospective analysis of prospectively collected magnetic resonance 
imaging (MRI) studies from patients with DCM enrolled in the AO Spine CSM North America (CSM-NA; 
ClinicalTrials.gov NCT00285337) or AO Spine CSM International (CSM-I; Clinical Trials.gov NCT00565734) 
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clinical studies16,17. The NCT00285337 and NCT00565734 clinical studies received institutional research ethics 
board approval at each respective site (Table S1). All patients were over the age of 18 and provided informed 
consent prior to enrolment in the NCT00285337 and NCT00565734 clinical studies, which included consent 
for post-hoc analyses of study data. This study was approved by the University Health Network Research Ethics 
Board and conducted in accordance with all relevant institutional and regulatory guidelines.

Patients were enrolled if they met eligibility criteria as follows: (1) Age 18 years or older; (2) imaging evidence 
of cervical spinal cord compression; (3) symptomatic DCM with one or more signs of myelopathy; and (4) no 
prior cervical spine surgery. Exclusion criteria were asymptomatic DCM, active infection, neoplastic disease, 
rheumatoid arthritis, trauma, ankylosing spondylitis, or concomitant lumbar stenosis. All patients had a pre-
operative MRI scan then underwent surgical decompression of the cervical spine, with or without instrumented 
fusion. Patients were subsequently followed for 2 years after surgery.

All patients in this study had imaging evidence of cervical spinal cord compression. However, the spinal cord 
compression typically affected only a portion of the cervical spine. In each MRI scan there were some spinal levels 
that were compressed and other spinal levels that were not compressed. Thus, we were able to obtain images of 
spinal cord compression and non-compressed spinal cords from this patient cohort for model training.

Two patient cohorts were defined for model development and validation (Fig. 1):

1.	 Training/Validation Dataset Used for model development, training, and validation. Seventy-five percent of 
patients from each site were randomly chosen and allocated to the training/validation dataset.

2.	 Holdout Dataset Used for model testing and assessment of external validity. The remaining 25% of patients 
from each site were allocated to the holdout dataset.

For each patient the MRI study was collected in DICOM format. In addition, baseline clinical data was 
collected including demographic information (age, gender, weight, height), and the modified Japanese ortho-
pedic association (mJOA) score18. The mJOA score is a standard measure of degenerative cervical myelopathy 
symptoms that measures symptom severity in the upper and lower extremities as well as sphincter function. The 
mJOA score is commonly used in surgical decision-making and is associated with post-operative outcomes19. 
The baseline clinical data, mJOA score, and MRI image parameters were compared between the training/valida-
tion and holdout dataset. We used t-tests to compare continuous variables and X2 tests to compare proportions. 
These statistical comparisons were completed using RStudio v1.3.

Figure 1.   Consort diagram showing the process of data acquisition and partitioning into training/validation 
and holdout datasets. CSM-NA—Cervical Spondylotic Myelopathy North American Clinical Trial. CSM-I—
Cervical Spondylotic Myelopathy International Trial.
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Data pre‑processing.  A data pre-processing protocol was developed and was applied to the training/vali-
dation as well as holdout datasets. The axial T2-weighted non-fat saturated (aT2w) sequence from each MRI 
study was anonymized to remove patient identifiers using a freely available software package, DicomCleaner 
(TM)20. A linking library was created to reference the anonymized MRI studies to the original dataset.

The MRI scanner manufacturer and acquisition parameters, including voxel size and slice thickness for the 
T2-weighted axial sequence, were collected. The aT2w sequence for each patient was converted into a series of 
JPEG images. We down-sampled each image to a 299 × 299 image. We then normalized pixel values between 0 
and 1 and stored each image in a 299 × 299 × 3 array, where each value in the array represented the pixel intensity 
in the red, green, and blue channels to construct the grayscale MRI image. All image pre-processing was com-
pleted using Python v3.6 with the pydicom v1.0 and scikit-image v0.18 packages. MRI scans were gathered at 
different sites and there was some variability in the number of slices between MRI scans. We did not normalize 
the number of slices so that each patient would have a consistent number of slices but rather allowed patients to 
have differing numbers of slices. This was done to preserve heterogeneity in the dataset.

Data labeling.  Two senior neurosurgical residents, each with > 4  years experience interpreting cervical 
spine MRI scans, independently examined each axial T2-weighted image from the training/validation and hold-
out dataset. The labelers were given the full resolution (prior to down-sampling to 299 × 299) JPEG images to 
review with no time limit per image. Spinal cord compression was defined as any indentation, flattening, torsion, 
or circumferential compression of the spinal cord parenchyma from extrinsic tissues (disk, ligament, or bone) 
(Fig. 2)3. Raters were provided written directions and were instructed to label images in a binary fashion. Any 
image with evidence of partial or circumferential spinal cord compression were labelled ‘compressed’ and images 
in which these qualitative criteria were not present were labeled ‘non-compressed’.

The labels assigned by the two labelers were compared and the Cohen’s kappa metric of inter-rater reliability 
was generated. In cases where the two-labelers disagreed, both labelers reviewed these images together and a 
final label was decided upon after a period of discussion. The final set of labels after cases of disagreement were 
reconciled was taken as the ground-truth set of labels.

Model training.  The convolutional neural network architecture ResNet-50 was used in this study21. 
ResNet-50 is a residual CNN that is commonly used for image classification tasks. A residual CNN makes use of 
blocks of layers (residual blocks) that function together to create a very deep CNN that has been shown to per-
form well on image classification tasks21. The initial weights for the network were the transfer learning weights 
that were developed during the ImageNet competition22. Transfer learning is a process in which initial model 
weights are specified from a model that has been trained on another image classification task. The initialization 
weights from another image classification task can be easier to tune than randomly assigned weights because 
earlier layers in the CNN focus on detection and combinations of simple image features such as edges, which 
can generalize across different classification tasks. Transfer learning can potentially improve model training and 
performance on a smaller dataset23.

The fully connected layers from the ResNet-50 network were replaced by a set of fully connected layers with 
randomly initialized weights. A greater number of neurons in the fully connected layers can potentially increase 
the ability of the network to discriminate between features at the cost of an increased number of parameters 
and greater potential for overfitting24. In addition, multiple stacked fully connected layers can increase model 
performance in certain datasets25. Drop out layers can reduce the chance of model overfitting during training26. 

Figure 2.   Representative axial T2-weighted MRI images showing (A) no spinal cord compression, (B) partial 
spinal cord compression, and (C) circumferential spinal cord compression.
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We tested a variety of network configurations to determine which would function best for our dataset. Models 
1, 2, 3, and 4 had a single fully connected layer with 256, 512, 1024, and 2048 neurons respectively and a single 
dropout layer with 30% dropout. Models 5, 6, and 7 had two fully connected layers with 256, 512, and 1024 neu-
rons each with two dropout layers of 30% each. The network architectures are described schematically in more 
detail in (Fig. 3). We used 30% dropout in each network architecture because we found this level of dropout to 
function well in initial testing.

The Training/Validation Dataset with associated labels was shuffled and split such that 75% of patients were 
used for model training and 25% of patients were used to validate model performance during training. During 
model training we used Adam as an optimizer with an initial learning rate of 0.0001, batch size of 16, momentum 
of 0.9, and no learning rate decay. We monitored binary cross-entropy loss in the validation set during training. 
To account for imbalance in compressed and not-compressed images, we used a weighting factor when calculat-
ing binary cross-entropy loss. The compressed class was given a weight of 3.8 and the not-compressed class a 
weight of 1. During model training a random search strategy was adopted for tuning hyper-parameters (learning 
rate, and momentum). Each network configuration was trained using the Training/Validation Dataset and train-
ing was continued until the weighted binary cross-entropy loss on the validation set had not decreased for 10 
epochs. During initial trails we found that validation loss sometimes plateaued early but continued to decrease 
after 50 epochs. We thus allowed all models to train for at least 50 epochs before early stopping. All training was 
carried out using the Keras v1.3 package with TensorFlow v1.2 backend within Python 3.6. After training, each 
model configuration was compared using binary cross-entropy loss and accuracy on the validation set and the 
best performing model was chosen for further testing.

Model testing and external validity.  The best performing model architecture was carried forward for 
testing on the holdout dataset. The model was applied to each image in the holdout dataset and a predicted class 
was generated for each image. The predicted classes generated by the model were compared to the ground-truth 
labels generated by the human labelers across the entire training dataset and the following summary statis-
tics were generated: area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and f1 
score. Performance metrics were calculated using Python 3.6 with the scikit-learn v0.2 package during a default 
threshold of 0.5.

The model’s performance was further assessed for each patient. For each patient’s MRI scan the set of pre-
dicted classes generated by the model was compared to the ground-truth labels generated by the human labelers. 
The AUC was calculated for each patient. The average AUC for all patients was calculated. Patients were then 
stratified by age (< 40, 40–65, or > 65), baseline mJOA (18, 15–17, 12–14, < 12), location, as well as MRI scan-
ner type, and the average AUC within each of these subgroups was calculated. The AUC for each subgroup was 
compared to the AUC for all patients using the DeLong test with a significance level of p < 0.05.

Class Activation Maps.
Deep learning models have been characterized as a “black box” because it can be difficult to understand how 

a model makes a classification27. This can pose a problem when CNNs are applied to medical imaging tasks 
when a model learns to make a classification based on an irrelevant part of the image28. Model visualization 
with class activation maps (CAMs) can help identify the image features that are associated with activation of a 
particular class29. Class activation maps project the weights of the output layer back to the final convolutional 
layer (the last layer with spatial information) to determine which image regions, if changed, would most modify 
the probability of an image belonging to a particular class29. We generated CAMs for randomly selected images 

Figure 3.   Overview of the convolutional neural network model architecture. The convolutional layers (orange) 
were derived from the Resnet-50 model, while the fully connected layers were modified for our classification 
task. Seven separate model configurations were tested as shown.
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that were classified correctly (true positives) and classified incorrectly (false negatives). The CAMs for the true 
positive images were examined to see which image features corresponded to activation of the compressed class. 
In the false negative images, in which the CNN missed spinal cord compression, we examined the CAMs to gain 
insight into the features that corresponded to activation of the not-compressed class in misclassified images. The 
Keras-vis package in Python 3.6 was used to generate the CAMs30.

Public code repository.  Our code is made public at https://​github.​com/​zamir​merali/​dcm-​mri

Results
Demographics.  We identified a total of 289 patients with available MRI scans that could be used for model 
development. The Training/Validation Dataset was comprised of 201 patients with 6588 individual training 
images. The Holdout Dataset was comprised of 88 patients with 2991 individual images. Demographic informa-
tion from each dataset is seen in (Table 1). Patient age, gender, baseline mJOA, MRI scanner manufacturer, and 
MRI image parameters, did not significantly differ between the Training/Validation Dataset and the Holdout 
Dataset.

Inter‑rater reliability.  Two independent raters reviewed the 6588 images in the Training/Validation Data-
set as well as the 2991 images in the Holdout Dataset and identified images with evidence of partial or circum-
ferential spinal cord compression. Concordance between the two raters on the training/validation dataset had a 
Cohen’s κ = 0.82 and on the holdout dataset a Cohen’s κ = 0.83 (Table 2).

Model training.  The Training/Validation Dataset was used for model training. The dataset consisted of 201 
patients with a total of 6588 individual axial images. The axial images and associated labels from the 201 patients 
were shuffled and divided into a training (4941 images) and validation cohort (1647 images).

Seven neural network configurations were trained until binary cross-entropy loss had not decreased for 10 
epochs. Comparison of the trained models is shown in (Table 3). Model 6 achieved the highest classification 
accuracy and lowest binary cross-entropy loss on the validation dataset and was carried forward for further 
testing. Model 6 consisted of the ResNet-50 CNN with two fully connected layers with 512 neurons each and 
two dropout layers with 30% dropout (Fig. 3).

Model testing.  The deep learning model was applied to the holdout dataset of 2991 images. On the entire 
holdout dataset the model achieved an AUC of 0.94, sensitivity of 0.88, specificity of 0.89, and f1-score of 0.82 
(Fig. 4).

For each of the 88 patients in the holdout dataset the classification output of the deep learning model for each 
slice was compared to the class assigned by the human labelers. A ROC curve and AUC metric was generated for 
each patient by comparing the predicted and actual classes for each slice. The model achieved a median AUC of 
0.94 on patients in the holdout dataset (Table 4). The model AUC in each subgroup was compared to the model 
performance on the entire holdout dataset (Table 4). The AUC in each subgroup did not significantly differ from 
the AUC in the entire holdout dataset, as evidenced by a p-value > 0.05 in each comparison.

Table 1.   Demographics of patients and scanner parameters in the training/validation and holdout datasets.

Dataset Training/Validation (n = 201) Holdout (n = 88) p-value

Age (median) 55 56 0.65

Gender (male) 63% 66% 0.53

Baseline mJOA (median) 13 13 0.72

MRI Scanner Manufacturer GE Medical Systems (n = 98)
Siemens (n = 12)

GE Medical Systems (n = 92)
Siemens (n = 66)
Philips Medical Systems (n = 21)

0.12

Slice thickness median (range) 3 (2–5) mm 3 (2–5) mm 0.82

Voxel size median (range) 0.3516 (0.2539–0.7813) mm 0.3516 (0.2539–0.7813) mm 0.65

Table 2.   Inter-rater reliability between labelers on the training dataset.

Dataset

Training/Validation Holdout

Compressed
Not
Compressed Compressed Not Compressed

Labeler 1 1542/6588 (23.4%) 5046/6588 (76.6%) 637/2991 (21.3%) 2354/2991 (78.7%)

Labeler 2 1357/6588 (20.6%) 5231/6588 (79.4%) 592/2991 (19.8%) 2399/2991 (80.2%)

Agreement between labelers 88.1% 96.4% 87.8% 95.4%

https://github.com/zamirmerali/dcm-mri
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Model interpretation and data visualization.  Figure 5 depicts the class activation maps for randomly 
selected examples of true positive and false negative predictions by the model. These images were examined to 
gain insight into the features that corresponded to activation of the compressed or not-compressed class. In the 
example images of true positive classifications, the CAMs appeared to show activation over clinically relevant 
areas of the image such as the spinal cord and CSF spaces (Fig. 5). In the example images of false negative clas-
sifications, in some cases the model appeared to rely upon features outside of the spinal canal, such as the para-
spinal muscles or vascular structures, for its predictions. In other cases, among the false negative images the 
model did appear to focus on clinically relevant areas of the image such as the spinal cord and CSF spaces, but 
this still resulted in an incorrect classification.

Discussion
In this study, we trained and tested a CNN model for detection of spinal cord compression in cervical spine 
MRI scans using a dataset of 289 patients with DCM. We demonstrated the feasibility of training an existing 
CNN model for a novel medical imaging classification task. The model performed well on our holdout dataset 
(AUC = 0.95) and performed well across differing subgroups of patients and scanner types. To our knowledge, 
this study is the first to leverage a large prospective dataset of cervical spine MRI scans and to produce a model 
with high accuracy for detecting spinal cord compression. This model has potential utility in the context of a 
clinical trial to provide rapid automated coding of MRI scans of the cervical spine. In the future this model could 
be used to increase the efficiency and objectivity of interpreting cervical spine MRI scans.

There is increasing recognition that machine learning techniques that make use of CNNs will play an impor-
tant role in medical diagnostics in the future5,6,31,32. While systems making use of CNNs have been developed and 
received regulatory approval in brain trauma, mammography, and chest radiographs, the use of these techniques 

Table 3.   Comparison of model performance during training.

Model Architecture Epochs Validation Accuracy Validation Loss Training Accuracy Training Loss

Model 1 50 89.88% 0.4223 97.12% 0.0892

Model 2 50 90.95% 0.3093 99.13% 0.0219

Model 3 50 91.09% 0.3979 98.99% 0.0292

Model 4 54 91.53% 0.3562 99.10% 0.0260

Model 5 62 90.78% 0.2932 99.12% 0.0238

Model 6 77 92.41% 0.2569 99.03% 0.0284

Model 7 69 92.23% 0.2593 99.23% 0.0234

Figure 4.   An area under the receiver operating characteristic curve plot showing model performance on each 
patient in the holdout dataset. The green curve represents the average ROC curve for all patients, while the light 
blue lines represent ROC curves for each individual patient. The gray region represents one standard deviation 
above and below the average curve.
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to provide automated interpretation of imaging in spinal disorders is less developed11,33–35. The majority of studies 
that are comparable to ours have focused on classifying MRI images of the lumbar spine13,36–38. A study by Jamalu-
din et al. made use of the MRI images of 12,018 lumbar intervertebral discs from 2009 patients and developed a 
CNN to classify lumbar disc degeneration, disc narrowing, upper/lower endplate defects, upper/lower marrow 
changes, spondylolisthesis, and central canal stenosis39. These researchers used the VGG convolutional neural 
network and trained this model with randomly initialized weights instead of using transfer learning as we did in 
our study40. The DeepSPINE framework was developed using a large dataset of 22,796 MRI images of the lumbar 
spine from 4075 patients41. This study trained a CNN to classify lumbar canal stenosis and foraminal stenosis 
and achieved accuracy of 84.5% at grading lumbar canal stenosis. These authors made use of a segmentation 
algorithm that segmented the vertebral bodies as well as intervertebral disks and fed the output of this model into 
the ResNet-50 CNN for classifications. This differs from our approach, as we did not use a separate segmentation 
step and instead trained the ResNet-50 CNN using axial T2 weighted images of the entire cervical spine. Image 
segmentation can potentially allow for automated localization of pathologic findings, which was not possible 
with the simpler approach that we took. Another study by Lewandrowski et al. used a dataset of lumbar spine 
MRI scans from 3560 patients and developed a model to grade lumbar disc herniation and canal stenosis42,43. 
Similar to the DeepSpine framework, their approach consisted of a segmentation step in which intervertebral 
disks were segmented. This was followed by a custom CNN that graded the amount of disk herniation and canal 
stenosis. These authors achieved an AUC of 0.808 for detection of disk herniation. This approach differs from 
ours as we did not use a segmentation step and we did not grade the severity of spinal cord compression, but 
rather used a binary classification system of compressed vs. not-compressed.

Most previously published work on automated analysis of degenerative spine imaging has focused on the 
lumbar spine but some published reports have applied deep learning models to cervical spine images. Weber 
et al. trained a CNN to quantify the extent of fatty infiltration in MRI scans of the cervical spine and showed that 
model-generated parameters correlated with clinical measures such as neck pain and neck-related disability15. 
Jin et al. made use of an imaging dataset of diffusion tensor imaging (DTI) studies of patients that subsequently 
underwent surgery for DCM14. This group trained a ML model to predict positive surgical outcome with an 
accuracy of 88.62% in their training cohort. But they were unable to adequately validate their model given the 
size of their cohort, which consisted of 35 patients.

During our data labeling process two labelers examined each image and assigned a label of compressed or 
not-compressed. Agreement between the two labelers was good with a Cohen’s Kappa of 0.82 and 0.83 on the 
training/validation and holdout dataset, respectively. Assessing spinal cord compression can be difficult because 
although objective criteria have been proposed, evaluation in a clinical setting is typically subjective3. The images 
where the two raters disagreed were typically images in which there were mild degenerative changes but the spinal 
cord was not significantly compressed. In these cases a final consensus label was decided upon after discussion. 
Future work in this area might try to develop a model to grade the severity of cervical spinal cord compression 
into multiple classes instead of a binary class as we did. To accomplish this, cervical spinal MRIs should be 
labelled using a grading system such as the one proposed by Kang et al44. In this system 4 grades of spinal cord 
compression are subjectively evaluated and assessment of inter-rate reliability showed a Cohen’s Kappa of 0.6. 
We used a simpler binary grading system and achieved a higher Cohen’s Kappa of 0.82–0.83.

Table 4.   Model performance on the holdout dataset stratified by patient characteristics and MRI scanner 
manufacturer.

Area Under the Curve (SD) p-value

Entire Holdout Dataset (n = 88) 0.94 (0.08)

Age (years)

 < 40 (n = 9) 0.88 (0.14) 0.12

40–65 (n = 63) 0.95 (0.06) 0.78

 > 65 (n = 16) 0.92 (0.09) 0.45

mJOA

18 (n = 2) 1.00 (0) 0.94

15–17 (n = 22) 0.96 (0.04) 0.67

12–14 (n = 39) 0.92 (0.09) 0.62

 < 12 (n = 25) 0.95 (0.07) 0.77

MRI Scanner Manufacturer

GE Medical Systems (n = 52) 0.94 (0.07) 0.82

Siemens (n = 25) 0.93 (0.06) 0.71

Philips Medical Systems (n = 11) 0.95 (0.08) 0.74

Location

North America (n = 33) 0.95 (0.07) 0.68

South America (n = 16) 0.93 (0.09) 0.67

Europe (n = 21) 0.91 (0.08) 0.78

Asia Pacific (n = 18) 0.93 (0.07) 0.81
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Figure 5.   Class activation maps for example images that were classified correctly (true positives) or incorrectly 
(false negatives). The first column represents the axial T2-weighted MRI image. The second column shows the 
MRI image with the class activation map overlaid. In the class activation maps blue represents no activation 
while red represents maximal activation. On these example images of true positive classifications, the maximal 
activation tended to be over the spinal canal and spinal cord (Images A,B,C,D,E,F). In the false negative 
classifications, the activation was sometimes over irrelevant areas of the image, such as the paraspinal muscles 
or vascular structures (Images G,I,K,L). In other examples of false negative classifications there was activation 
over the spinal cord and spinal canal (Images H and J), but in these cases there was also activation over other 
seemingly irrelevant areas of the image.
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During model training we tested a variety of model architectures. All models used the ResNet50 CNN archi-
tecture with pre-trained weights and the fully connected layers were varied between the models. We found that 
all the tested models performed well with accuracy ranging from 89.88% to 92.39%. The best performing model 
had two fully connected layers with 512 neurons each and two dropout layers with 30% dropout each. This model 
performed well on the holdout dataset with an AUC of 0.94 and F1-score of 0.82. These performance metrics are 
similar to the best performing lumbar spine models that have been previously published39,41–43.

We generated CAMs using example images from the testing dataset that were classified correctly (true posi-
tives) and incorrectly (false negatives). Class activation maps have limitations and can suffer from a lack of repeat-
ability or reproducibility45,46. In particular, CAMs have been shown to have limited utility in localizing pathologic 
features in medical imaging data, and localization or segmentation models are preferred in this circumstance45. 
Even when CAMs are being used for post-hoc analysis of a model to highlight features that the model deemed 
relevant for prediction, CAMs are still limited in utility. Adebeyo et al. showed that when labels were randomly 
permuted after training a CAM still sometimes highlighted areas of the image that seemed visually plausible46. 
We interpret the results of our CAMs in light of these limitations. We examined CAMs for a small number of 
example images and found that in the true positive images the CAM seemed to highlight the spinal cord and 
CSF space, which are clinically relevant. In the false negative images, which represented a small minority of clas-
sifications, the CAMs often showed activation over irrelevant areas of the image such as vascular structures or 
paraspinal musculature. This may provide some evidence that the model is focusing on areas of the image that 
are clinically relevant to spinal cord compression as opposed to spurious features that might coexist with spinal 
cord compression. However, to confirm this would require examination of all testing images instead of a subset. 
In addition, the CAMs should be further analyzed to determine, repeatability, reproducibility, and sensitivity to 
model weight randomization, which is beyond the scope of this study45.

Our study has a number of limitations. Firstly, our dataset only included patients who had a confirmed 
diagnosis of DCM and went on to get surgery. Patients with mild DCM or normal MRI scans were therefore 
underrepresented in our dataset. Including asymptomatic patients or patients with mild DCM symptoms dur-
ing model training could have resulted in a greater variety of training images and perhaps a more generalizable 
model. Many patients in our dataset did not have MRI scans that were in an appropriate format to be included, 
which limited the final number of images that we were able to use for model training. We made use of two 
data-labelers and reconciled differences between the data-labelers with a consensus process. The inclusion of a 
third rater would have increased the validity of our ground-truth set of labels and would have permitted better 
assessment of model performance. During data labelling and model training we did not distinguish between 
partial and circumferential spinal cord compression. In clinical practice, however, circumferential spinal cord 
compression is a more severe finding and is more likely to result in clinical symptoms. This choice limits the 
clinical utility of our model. Future work in this area might attempt to develop a model that can grade cervical 
spinal cord compression into > 2 categories, which would be more clinically useful.

We developed a CNN that can detect spinal cord compression in cervical spine MRI scans with high perfor-
mance. Our model could have utility in its current form in the context of a clinical trial to automatically code 
MRI scans. In this context, the model could be used to automatically extract features such as the number of slices 
showing spinal cord compression from MRI scans gathered as part of a clinical trial, which could generate data 
to be used for secondary analyses. We acknowledge, however, that challenges remain before this model could be 
used in a clinical setting. Our model performs a narrow classification task. A more general model would be able 
to detect and distinguish between multiple pathologies such as foraminal stenosis, disc herniation, ossification 
of the posterior longitudinal ligament, spondylolisthesis, and ligamentous hypertrophy with high accuracy. Such 
a model would likely require a dataset of thousands of patients to develop and test. Other researchers have noted 
that the creation of large imaging datasets is a central challenge in the development of clinically-useful machine 
learning models31,47–49. Although challenges remain to be overcome, our results suggest it is feasible to train an 
existing CNN for a novel medical imaging classification task within spine surgery and our approach could be 
applied to develop a more general model with a larger training dataset.

Conclusion
In recent years automated diagnostic tools have reached a substantial level of development and this progress 
is expected to continue. In this study we trained and tested a CNN model to detect spinal cord compression 
in cervical spine MRI scans. We achieved high model performance with an AUC of 0.94 on a heterogenous 
group of patients. We demonstrated the feasibility of training an existing CNN for a novel medical imaging 
classification task. Future work will need to focus on developing larger datasets to facilitate the development of 
a more generalized model capable of quantifying cord signal change, severity of spinal cord compression, cervi-
cal spine deformity, and nerve root compression. A more generalized model may be able to improve radiology 
workflows and augment clinical decision-making by increasing the efficiency and objectivity of cervical spine 
MRI interpretation.
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