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Abstract: There are multiple concerns associated with methotrexate (MTX), widely recognized
for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute
lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-
term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of
dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic
and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination
between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of
all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based
or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple
organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative
diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological
processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota
by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal
dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions
induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover,
we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by
modulation of gut microbiota.

Keywords: methotrexate; gut microbiota; nutraceuticals; natural compounds; methotrexate toxicity;
toxicity management

1. Introduction

Antifolate drugs represent an old class of pharmaceuticals which interfere with folate
metabolism and have been used to treat proliferative disorders, e.g., acute lymphocytic
leukemia, breast cancer, and parasitic, and microbial diseases [1–3].

Methotrexate (MTX), an antimetabolite of folic acid, which acts as an inhibitor of
dihydrofolate reductase (DHFR), exhibited anti-neoplastic and immunomodulatory effects
in the area of malignant and non-malignant diseases [4]. Though the mechanisms behind
its anti-inflammatory effects against psoriasis, rheumatoid arthritis (RA) and anti-cancer
effects upon blood malignancies and other neoplasia are quite understood, the precise
therapeutic effect of MTX is not clarified [5].

Although MTX therapy attracted attention in preclinical and clinical settings of nu-
merous inflammatory and cancer disorders, its associated adverse effects and the toxicity
on multiple organs related to MTX remain an important concern and a cause of drug
withdrawal [6,7].

Microorganisms 2022, 10, 2053. https://doi.org/10.3390/microorganisms10102053 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10102053
https://doi.org/10.3390/microorganisms10102053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-5813-9281
https://orcid.org/0000-0002-3904-2852
https://orcid.org/0000-0002-2017-3086
https://orcid.org/0000-0002-3511-2788
https://doi.org/10.3390/microorganisms10102053
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10102053?type=check_update&version=1


Microorganisms 2022, 10, 2053 2 of 23

Nutraceutical-based therapy, first described by DeFelice in 1989, refers to food-based
compounds which exhibited multifaced roles in preventing and treating life-threatening
diseases [8,9]. Nutraceutical compounds are represented by a wide range of nutrients
and phytochemicals, such as dietary bioactive peptides and lipids, fat soluble vitamins,
amino-acids, micronutrients [10]. Some of the most common nutraceuticals, such as resver-
atrol [11], curcumin [12], coenzyme Q10 (ubiquinone), α-lipoic acid [13], β-carotene [14],
quercetin [15] have been shown to alleviate oxidative stress, and apoptosis-induced cel-
lular injury, targeting pro-inflammatory signaling pathways, by acting on nuclear and
mitochondrial targets [16,17].

Growing evidence suggested the protective effects of nutraceuticals in multiple in vitro
and vivo disease models, including ischemia–reperfusion injury [18], cardiovascular dis-
eases [19], ischemic stroke [20], cancer [21], neurodegenerative diseases [22], and inflamma-
tory bowel diseases [23].

Within MTX therapy, preclinical and clinical studies reported long-term side effects
and toxicity effects on multiple organs and a promising therapeutic strategy aimed at
restoring the toxicity of MTX is currently needed. The negative effects of MTX treatment are
reflected on multiple organs, including hepatic fibrosis, acute lung injury, dysregulation of
gut microbiota and nephrotoxicity [24–27]. There are a wide range of short- and long-term
side effects, ranging from nausea, drowsiness, liver enzymes elevation, to renal insufficiency,
hepatic fibrosis/cirrhosis, pulmonary fibrosis and life-threatening blood disorders, i.e.,
pancytopenia and aplastic anemia [5].

MTX toxicity and MTX side effects restrict its clinical uses to moderate and severe
forms of disease or drug-resistant diseases [28]. Thus, finding promising natural compo-
nents aimed at ameliorating toxicity and side effects of MTX represents a future direction in
MTX therapy. In MTX acute nephrotoxicity, the management is focused on fast intravenous
fluid hydration, urine alkalinization, and rescue of folic acid [29].

Multiple preclinical studies explored the anti-inflammatory and immunomodula-
tory effects of several Nutraceuticals in liver and kidney injury, acute lung injury and
gut microbiota dysregulation induced by treatment with MTX [30–32]. An in-depth
overview of the mechanism of action of nutraceuticals in experimental MTX toxicity
models could provide further directions in MTX therapy. This review aims to overview
the main nutraceuticals involved in the beneficial effects against MTX-induced organ
injuries and to propose promising nutraceuticals as adjuvant therapy in patients treated
with MTX.

2. MTX as a Disease-Modifying Agent

DHFR is a crucial enzyme involved in the reductive process of dihydrofolic acid to
tetrahydrofolic acid, an essential oxido-reductive process required for the de novo synthesis
of purines, pyrimidines, and certain amino acids [33]. These chemical components are
essential for cell proliferation and cell growth [33].

MTX is an antimetabolite of folic acid, which was first approved by FDA for treating
only life-threatening malignancies, treatment-resistant or treatment non-respondent forms
of psoriasis and RA, and also those forms with severe course of disease [4]. The mechanism
of action underlying anti-neoplastic and immunomodulatory effects of MTX is based on
inhibition of DHFR, thus promoting suppression of purine and pyrimidine synthesis in cell
proliferation [34,35].

MTX binds to the same active site of DHFR, with a 1000-fold increase in the affinity of
DHFR over that of dihydrofolic acid [36]. Binding of the MTX to its substrate, DHFR, acts
in a NADPH-dependent manner [36,37]. This dependency could also play a critical role
for the selective toxicity of MTX within malignant cells, malignant cells revealing a higher
NADPH/NADP ratio compared to the intact and viable cells [36,38].
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However, the anti-inflammatory mechanism of MTX does not proceed by inhibiting
DHFR enzyme and in-depth mechanistic data of anti-inflammatory features are still needed.
Mounting experimental studies proposed several mechanisms of action of MTX treatment,
including counteracting reactive oxygen species (ROS) production [39–41], inhibition of
pyrimidine pathway enzymes [42], release of adenosine [43,44], and regulation of cytokine
production [45,46].

Multiple ways of administration, i.e., orally, intravenously, intramuscularly, or in-
trathecally allow a good bioavailability and an effective mechanism of action of MTX in
multiple pathological contexts [47].

After oral administration, it is actively absorbed within proximal jejunum, the enteric
transport being mediated by proton-coupled folate transporter (PCFT/SLC46A1) [5]. Even
in the absorption phase, a small percentage of 5% of MTX is metabolized to 4-amino-
4deoxy-N10-methylpterrroic acid, an inactive metabolite of MTX [5].

Within the cell membrane, the cellular uptake and efflux are mediated by specific
transporters, including reduced folate carrier (RFC1), the proton-coupled folate trans-
porter (PCFT), and ATP-binding cassette proteins (ABCC) [5]. The bioavailability ranges
from 30% to 90% [5,48], varying widely among different subtypes of patients and it
decreases with increasing dose, suggesting the saturation of the active transporters with
MTX [49,50].

The distribution of MTX to the body’s tissues mainly depends on the reduced
folate carrier 1 (RFC1), involved in the transport of reduced folates such as 5-methyl
THF [51]. Once distributed to cells and tissues, MTX is rapidly converted to MTX
polyglutamates (MTX-PG) by folylpolyglutamate synthase, which binds six glutamate
residues to MTX, therefore sustaining its intracellular retention and increasing enzyme
binding affinity [52]. Some MTX is hydrolyzed to 7-hydroxymethotrexate by aldehyde
oxidase in the liver [53].

Renal excretion constitutes the primary elimination route, mainly in the intact form
(more than 80%) and 3% as the 7-hidroylated form [54]. MTX is recycled by enterohepatic
circulation, about 8% and 26% of plasmatic MTX being excreted in the bile [52,55,56]. The
clinical use of MTX ranges from neoplastic diseases, such as acute lymphoblastic leukemia,
acute promyelocytic leukemia, non-Hodgkin’s lymphoma, to epidermoid cancers of the
head and neck, early-stage breast cancer, osteosarcoma and several types of gestational
trophoblastic neoplasia [57,58].

In addition to anti-cancer effects, MTX poses anti-inflammatory and immunomod-
ulatory effects. Inflammatory diseases, such as inflammatory bowel diseases, vasculitis,
systemic lupus erythematosus, multiple sclerosis, transplantation surgeries could benefit
from MTX therapy [59,60]. As a disease-modifying agent, MTX is used for treating RA,
juvenile idiopathic arthritis (JIA), and psoriasis [57,58,61].

Despite its widespread clinical use and usefulness, MTX comes with pitfalls, including
short- and long-term side effects such as hepatotoxicity, nephrotoxicity, and leukopenia,
which can predispose patients to severe infections [57,61]. An overview of the main
pharmacological features of MTX as a therapeutic agent in non-malignant and malignant
diseases is provided in Table 1.

Table 1. Synopsis of MTX as disease-modifying agent in multiple disease conditions.

Disease End-Organ Effect Molecular Mechanism Efficient Dose Indicated Most Common Adverse Effects

Acute lymphoblastic
leukemia Induction 3.3 mg/m2

Maintenance
30 mg/m2/weekAcute promyelocytic

leukemia

Meningeal leukemia
12 mg/m2/every 2–5 days

until the cell count of the CSF
returns to normal
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Table 1. Cont.

Disease End-Organ Effect Molecular Mechanism Efficient Dose Indicated Most Common Adverse Effects

Burkitt’s lymphoma and
other non-Hodgkin’s

lymphomas

10–25 mg/day
4–8 days

Mycosis Fungoides 2.5–10 mg/day orally or
50 mg/week i.m.

Epidermoid cancers of the
head and neck

30–40 mg/m2/week i.v
Early-stage breast cancer

Squamous cell carcinoma

Small cell carcinoma

Osteosarcoma 12 g/m2 i.v.

Chorioadenoma destruens 15–30 mg/day
5 day courseHydatidiform mole

Neoplastic cells,
abnormally fast-

dividing cells

DHFR inhibition, disruption
of de novo nucleotide
biosynthesis and DNA
replication, resulting in

cell death

- Liver enzymes elevation
- Hepatic fibrosis/cirrhosis
- GI bleed
- Diarrhea
- Ulcerative stomatitis
- Leukopenia
- Anemia
- Aplastic anemia
- Pancytopenia
- Pneumonia
- Pulmonary fibrosis
- Renal insufficiency
- Hematuria
- Toxic epidermal necrolysis
- Nausea
- Drowsiness

Severe psoriasis

T cells
B cells

Adenosine accumulation,
inhibition of T-cell activation,

downregulation of B cells

Single dose 10–25 mg/week

Rheumatoid arthritis Single dose 7.5 mg/week

Polyarticular course
juvenile rheumatoid

arthritis
Single dose 10 mg/m2/week

References [47,57,58,61,62].

3. Gut Microbiota-Related Changes following Treatment with MTX
3.1. Involvement of Gut Microbiota in Health and Disease

Microbiota is part of our human microecosystem, which poses multiple regulatory
roles in our body in both health and pathological conditions [63]. Widely distributed within
the organism, microbial species colonize multiple organs and cavities, i.e., oral cavity,
gut, lung, skin, vagina, etc. [64]. Microbiota consists of a large abundance and density of
microorganisms, including bacteria, fungi, viruses, protozoa, and archaeal, which live in
symbiotic or parasitic relationships [64,65].

With the greatest diversity and abundance, the gut microbiota harbors an extensive
community of over 100 trillion microbial cells, with a 150-fold increase in the gut-regulatory
genes compared to human genome [66,67]. The two most dominant intestinal phyla include
Firmicutes and Bacteroidetes, with Lactobacillus, Faecalibacterium, Clostridium, Enterococcus
accounting for dominant genera of Firmicutes and Bacteroides, and Prevotella, reaching the
most of Bacteroidetes genera [68].

Gut microbiota and its derived metabolites exert multiple essential roles in the body,
from immune modulation, to metabolic, digestive functions and biosynthesis of active
compounds [63,69]. Compositional changes in gut bacterial species have been reported
in large spectrum of disease conditions, i.e., cardiovascular dysfunctions [70], stroke [71],
neurodegenerative and cognitive disorders [72,73], cancer-related disease and autoimmune
disorders [74,75]. Aging, diet, smoking and patient-associated comorbidities, i.e., diabetes,
obesity are influencing factors with a decisive impact on gut bacterial profile [76–79].

3.2. The Role and Protective Effects Exhibited by Microbiota

Gut microbiota interacts in a bidirectional manner with multiple organ systems, influ-
encing each other; systemic changes contribute to intestinal dysbiosis, and also intestinal
microbiota dysregulation is involved in disease pathogenesis and organ dysfunction [80].
Evolving research studies evaluated the relationship between dysregulation of gut mi-
crobiota and dysfunctions of other organ systems, in relation with disease pathogenesis
and therapeutic insights. Referring to this interaction, they are classified as the gut–liver
axis [81], the gut–brain axis [82], and the gut–liver–brain axis [83].

Gut microbiota exerts immunomodulatory and anti-inflammatory functions and in-
teract in a bidirectional manner with multiple organ systems through its key mediators,
microbiota-derived metabolites, specifically short-chain fatty acids, (SCFAs) [84]. SCFAs,
consisting of acetate, propionate, and butyrate are carboxylic acids, formed by chains of
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2–6 carbon atoms, which are produced by anaerobic bacterial fermentation of complex di-
etary carbohydrates within intestinal lumen [85]. The source of biosynthesis is represented
by dietary fibers such as plant cell wall-derived polysaccharide, soluble oligosaccharide,
and also endogenous molecules, such as mucin [85,86]. Different microbial taxa are re-
sponsible for SCFAs synthesis: acetate formation is mostly mediated by enteral bacteria,
such as Prevotella spp., Bifidobacterium spp., Bacteroides spp., Clostridium spp., Ruminococcus
spp., and Streptococcus spp. [87]; propionate formation is regulated by few bacterial gen-
era, Salmonella enterica serovar Typhimurium and R. inulinivorans [88,89]; and dominant
species responsible for butyrate formation are Coprococcus, F. prausnitzii, E. hallii, E. rectale,
Ruminococcus bromii [90,91].

After synthesis in the intestinal lumen, the cellular uptake of SCFAs proceeds via
specific transporters expressed on epithelial cells of the small intestine and colon, in
a manner dependent on Na+/H or Cl/HCO3 co-transporters [86]. The highest SCFAs
concentration is reached in the cecum, followed by descending colon and ileum, in relation
to biodiversity and composition of microbial species [92]. After entering into intestinal
epithelial cells, SCFAs exert regulatory roles by interacting with specific receptors, G protein-
coupled receptors (GPCR) and or histone deacetylases (HDACs) [93–95]. At the nuclear
level, propionate and butyrate induce transcriptional regulation and post-translational
modification of histones, by targeting lysine and histone deacetylase (K/HDAC) [86].

SCFAs could interact with different immune cells, contributing to innate and adaptive
immune homeostasis [84,93–95]. SCFAs, acetate or propionate stimulate bone marrow
hematopoiesis, along with activation of Th cells differentiation and increasing expression
of specific chemoattractant molecules on immune cells [96,97]. Local or systemic immune
responses are mediated by SCFAs, butyrate inhibiting pro-inflammatory pathways, such as
NF-κB, thus decreasing pro-inflammatory cytokines, i.e., TNF-α, IL-6, IL-12 and activating
anti-inflammatory cytokines, i.e., IL-10 [92].

Changes in the abundance and diversity of gut microflora species, known as “dysbio-
sis”, are reported in multiple intestinal inflammatory dysfunctions, providing high value as
theragnostic tools in disease settings [98]. Evolving research studies depicted metabolomic
and microbiome profiling data of serum and fecal patient samples, giving insights into
bacterial-based biomarkers as promising predictors of therapeutic response and clinical
outcome [99,100].

3.3. The Role of Microbiota for Promoting an Intact Epithelial Cell Barrier

Intestinal stem cell niches (ISCN) are at the basis of epithelial barrier renewal and main-
taining of intestinal barrier integrity [101]. By sustaining proliferative and differentiation
processes in a dynamic manner, ISCNs give rise to specialized epithelial cells: enterocytes,
enteroendocrine cells, Paneth cells, microfold (M) cells and goblet cells [102]. Epithelial cell
surface expresses specific receptors, namely pattern recognition receptors (PRRs), which
bind to microbial ligands expressed on enteric commensal bacteria to maintain intestinal ep-
ithelial homeostasis against pathogen bacteria species and other intestinal insults [103,103].
Therefore, bacterial molecules and its associated metabolites are recognized by several
PRRs, consisting of Toll-like receptors (TLRs), which are expressed on epithelial and im-
mune cells, aimed at protecting and immunomodulating intestinal surface barrier [103,103].
Specific conserved motifs in epithelial cell receptors, including TLR/MyD88 and Nucleotide
oligomerization domain (NOD)-like receptors (NLRs), exhibited protective roles against
invasion of gut microbiota species of epithelial cells, by synthesis of antimicrobial factors,
such as defensins and cathelicidins [103–105]. Inflammatory responses triggered by com-
mensal bacteria are prevented by sequestration of microflora by mucosal epithelial cells,
preventing the “deleterious” activation of TLRs by beneficial microflora [106,107]. In a
model of chemical colitis of pathogen-free mice, Rakoff-Nahoum et al. found that activation
of TLR2 and TLR4 by enteric commensal bacteria is necessary for protection upon mucosal
injuries and mice-related mortality [103]. In addition to protective effects of epithelial cell
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barrier, PRRs by interacting with microbial components promoted pathways involved in
cellular proliferation [105].

The breakdown of intestinal barrier integrity is involved in multiple intestinal dys-
functions, such as irritable bowel syndrome, metabolic syndrome, inflammatory bowel
diseases, and necrotizing enterocolitis, and obesity [108–110]. The functional state of intesti-
nal barrier function is a hallmark of gut homeostasis, depending on multiple influencing
factors, (e.g., cellular, biochemical, immunological, and bacterial) [105]. Commensal gut
bacterial species sustain both maintenance and/or restoring processes of epithelial gut
barrier, by promoting cellular processes of differentiation, proliferation and migration and
survival [111,112]. SCFAs elicited several modulatory roles to maintain an intact intestinal
epithelial barrier at different levels.

Butyrate constitutes the main energy source of colonocytes, contributing to their struc-
tural integrity [86]. SCFAs by interacting with GPCRs, (e.g., butyrate-GPR109a, acetate,
propionate, butyrate—GPR43, GPR41) induce gene expression regulation and signaling
transduction, promoting epithelial cell differentiation, apoptosis, and proliferation [113].
SCFAs sustain epithelial barrier integrity, by reducing epithelial permeability (e.g., modula-
tion of HIF, STAT3 signaling pathways) [86], regulating tight junction (TJ) proteins [105],
and mucus layer thickness (e.g., targeting MUC expression) [114] and promoting antimi-
crobial peptides synthesis [115].

The distinctive features of the intestinal surface, such as the “intact” barrier and,
at the same time, being selective and dynamically permeable, are conferred by intercel-
lular connections, consisting of TJs, adherens junctions, the desmosomes, and the gap
junctions [116,117]. Gut microbiota bacterial species modulate expression of several in-
tercellular connections, therefore maintaining intestinal epithelial barrier homeostasis. In
Caco-2 and HT-29 cells cultured on human milk oligosaccharides, B. infantis and B. bifidum
regulated TJs proteins such as ZO-1 and occludin expression, whereas L. rhamnosus and
Faecalibacterium prausnitzii modulated Occludin and E-cadherin expression to alleviate
impaired gut barrier function in a mouse model [118,119].

3.4. The Influence of MTX on Gut Microbiota

The first experimental report describing the response of small-intestine epithelial cell
under MTX was mentioned by Taminiau et al., in 1980 [120]. The authors reported that,
under an intravenous dose of 30 mg/kg for 24 and 48 h, MTX exhibited suppressive effects
on cellular mitoses in crypts, decreased intestinal villi, and also inactivated thymidine
kinase activity, an essential enzyme within epithelial cells from intestinal crypts [120]. In
a metabolomic and microbiome profiling study conducted in male Sprague Dawley rats
treated with MTX, authors depicted changes in fecal samples metabolites and composi-
tional bacterial changes at different time-points after MTX treatment [26]. Changes in
the metabolomic profile of fecal samples, specifically 2,4-diamino-N(10)-methylpteroic
acid (DAMPA) concentration in faces have been positively correlated with abundance
of Prevotellaceae, Anaeroplasmataceae, Lactobacillaceae and Ruminococcaceae, and negatively
correlated with bacterial species of Deferribacteraceae and Coriobacteriaceae [26]. Moreover,
urine sample of rats exhibited methionine sulfoximine metabolites, which was associated
with Ruminococcaceae species at 48 h. Bacterial abundance of Prevotellaceae and Anaero-
plasmataceae was associated with two metabolites under MTX treatment, fecal glutamate
and urine 5-hydroxyindole acetic acid at 48 h. Up to 24 metabolic compounds, i.e., dipep-
tides, tripeptide, organic acids, have been shown to be altered in fecal samples of rats
upon MTX treatment in a dose-dependent manner [26]. Gut microbiota of rats exhibited
changes in bacterial species after MTX treatment, with an enrichment of the abundance
of Firmicutes over the Bacteroidetes, when treating rats with low doses, with an reverse
trend at high doses [26]. Changes of gut microbial signature of rats under MTX treatment
were driven by an increase in Peptostreptococcaceae and Porphyromonadaceae and a decrease
in the relative abundance of Ruminococcaceae, Erysipelotrichaceae [26]. Alteration in gut
microbial composition has been revealed in MTX-induced liver injury, which was restored
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after 40 mg/kg of Magnesium Isoglycyrrhizinate (MgIG) supplementation [32]. Under a
long course of 30 days of MTX treatment, gut microbiota in mice exhibited an increase in
bacterial proliferation of Muribaculaceae, and also a decrease in Lactobacillus abundance [32].
Within colon permeability, MTX treatment induces alteration in expression of TJs, i.e., ZO-1
and Claudin-1 and cell adhesion protein, E-cadherin, suggesting the impact of dysregulated
gut microflora on the expression of intercellular connections [32]. MgIG could reverse the
dysregulated expression levels of these proteins induced by MTX treatment, mitigating
epithelial changes in leaky gut [32].

In addition to the alteration of gut microbiota induced by MTX, bacterial changes in
gut microflora occurred during RA, for which MTX is indicated, suggesting the influence
of disease progression on gut microbiota and further influencing MTX efficacy. In 212 fecal
samples of RA patients, the bacterial proliferation of Haemophilus spp. was decreased, being
negatively correlated with serum autoantibodies levels, whereas RA patients exhibited
an enrichment of Lactobacillus salivarius [121]. By DNA sequencing of stool samples of
29 children with JIA, Öman et al. depicted distinct signature of gut microbiota composition
upon MTX treatment, with an increase in Subdoligranulum and under-representation of
Rikenellaceae, Veillonellaceae, Bacteroidales_S24-7_group [122]. Moreover, the SCFAs levels
differ in MTX group compared with Etanercept group, with an increase level of iso-butyrate
in fecal samples of 15 JIA patients treated with MTX [122]. Multiple experimental studies
examined the potential of pre/probiotics, vitamins, plant-based extracts to alleviate struc-
tural changes in the intestine architecture upon difference disease models [123]. Changes
in the bacterial profile of gut microbiota upon MTX treatment suggest the role of adju-
vant therapies in restoring the intestinal bacterial balance, nutraceutical compounds being
promising candidates.

Several bacterial changes in gut microbiota of animal models or patients treated with
MTX are viewed in Table 2.

Table 2. Gut microbiota-related changes following treatment with MTX and the associated epithe-
lial changes.

Gut Microbiota Changes in
Subjects Exposed to MTX

Intestinal Epithelial
Changes Samples Technique References

↑ Peptostreptococcaceae and
Porphyromonadaceae
↓ Ruminococcaceae,
Erysipelotrichaceae

NR 22 Male Sprague Dawley
rats 7 to 8 weeks old

Fecal DNA extraction
and sequencing [26]

↓ Lactobacillus
↑Muribaculaceae

↓ ZO-1, claudin-1,
and E-cadherin

8-week-old male mice
(6 per group)

Fecal DNA extraction
and sequencing [32]

↓ H. filiformis and Bacteroides sp.
↑ P. intermedia NR

21 RA patients at pre
and post-MTX +

tripterygium glycosides

Metagenomic shotgun
sequencing [121]

↑ Subdoligranulum
↓ Rikenellaceae, Veillonellaceae,

Bacteroidales_S24-7_group,
Alistipes

Prevotellaceae_NK3B31_group

NR
Fecal samples from

29 children with
JIA treated with MTX

DNA extraction,
amplification,

and sequencing
[122]

↓ Enterobateriales NR 11 patients with RA
receiving MTX

DNA extraction and
metagenomic sequencing [124]

Abbreviations: JIA, juvenile idiopathic arthritis; MTX, methotrexate; NR, not reported; RA, rheumatoid arthritis;
ZO-1, zonula occludens-1.

4. Nutraceuticals Use to Counteract MTX Toxicity in Experimental Models

Given the plethora of side effects, both acute and chronic, the management of MTX
toxicity needs to incorporate strategies aimed to prevent the side effects associated with
long-term use and adjusting treatment plans for acute toxicity [5,47]. The schematic bellow
(Figure 1) represents an overview of the main molecular and cellular mechanisms involved
in MTX multi-organ toxicity according to experimental models.
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Figure 1. The main mechanisms of MTX toxicity in experimental disease models of organ injury.
Several organ dysfunctions have been reported following MTX treatment: MTX-induced liver toxicity
represented by fibrosis and cirrhosis, MTX-associated lung dysfunction consisted of pneumonitis and
fibrosis, kidney injury related to MTX treatment, including acute kidney injury and tubulo-nephritis,
intestinal changes upon MTX including mucositis, enteritis, and dysbiosis. Abbreviations: AKI, acute
kidney injury; GSH, glutathione; ROS, reactive oxygen species.

Preventing the toxicity associated with long-term use could be achieved by using the
lowest effective dose, monitoring the blood concentration of MTX by using commercially
available immunoassays [125], and co-treatment of MTX with natural compounds which
can prevent buildup of MTX, slow down or prevent side effects.

Although the therapeutic effect is obtained by administering the effective dose ther-
apy [47,125], dose individualization considering both the severity of disease and the MTX
metabolic rate could prevent toxicity events [47,61].

Therapeutic drug monitoring (TDM) has become a staple for many therapies that uti-
lize drugs with a narrow therapeutic index such as MTX. TDM can be used for two reasons
in MTX treatment: to ensure that MTX concentration is high enough to be therapeutically
effective, and to minimize dose-dependent toxic events [47,126,127]. MTX monitoring can
be performed in a clinical setting using commercially available immunoassay kits, thus
minimizing the difficulty and time requirement of such operation [125].

Several combined therapeutic strategies aimed at preventing both acute toxicity and
side effects associated with long-term use have been recently proposed. One such example
is the use of folic acid or folinic acid (5-formyl derivative of tetrahydrofolic acid, Leucovorin)
supplements in order to prevents folate depletion for healthy tissue, and thus prevent
hematologic side effects [127,128], but also allow the use of higher doses of MTX in order to
achieve a better therapeutic result without significantly increasing the chance for adverse
events [125,127]. Another example is the use of urine alkalinization compounds, in order
to increase the excretion of MTX and prevent nephrotoxicity [127,128]. Moreover, urine
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alkalinization can be used for episodes of acute renal toxicity that result in acute kidney
insufficiency (AKI) together with glucarpidase (a recombinant bacterial carboxypeptidase
G2). Creating a pH of 7.5 will reduce the amount of MTX and its 7-hydroxilated form
crystalizing, further improving renal excretion, while glucarpidase will cleave MTX into
DAMPA and glutamate, two non-toxic metabolites, thus rapidly lowering MTX plasma
concentration in patients with AKI [127–129].

Nutraceuticals are defined as plant or food-based compounds generally sold in medic-
inal forms, for both preventive and therapeutic roles [8,9]. Additionally, the beneficial roles
in physiological or disease conditions for providing protection against chronic disease have
been demonstrated in multiple preclinical and clinical studies [130]. Under this definition
several items are covered, such as vitamins, minerals, herbs and other botanicals extracts,
to amino acids, prebiotics, probiotics, and other dietary substances [131]. A considerable
amount of the current research into nutraceuticals focuses on plant-based therapeutics,
through the use of concentrates and purified extracts, due to the large variety of active
compounds found in plants [131,132].

Emerging preclinical and clinical studies ascertained the role of nutraceuticals in
multiple disease contexts, including cardiovascular diseases, diabetes, cancer, allergies, and
visual disorders [133–140]. Through these studies nutraceuticals make themselves out as a
viable and simple method not only of treatment, but also of prevention of certain diseases.

Multiple chemotherapeutical agents frequently used in cancer therapy proved to have
multi organ long-term side effects and toxicity that hinders their therapeutic efficacy and
the life expectancy of oncologic patients [125,141–148]. These pitfalls of chemotherapeutic
agents prompt the need for therapeutic strategies aimed at reducing the toxicity of cancer
drugs. Plant-based therapies have been established as a protective measure in cancer
therapy toxicity models [149–151].

MTX is part of those chemotherapeutical agents to have multi organ long-term
side effects, with studies showing significant hepatotoxicity, nephrotoxicity, and poten-
tial pulmonary fibrosis as some of the most dangerous adverse effect after employing
MTX [127,128], and list them as a common cause of therapy withdrawal [47,57,61,128].
Thus, MTX could benefit from nutraceutical co-treatment in order to reduce or prevent
certain adverse events.

4.1. Hepatotoxicity

The underling molecular mechanism behind MTX-induced hepatotoxicity is not yet
completely understood; however, considerable experimental and clinical evidence pro-
posed oxidative stress as a contributing factor through the increased generation of ROS,
alongside with decreased antioxidant defense systems [152–154].

Prevention of MTX-induced hepatotoxicity using nutraceuticals has been extensively
studied, consisting in a wide variety of nutraceutical categories, including vitamins, nutri-
ents and dietary supplements, with varying levels of effectiveness [155–157].

In an experimental mouse model of MTX toxicity, pre-treatment with epicatechin at
doses of 25, 50 and 100 mg/kg have been shown to have protective effects. The beneficial
effects elicited by epicatechin compound might be explained by improving the antioxi-
dant defense system, posing anti-inflammatory effects, and alleviating histopathological
changes [30]. In another experimental model, treatment with thymoquinone at a dose
of 10 mg/kg/day for 10 days has been shown to have protective effects in rats treated
with MTX, by regulating antioxidant, anti-nitrosative, anti-inflammatory, and antiapoptotic
mechanisms [158].

An amount of 50 and 100 mg/kg/day of ferulic acid has been shown to have protective
effects in MTX-induced mice model of oxidative stress injury [159].

Rhein treatment in rats proved to be another protective measure against MTX-induced
hepatotoxicity, as reported by Bu et al. [160]. The underling mechanism of this effect was
linked to the upregulation of several signaling pathways, such as nuclear factor (erythroid-
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derived 2) like 2 factor (nrf2), B-cell lymphoma-2 (Bcl-2), heme oxygenase 1 (HO-1), and
glutamate-cysteine ligase catalytic subunit (GCLC) [160].

Gossypin, an anti-tumoral and anti-inflammatory nutraceutical, was examined by Mo-
hamed et al. in a rat model of MTX toxicity. The anti-inflammatory mechanism responsible
for the reduction in inflammatory cell infiltration of the liver proceeds by inhibiting the
TGF-β/NFκ-B signaling pathway [161].

Berberine is a plant-based nutraceutical that has been extensively tested in multiple
disease models for its therapeutic effects. Using a MTX-induced hepatotoxicity model in
rat model Mehrzadi et al. [162] analyzed the protective effects of berberine pre-treatment,
using 100 mg/kg doses for 10 days. Berberine extract proved to have hepatoprotective
effects by activating antioxidant defense enzymes such as GSH and GPx [162].

Resveratrol’s effectiveness as a protective agent in MTX hepatotoxicity was ana-
lyzed and confirmed in two different animal studies. Tunali-Akbay et al. [163] reported a
neutrophil-dependent antioxidant mechanism through which resveratrol enacts its hepato-
protective effects, while Dalaklioglu et al. [152] reported the inhibition of lipid peroxidation
through scavenging of superoxide and hydroxyl radicals by resveratrol.

Similar to resveratrol, gallic acid inhibits lipid peroxidation through the scavenging
of ROS [164]. Jafaripour et al. [165] reported that inhibition of lipid peroxidation was
behind the action of another nutraceutical, rosmarinic acid, which was able to mitigate the
oxidative stress induced by MTX.

The effectiveness of two plant extracts widely used in traditional medicine, turmeric
and Ginkgo biloba extract, was evaluated in two separate studies using rat model. Exper-
imental data of Ginkgo biloba extract revealed a dose-dependent protective effect of the
nutraceutical [166]. The beneficial effect might be explained through the modulation of the
innate antioxidative mechanisms such as glutathione and glutathione S-transferase [166].
Moghadam et al. [167] reported similar findings while evaluating the effectives of turmeric
extracts, with the added benefit of scavenging of ROS, and thus reducing lipid peroxidation.

Ahmad et al. [168] described the hepatoprotective effect manifested by sinapic acid
through the regulation of the nrf2/heme oxygenase 1 (HO-1) and NF-κB signaling path-
ways. By modulating both oxidative enzymes, such as malondialdehyde, nitric oxide and
catalase, and antioxidative systems, i.e., glutathione peroxidase, glutathione reductase
activity, naringin was able to provide significant protection against MTX-induced oxidative
stress and preserve the histological structure of rat hepatic tissue [169].

Rutin is a glycoside flavanol found in several plants, including citrus plants [170], which
was previously demonstrated to exert a hepatoprotective effect against other chemotherapeu-
tical agents [171,172] Erdogan et al. [173] reported that rutin, by elevating tissue superoxide
dismutase and plasma glutathione peroxidase, showed similar hepatoprotective effects
against MTX toxicity.

Propolis and propolis extracts have been examined as nutraceutics as well. Çetin et al. [174]
reported the beneficial effects of propolis in preventing MTX hepatic injury in rats. Chrysin, a
flavonoid extracted from honey and propolis, has been reported to alleviate oxidative stress
and apoptosis induced by MTX in rats [175].

Two dietary supplements with promising effects have been tested for their supposed
protective effects, indole-3-carbinol and alfa lipolic acid. Indole-3-carbinol, by upregu-
lating antioxidant defense systems, alleviates MTX-induced hepatic injury [176]. On the
other hand, alfa lipolic acid was able to prevent MTX-induced hepatotoxicity through the
scavenging of ROS [157]

Vitamin supplements have been tested as well, with various results. Akbulut et al. [156]
demonstrated the limited protective effect of ascorbic acid compared to other hepatoprotec-
tive agents in MTX-induced toxicity. In rat model of MTX-induced liver injury therapeutic
delivery of β-carotene, an important source of vitamin A in the human diet, with antioxi-
dant properties, led to decreased hepatic MDA activity and increased hepatic SOD, CAT
and GSH peroxidase activities under conditions of [153]. Amirfakhrian et al. [177] showed
the protective effect of vitamin E on liver architecture assessed by 99mTc-phytate functional
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imaging. Ismail et al. [178] report that while thiamine pyrophosphate exhibited protective
effects against MTX hepatotoxicity, thiamine alone was ineffective. The beneficial effect
was attributed to a reduction in MTX-induced NADP inhibition.

Dietary deficiencies were also reported to influence the severity of MTX hepatotoxic-
ity [155]. A choline deficient diet resulted in an increase in the extent of fatty infiltration
in rats treated with MTX as compared to normal rats treated with MTX, outlining the
importance of choline in preventing MTX-induced fatty liver injury.

4.2. Nephrotoxicity

The most commonly described mechanism of MTX nephrotoxicity is the precipitation
of MTX and its metabolites in the renal tubules [127]. Other mechanisms have also been
proposed to play a concomitant role, such as constriction of the afferent capillary and direct
effects on the mesangial or tubular epithelial cells [179,180].

Because the primary elimination route of MTX is renal excretion, with a high likelihood
of nephrotoxicity, preventing those adverse events has been attempted through the use of
various nutraceutical compounds.

Aladaileh et al. [181] have described the mechanism behind formononetin nephro-
protective properties. Through the upregulation of nrf2/HO-1, formononetin successfully
prevented MTX-induced renal injuries in a rat model. A similar molecular mechanism
was found by Hassanein et al. [182] when studying the effectiveness of berberine as a
nephroprotective agent. Rosmarinic acid, a polyphenolic nutraceutical compound, was
reported to regulate the same pathway as berberine and formononetin, having a similar
effect in rat models [165].

Paeonol and paeoniflorin are two aromatic compounds found in plants from the
genus Paeonia spp. [183–185]. Morsy et al. [186] reported how paeonol administration
increased the expression of the renal efflux transporter P-glycoprotein, which accelerates
MTX elimination, limiting the nephrotoxic effect of the drug. The protective effect of
paeoniflorin-6′-O-benzene sulfonate against MTX toxicity proceeds by targeting expression
apoptotic proteins, such as Bax, cleaved-caspase-3, and cleaved-caspase-8 [187].

In an experimental model of MTX nephrotoxicity in rats, Elsawy et al. [188] observed
the protective effects of naringin at doses of 20–40 and 80 mg/kg.

In another experimental model, Oguz et al. [189] evaluated the effectiveness of ly-
copene alone and in combination with melatonin. Both therapeutic regimes provided
significant reduction in TNF-α, interleukin 1-beta (IL-1β) and ceruloplasmin levels. Further
histopathological evaluation of renal tissue revealed a superior effect for the combined
regime, with both schemes showing a significant protective effect against MTX-induced
histological changes.

Inhibition of lipid peroxidation and increase in antioxidative status of cells occurred
as a result of treatment with caffeic acid phenethyl ester at a dose of 10 mmol/kg in
MTX-induced oxidative stress in rat kidney [190].

The effectiveness of gallic acid as a nephroprotector was assessed in two different
animal studies. Asci et al. [191] and Olayinka et al. [164] have reported that gallic acid,
through the reduction in oxidative stress, was effective at preventing renal injury induced
by MTX.

Curcumin, primarily found in turmeric powder, is reported to have antioxidant prop-
erties, thus posing nephroprotective effects in rat models for MTX toxicity [192].

Quercetin, in a 15 mg/kg/day for 5 days, has been shown to lessen the degenerative
changes and reduce apoptosis in rat kidney upon MTX treatment. Additionally, quercetin
increased superoxide dismutase, glutathione peroxidase, and catalase levels, effectively
reducing oxidative stress induced by MTX [193].

Several plant extracts have been tested for nephroprotective effects against MTX
toxicity. Sherif et al. [194] have tested Ginkgo Biloba extracts, finding that it decreased
renal TGF-β mRNA and MALAT1 expression, and regulated PI3K/Akt/mTOR signaling.
Nigella sativa oil increased glutathione levels and prevented histological changes of renal
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tissue in a prolonged exposure of animal model [195]. Pre-treatment and co-treatment of
MTX with garlic extracts in a rat model proved to be effective at preventing renal injury by
increasing renal antioxidant enzyme activity [196]. Abouelela et al. [197] report the use of
Ceiba pentandra extract to prevent MTX-induced renal toxicity in rats. The effects might be
explained by improved renal antioxidant capacity and reduced MTX-induced oxidative
stress. Hydro-Alcoholic extract of raspberry fruits has been shown to protect against
MTX nephrotoxicity by upregulating the expression of aquaporin 1 in a dose-dependent
matter [198]. Polyherbal combinations have been teste as well, with Sharma et al. [199]
reporting on the use of Roots of B. diffusa and R. emodi, flowers of N. nucifera and stem
bark of C. nurvala concomitantly. Histopathological analysis showed an alleviation of rat
renal injury caused by MTX, when rats were treated with the polyherbal mixture, an effect
explained by ROS scavenging and by improved renal antioxidant capacity.

4.3. Gastrointestinal Toxicity

Studies have shown that ROS production plays a key role in the mechanism behind
gastrointestinal mucositis and enteritis caused by MTX treatment [200,201]. By having
a low discrimination ability between tumor cells and fast-dividing cells and inhibiting
DNA and RNA synthesis of fast-dividing cells, MTX counteracts epithelial intestine
cells with a high turnover [120,202]. This results in the inhibition of division, a decrease
in cell population, and ultimately leads to architectural and functional changes of
intestinal epithelium.

Turmeric extracts, and mainly curcumin, have been reported to have various protec-
tive effects against MTX-induced toxicity. Song et al. [203] reported protective effects of
curcumin against MTX aggression against intestinal mucosa. The beneficial effect might be
explained by activation of mitogen-activated protein kinase phosphatase-1 and antioxida-
tive mechanisms of superoxide dismutase and repression of NF-κB [203].

The effect of glutamine supplementation in MTX-induced enteritis has been studied on
multiple animal models. in rat models, glutamine reduced intestinal injury, improved nu-
tritional status, decreased bacterial translocation by preserving intestinal mucosa integrity,
and improved survival rate [204]. However, in a cat model, glutamine supplementation
was unable to preserve intestinal function [205].

Gastroprotective effects of several plant extracts have been tested against multiple
animal models of gastrointestinal toxicity caused by MTX treatment. Shi et al. [206] ex-
plored gastroprotective effect of steamed root of Rehmannia glutinosa Libosch in intestinal
mucositis model of MTX in a rat model. The extract mitigates MTX intestinal injury by
alleviating oxidative stress and inflammatory responses [206]. Paullinia cupana, by in-
creasing antioxidant systems and inhibiting IL-1β, has been shown to preserve intestinal
integrity against MTX toxicity [207]. Wang et al. [208] have tested the effectiveness of
glycyrrhizin acid, constituent of Glycyrrhiza glabra root, against MTX-induced enteritis.
By suppressing the NF-κB and MAPK signaling pathways, glycyrrhizin acid showed sig-
nificant protective effects against enteritis caused by MTX treatment in rats. Albiflorin
is a glycoside isolated from the same plant as paeoniflorin, which has anti-inflammatory
properties. Zhang et al. [209] reported immunomodulatory and anti-inflammatory features
of albiflorin by inhibiting NF-κB/NLRP3 pathway, and also significantly reducing oxidative
stress in MTX-induced enteritis.

Fatty acids and fatty acid derivates have been experimentally investigated as potential
protective agents against oral mucositis, gastric mucositis and loss of intestinal integrity.
Alfa lipolic acid, a naturally occurring caprylic acid derivative, has been tested as a pre-
ventive agent against oral mucositis and oxidative stress induced by MTX in rats [210].
Through the increase in glutathione and superoxide dismutase, and inhibition of apoptosis,
alfa lipolic acid attenuated MTX-evoked alterations of the intestinal wall [210]. da Silva
Ferreira et al. [211] reinforced the potential prophylactic benefits of butyrate, through
the use of a novel model using 3D intestinal organoids derived from mouse ileum. The
anti-inflammatory and anti-apoptotic properties of omega 3 fatty acids was reported to
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limit the intestinal damage in rats treated with MTX [212]. The molecular mechanism relies
on downregulation of NF-κB, ciclooxigenase-2 and TNF-α.

Yilmaz et al. [213] reported the beneficial effect of daily use of vitamin supplement
injections to ameliorate intestinal inflammation and protect rats against MTX-induced
mucositis. Vitamin C and B2 efficacy has been tested by da Silva Ferreira et al. [214]
using an in vitro bacterial growth model, and an in vivo rat model. Both vitamins were
able to enhance the growth of gut bacteria, leading to enrichment of Blautia coccoides
and Roseburia intestinalis. However, despite the fact that vitamin C ameliorated clinical
symptoms of mucositis, neither of the vitamins was able to modulate the course of MTX-
induced mucositis, as assessed by citrulline plasma levels [214].

Salecan is a non-toxic water-soluble β-glucan exhibited dose-dependent effects against
intestinal mucositis in rats treated with MTX [215]. Salecan treatment inhibited oxidative
stress through the effective scavenging of ROS, therefore maintaining mucosal architec-
ture and integrity. Similarly, sodium alginate, a salt of alginic acid found in algae, was
reported to protect intestinal architecture, and even mitigate hematologic side effects of
MTX treatment in rats [216].

While probiotics have not been extensively explored as preventive tools for MTX-
induced multi-organ toxicity, they might have useful properties in preventing intestinal
damage. In an MTX toxicity model in rats, cow’s milk yogurt fermented with Lactobacillus
johnsonii and sheep’s milk yogurt fermented with a combination of Lactobacillus bulgaricus
and Streptococcus thermophilus were able to improve small intestinal barrier function and
prevent MTX damage to the small intestine [217].

4.4. Pulmonary Toxicity

While the mechanism behind MTX pulmonary toxicity is not well understood, it is
likely to be an idiosyncratic reaction and not linked to folate antagonism, as it appears in
both high-dose and low-dose treatment schemes [25,218,219]. The presence of mononuclear
cell infiltration and inflammatory granulomas in lung injury of animal models upon MTX
treatment suggests that MTX pneumonitis represents a hypersensitivity reaction [213,218–220].
Pulmonary protective nutraceuticals have not been studied extensively, with few compounds
being tested in experimental setting.

Polydatin, also known as picedin, is a major resveratrol derivative found in grape juice.
Polydatin’s antioxidant and anti-inflammatory properties increased cellular antioxidant
status and reduced inflammation and fibrosis in rats [31]. In rat models of pulmonary
oxidative damage, the effects of lutein and alfa lipoic acid elicits antioxidative and anti-
inflammatory features in lung tissue, by increasing glutathione levels, and decreasing
proinflammatory cytokines [221,222].

A synopsis of the main natural components used to counteract multi-organ injury
induced by MTX toxicity is provided in Table 3.

While cost-wise and therapeutically effective, nutraceutical therapy for MTX-induced
toxicity in humans has not been fully explored in terms of high-dose-induced adverse
effects and dose accumulation of multiple nutraceuticals simultaneously administered.

Most studies have tested the effect of the nutraceutical alone on the health of animal
models, with no ill effect detected. However, there are not enough studies that explored the
effect of nutraceuticals on the pharmacological profile of MTX or other common medica-
tions [10]. While most nutraceuticals come from sources that humans have been regularly
consuming with no adverse effects, it is unclear if those same compound administered in
higher doses are as safe [131]. Thus, before any clinical trials can begin, further testing, with
longer periods of nutraceutical administration needs to be performed, in order to assess
the effects of long-term administration of nutraceuticals.
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Table 3. End-organ effects of nutraceuticals used in experimental models of MTX-induced toxicity.

Name Model Class Source Therapeutic Effects Ref.

Choline In vivo liver toxicity
rat model Vitamin/nutrient Multiple sources in meat

and plants
↑ PCho, GroPCho,

and betaine [155]

Gossypin/gossypentin In vivo liver toixicity
rat model Flavonoid/plant extract Hibiscus sabdariffa

↓BAX, TGF-β, caspase 3,
and NF-κB

↓hepatic fibrosis
[161]

Epicatechin/Catechin In vivo liver toxicity
mice model Flavonoid/plant extract Mimosa catechu

↓ IL-1β, TNF-α, and NO
↓MDA

GSH level and activity level
of catalase, SOD, and GPx ↑

[30]

Thiamine and thiamine
pyrophosphate

In vivo liver toixicity
rat model Vitamin Whole grains, legumes,

and some meats and fish

Thiamine no protective
effects reported
TPP effects on:

MDA and MPO ↓
GSH and SOD ↑

[178]

Thymoquinone In vivo liver toixicity
rat model Plant extract Nigella sativa

↓TNF-α, NF-κB
COX-2 expressions

↓MDA
↑glutathione and catalase

[158]

Ferulic acid In vivo liver toxicity
mice model Plant extract Ferula communis

↓MDA, IL-6, and TNF-α
↓accumulation of

inflammatory cells
↓nuclear pyknosis
↑GSH, CAT, TAC

[159]

Rhein/cassic acid

In vivo liver toxicity
rat model

In vitro normal
human hepatocyte
(L02 cells) model

Plant extract
Rheum undulatum,
Rheum palmatum,
Cassia reticulata

↑cell survival rate
↓apoptosis

↑Nrf2, Bcl-2, HO-1
and GCLC
↓Bax

↓NF-κB, TNF-α
and caspase-3

[160]

Berberine In vivo liver toixicity
rat model Plant extract

Berberis vulgaris, Berberis
aristata, Mahonia

aquifolium, Hydrastis
canadensis, Xanthorhiza

simplicissima,
Phellodendron amurense

↓MDA, PC, NO levels and
MPO activity

↑GSH level, SOD, GPx and
CAT activities

[162]

Resveratrol In vivo liver toixicity
rat model Plant extract

Skin of grapes,
blueberries, raspberries,
mulberries, and peanuts

↓MDA levels, MPO
and TF activities and

collagen contents
↑GSH
↓TNF-α

↓TBARS, CAT, and GST

[152,163]

Ginko biloba

In silico bio
computational model
In vivo liver toxicity

rat model

Plant extract Ginko biloba tree

↓caspase-3, JNK and TNF-α
↓apoptosis
↑GSH and GST

in silico: drug-receptor
interactions stabilized by a

low energy value and with a
good number of
hydrogen bonds

[166]

Abbreviations: BAX, BCL2-associated X protein; Bcl-2, B-cell lymphoma-2; caspase-3, cysteine aspartic acid-
specific protease 3; CAT, catalase; COX2: cyclooxygenase-2; GCLC, glutamate-cysteine ligase catalytic sub-
unit; GPx, glutathione peroxidase; GroPCho, glycerophosphocholine; GSH, gluthatione; GST, glutathione S-
transferase; HO-1, heme oxygenase 1, IL-1β, interleukin 1 beta; IL-6, interleukin-6; JNK, c-Jun N-terminal kinases;
MDA, malondialdehyde; MPO, mieloperoxidase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated
B cells; NO, nitric oxide; Nrf2, erythroid 2-related factor 2; PCho, phosphocholine; SOD, superoxide dismutase,
TAC, total antioxidant capacity; TBARS, thiobarbituric acid reactive substances; TF, tissue factor; TNF-α, tumor
necrosis factor-alpha; TNF-β, tumor necrosis factor-beta; TPP, thiamine pyrophosphate.

5. Conclusions and Future Perspectives

MTX is, and will continue to be clinically relevant for years to come due to a wide sera
of therapeutic applications, from chemotherapeutical agents for malignant hemopathies,
osteosarcoma, breast cancer, etc. [47,57,58], to anti-inflammatory medication for vasculitis,
systemic lupus erythematosus, multiple sclerosis, transplantation surgeries [59,60], and
further as a disease-modifying agent for RA, JIA, and psoriasis [57,58,61]. However, MTX
therapy comes with pitfalls, making it less than perfect. The severe side effects associated
with MTX use can occur in both low- and high-dose regiments, often leading to temporary
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or permanent interruption of MTX medication [47,57,61,128], which limits its clinical
potential in patients with urgent need of it [47,61,127,128].

Clinicians could benefit from adjuvant compounds which are designed to reduce
the severity and frequency of adverse effects and can be used as a MTX co-treatments.
Emerging nutraceutical compounds demonstrated translational relevance as adjuvant
therapy into experimental models of MTX toxicity posing several advantages that make
them good candidates for such a task [133–140]. With a wide variety of natural compounds
that do not pose a health risk for patients, are easy to administer, and relatively inexpensive,
clinicians could effectively prevent therapeutic limitations and debilitating side effects of
MTX treatment, by using nutraceuticals. Therefore, to take these experimental data from
bench to bedside, further clinical trials to explore the clinical potential of such compounds
in patients treated with MTX are needed.
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Alfa Lipoic Acid Prevent Liver from Methotrexate Induced Oxidative Injury in Rats? Acta Cir. Bras. 2015, 30, 247–252. [CrossRef]

158. El-Sheikh, A.A.K.; Morsy, M.A.; Abdalla, A.M.; Hamouda, A.H.; Alhaider, I.A. Mechanisms of Thymoquinone Hepatorenal
Protection in Methotrexate-Induced Toxicity in Rats. Mediat. Inflamm. 2015, 2015, e859383. [CrossRef] [PubMed]

159. Roghani, M.; Kalantari, H.; Khodayar, M.J.; Khorsandi, L.; Kalantar, M.; Goudarzi, M.; Kalantar, H. Alleviation of Liver
Dysfunction, Oxidative Stress and Inflammation Underlies the Protective Effect of Ferulic Acid in Methotrexate-Induced
Hepatotoxicity. Drug Des. Devel. Ther. 2020, 14, 1933–1941. [CrossRef] [PubMed]

160. Bu, T.; Wang, C.; Meng, Q.; Huo, X.; Sun, H.; Sun, P.; Zheng, S.; Ma, X.; Liu, Z.; Liu, K. Hepatoprotective Effect of Rhein against
Methotrexate-Induced Liver Toxicity. Eur. J. Pharmacol. 2018, 834, 266–273. [CrossRef]

161. Mohamed, M.; El Sheikh, A.K.; Mohammed, H.H. Modulation of Liver P-Glycoprotien Expression May Contribute to Gossypin
Protection against Methotrexate-Induced Hepatotoxicity. Indian J. Pharmacol. 2021, 53, 25–30. [CrossRef] [PubMed]

162. Mehrzadi, S.; Fatemi, I.; Esmaeilizadeh, M.; Ghaznavi, H.; Kalantar, H.; Goudarzi, M. Hepatoprotective Effect of Berberine against
Methotrexate Induced Liver Toxicity in Rats. Biomed. Pharmacother. 2018, 97, 233–239. [CrossRef] [PubMed]

163. Tunalı-Akbay, T.; Sehirli, O.; Ercan, F.; Sener, G. Resveratrol Protects Against Methotrexate-Induced Hepatic Injury in Rats.
J. Pharm. Pharm. Sci. 2010, 13, 303–310. [CrossRef]

164. Olayinka, E.T.; Ore, A.; Adeyemo, O.A.; Ola, O.S. Ameliorative Effect of Gallic Acid on Methotrexate-Induced Hepatotoxicity and
Nephrotoxicity in Rat. J. Xenobiotics 2016, 6, 14–18. [CrossRef]

165. Jafaripour, L.; Naserzadeh, R.; Alizamani, E.; Javad Mashhadi, S.M.; Moghadam, E.R.; Nouryazdan, N.; Ahmadvand, H. Effects of
Rosmarinic Acid on Methotrexate-Induced Nephrotoxicity and Hepatotoxicity in Wistar Rats. Indian J. Nephrol. 2021, 31, 218–224.
[CrossRef]

166. Al Kury, L.T.; Dayyan, F.; Ali Shah, F.; Malik, Z.; Khalil, A.A.K.; Alattar, A.; Alshaman, R.; Ali, A.; Khan, Z. Ginkgo Biloba
Extract Protects against Methotrexate-Induced Hepatotoxicity: A Computational and Pharmacological Approach. Molecules 2020,
25, 2540. [CrossRef]

167. Moghadam, A.R.; Tutunchi, S.; Namvaran-Abbas-Abad, A.; Yazdi, M.; Bonyadi, F.; Mohajeri, D.; Mazani, M.; Marzban, H.;
Łos, M.J.; Ghavami, S. Pre-Administration of Turmeric Prevents Methotrexate-Induced Liver Toxicity and Oxidative Stress.
BMC Complement. Altern Med. 2015, 15, 246. [CrossRef]

168. Ahmad, A.; Alkharfy, K.M.; Bin Jardan, Y.A.; Shahid, M.; Ansari, M.A.; Alqahtani, S.; Jan, B.L.; Al-Jenoobi, F.I.; Raish, M. Sinapic
Acid Mitigates Methotrexate-Induced Hepatic Injuries in Rats through Modulation of Nrf-2/HO-1 Signaling. Environ. Toxicol.
2021, 36, 1261–1268. [CrossRef] [PubMed]

169. Elsawy, H.; Algefare, A.I.; Alfwuaires, M.; Khalil, M.; Elmenshawy, O.M.; Sedky, A.; Abdel-Moneim, A.M. Naringin Alleviates
Methotrexate-Induced Liver Injury in Male Albino Rats and Enhances Its Antitumor Efficacy in HepG2 Cells. Biosci. Rep. 2020,
40, BSR20193686. [CrossRef] [PubMed]

170. Wang, Y.-C.; Chuang, Y.-C.; Hsu, H.-W. The Flavonoid, Carotenoid and Pectin Content in Peels of Citrus Cultivated in Taiwan.
Food Chem. 2008, 106, 277–284. [CrossRef]

171. Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin Ameliorates Cyclophosphamide Induced Oxidative Stress and
Inflammation in Wistar Rats: Role of NFκB/MAPK Pathway. Chem. Biol. Interact. 2015, 231, 98–107. [CrossRef] [PubMed]

172. Schwingel, T.E.; Klein, C.P.; Nicoletti, N.F.; Dora, C.L.; Hadrich, G.; Bica, C.G.; Lopes, T.G.; da Silva, V.D.; Morrone, F.B. Effects
of the Compounds Resveratrol, Rutin, Quercetin, and Quercetin Nanoemulsion on Oxaliplatin-Induced Hepatotoxicity and
Neurotoxicity in Mice. Naunyn. Schmiedebergs Arch. Pharmacol. 2014, 387, 837–848. [CrossRef] [PubMed]

173. Erdogan, E.; Ilgaz, Y.; Gurgor, P.N.; Oztas, Y.; Topal, T.; Oztas, E. Rutin Ameliorates Methotrexate Induced Hepatic Injury in Rats.
Acta Cir. Bras. 2015, 30, 778–784. [CrossRef]
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