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Abstract Renal tract malformations (RTMs) account for
about 40% of children with end-stage renal failure. RTMs
can be caused by mutations of genes normally active in the
developing kidney and lower renal tract. Moreover, some
RTMs occur in the context of multi-organ malformation
syndromes. For these reasons, and because genetic testing
is becoming more widely available, pediatric nephrologists
should work closely with clinical geneticists to make
genetic diagnoses in children with RTMs, followed by
appropriate family counseling. Here we highlight families
with renal cysts and diabetes, renal coloboma and Fraser
syndromes, and a child with microdeletion of chromosome
19q who had a rare combination of malformations. Such
diagnoses provide families with often long-sought answers
to the question “why was our child born with kidney
disease”. Precise genetic diagnoses will also help to define
cohorts of children with RTMs for long-term clinical
outcome studies.

Keywords Deletion . Gene .Mutation .Malformation .

Renal tract

Introduction

Children with renal tract malformations (RTMs) constitute
a large part of the clinical practice of pediatric nephrologists
and RTMs also account for about 40% of children with
end-stage renal failure (ESRF) [1–3]. RTMs also contribute
to adult ESRF populations where they may be under- or
mis-diagnosed, for example appearing in categories such as
“tubulo-interstitial disease” and “unknown” [4]. As recently
reviewed [5], the term “RTM” covers three main types of
kidney malformation: (1) agenesis, where the embryonic
kidney fails to initiate; (2) dysplasia, where the kidney
contains immature and metaplastic components, and may
be cystic; and (3) hypoplasia, where the kidney contains
fewer glomeruli/nephrons than normal, with oligomega-
nephronia being a hypoplasia subtype with grossly enlarged
nephrons [6]. Dysplastic kidneys sometimes spontaneously
involute, either antenatally or in the first few years after
birth [7]. This process, which is associated with marked
apoptotic death of dysplastic cells [8], can result in a tiny
“aplastic” kidney which has no excretory function and
which is below the limit of detection on ultrasound
scanning. Thus, because during routine clinical practice
one cannot directly examine a kidney, agenesis and aplasia
cannot be distinguished in an individual unless the results
of previous imaging are available that show the involution
of a (previously visible) dysplastic kidney.

Kidney malformations are often accompanied by lower
tract anomalies, an association readily understood when it is
appreciated that the kidney and ureter both arise from a
single embryonic structure, the metanephric kidney rudiment

S. Adalat :D. Bockenhauer : S. E. Ledermann
UCL Institute of Child Health and Great Ormond Street
Hospital NHS Trust,
London, UK

R. C. Hennekam
Department of Pediatrics, University of Amsterdam,
Amsterdam, The Netherlands

A. S. Woolf
University of Manchester and Manchester Children’s Hospital,
Manchester, England

A. S. Woolf (*)
Developmental and Regenerative Medicine Research Group,
University of Manchester,
Oxford Road,
Manchester M13 9PT, UK
e-mail: adrian.woolf@manchester.ac.uk

Pediatr Nephrol (2010) 25:2247–2255
DOI 10.1007/s00467-010-1578-y



[9]. Furthermore, impairment of fetal urine flow from
functional or anatomical lower tract obstruction distorts the
shape of the fetal kidney and perturbs its differentiation [10,
11]. Neither of these insights, however, explain why the
primary anomaly in the kidney or lower tract occurred in the
first place. Perhaps environmental factors outside the renal
tract can perturb its development. Indeed, animal studies
show that embryonic exposure to altered (low protein)
maternal diet, or high concentrations of vitamin A metabo-
lites or corticosteroids can variously cause renal agenesis
[12], cystic dysplasia [13], and hypoplasia [14]. However, the
relevance of these observations to human RTMs is unclear.

A second category of primary insult might be genetic.
Approximately 20 years ago, investigators provided proof-
of-principle that aberrant human kidney differentiation
could be caused by mutation of a gene normally active in
the maturing kidney. This was the discovery of the cause of
the WAGR (Wilms' tumor, aniridia, genitourinary anoma-
lies and mental retardation) syndrome where both the Wilms
tumor 1 (WT1) gene and its next-door-neighbor on
chromosome 11p13-p12, Paired box 6 (PAX6), are deleted.
Both genes code for transcription factor proteins, which
themselves control the expression of yet other genes. WT1
is expressed in metanephric cells which will form glomeruli
[15, 16], and also in the gonad, while PAX6 is expressed in
the developing eye. With hindsight, the biology of WT1 has
proved to be more relevant in understanding the biology of
human kidney tumors and normal differentiation podocyte
and testis differentiation (e.g. in the context of Denys-
Drash syndrome) [17] rather than RTMs. Indeed, WT1
mutations have yet to be reported in individuals with renal
agenesis, dysplasia, or hypoplasia.

A second breakthrough is more pertinent to our current
topic. This was the 1995 report [18] that mutations of
another transcription factor gene, called PAX2, itself

normally expressed both in developing ureters and nephrons
[16], were associated with renal hypoplasia and vesicoure-
teric reflux (VUR). Since the link between PAX2 mutations
and RTMs was made, numerous other genes have been
reported to be mutated in individuals with RTMs, often
occurring in the context of multi-organ malformation
syndromes. For details of these syndromes, the interested
reader is directed to the constantly updated Web resource
called Online Mendelian Inheritance in Man [19]. Several
RTM syndromes are summarized in tables found in
previous reviews [20, 21] and in the current paper (Table 1).
It has become apparent that Hepatocyte nuclear factor 1B
(HNF1B; also known as TCF2) is an important human
RTM gene, and accordingly it is discussed in detail, below.

A genetic RTM clinic

In 2006, two of the authors (A.S.W., a nephrologist, and
R.C.H, a clinical geneticist) initiated a joint clinic at Great
Ormond Street Hospital NHS Trust, London, UK, aiming to
provide genetic diagnoses and counseling for children in
the following categories: (1) a child with a RTM accom-
panied by syndromic features such as neuro-developmental
delay, external dysmorphology, and malformations of non-
renal tract internal organs; and/or (2) a child with RTM with
one or more siblings and/or a parent with a RTM. The clinic
was established as a clinical service rather than a research
clinic. Therefore, the physicians generally only had access
to mutation testing services at their own hospital (specifi-
cally, comparative genomic hybridization by microarray
which became available in 2008) [22] or tests available
through the UK Genetic Testing Network [23].

Between 2006 and 2009, 91 new referrals (mostly from
pediatric nephrologists and urologists) were assessed, from

Table 1 Some syndromes encountered in the Genetic RTM Clinic

Gene (syndrome) Genetic
mechanism

Type of RTM Manifestations other than RTMs

PAX2 (renal
coloboma syndrome)

Autosomal
dominant

Renal hypoplasia
(also renal dysplasia and VUR)

Visual acuity defects with optic disc coloboma
(also sensorineural hearing loss, Arnold Chiari
malformation, seizures and joint laxity)

HNF1B (Renal cysts
and diabetes syndrome)

Autosomal
dominant

Renal dysplasia, usually with cysts
(also glomerulocystic disease,
renal hypoplasia and hydonephrosis)

Diabetes mellitus, hyperuricemia and gout,
hypomagnesemia and uterus malformations
(and possibly chromophobe renal tumor)

KAL1 (X-linked
Kallmann syndrome)

X-linked recessive Renal agenesis (also renal dysplasia) Anosmia and hypogonadotrophic gonadism
(also high arched palate, pes cavus,
and synkinesia)

EYA1/SIX1 (branchio-
oto-renal syndrome)

Autosomal
dominant

No typical manifestation but can include:
renal agenesis, renal dysplasia, and
calyceal cysts/diverticula

Pre-auricular pits, branchial fistulae,
and deafness

FRAS/FREM2
(Fraser syndrome)

Autosomal
recessive

Renal agenesis Cryptophthalmos, syndactyly, abnormal genitalia,
laryngeal malformations, and anal stenosis
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68 families. These numbers exclude observations of
parents, undertaken when clinically appropriate. Twenty-
seven children could be assigned to a recognized genetic
syndrome and/or were found to have a mutation considered
to be the cause of the RTM. The clinical stories behind
several of these families are given below. Of these 27, the
most common diagnosis was RTM associated with HNF1B
mutation (nine cases, excluding three parents also found to
carry a mutation).

In the remaining 64 referrals, no specific genetic or
syndromic diagnosis could be made and these included
three families with two brothers affected by posterior
urethral valves, several families with inherited non-
syndromic primary VUR and several other index cases
with “unique” combinations of malformations of several
organ systems in which microarray analyses were normal.

RTMs with HNF1B mutations

Family 1 At fetal ultrasonography (US) screening a
Caucasian female presented with a unilateral (left) multi-
cystic dysplastic kidney (MCDK). In the first few postnatal
years, this involuted, and isotope renography indicated that
the contralateral kidney was functional and normal in shape.
This kidney failed to “hypertrophy”, a normal response in
healthy solitary functioning kidneys [21], with its length
remaining in the normal age-matched range [24]; moreover,
it was echobright on US. In the first decade, glomerular
filtration rates (GFRs) were 60–70 ml/min/1.73 m2 and
transanimases were increased to twice the upper normal limit.
Aged 11 years, she experienced weight loss and polyuria and
was found to have blood glucose of 30 mM but without
ketoacidosis. She was commenced in insulin and control of
her diabetes mellitus was considered good. One year later she
presented with gastroenteritis, severe volume depletion, and
acute renal failure, requiring several weeks of peritoneal
dialysis, with a subsequent return to her baseline GFR after
this episode of acute tubular necrosis in the solitary kidney.
She has not had more than 1+ of proteinuria on dipstick
testing. At the age of 13 she complained of abdominal pain;
this was caused by hematocolpos, itself considered to be
secondary to an imperforate hymen with overtly normal
uterine structure. She has a heterozygous mutation (c.810-
2A>C/N) in intron 3 ofHNF1B predicted to result in aberrant
splicing. Both her mother and father were found to have
normal renal US. Her mother had a normal HNF1B sequence
but the father’s DNA has not been analyzed.

Family 2 A Caucasian sister and brother from separate
pregnancies had strikingly similar presentations, each with
an antenatal (middle trimester) US diagnosis of left MCDK
with the contralateral kidney found postnatally to be of

normal shape and size but echobright. Each child had a
mildly impaired GFR. Neither had proteinuria or glycosuria
on dipstick testing. When they were 8 and 5 years old, each
was found to have mild bilateral sensorineural hearing
deficits. At this time, the sister was noted to have a plasma
magnesium of 0.61 mM (lower end of normal range being
0.66 mM) and the brother’s level was 0.55 mM. Both have
a heterozygous HNF1B mutation (c.544+3_c.544+
6delAAGT/N) at the intron 2 splice donor site. The same
mutation is carried by their father who, although he has an
overtly normal renal US in his fourth decade, has a history
of recurrent acute gout treated with allopurinol. None of
these individuals (yet) have diabetes mellitus.

Families 1 and 2, both listed in the large cohort outlined
by Adalat et al. [25], demonstrate several clinical features
associated with HNF1B mutations. The gene, located on
chromosome 17q12, codes for a transcription factor
expressed in kidney epithelia [26] where it controls the
expression of numerous other genes which themselves
encode proteins involved in cell growth, maturation, and
physiology [27]. The developmental disease is dominant
(i.e. RTMs are caused by mutations of just one of the two
alleles) and mutations, especially whole gene deletions, can
arise de novo or be inherited. In 21 children with HNF1B
mutations and RTMs, Adalat et al. [25] noted that all RTMs
had been evident on antenatal US screening, usually
presenting as enlarged kidneys. Postnatally, there was a
dramatic spectrum of anatomical severity reflected in a
wide range of GFRs (8–113 ml/min/1.73 m2). The cohort
contained 12 cases with whole gene deletions and nine
individuals with various other mutations (e.g. frame shift,
splice-site, etc.) detected on direct sequencing. There was,
however, no obvious correlation of type of mutation with
severity of RTM.As evident from this and other series [28–32],
the spectrum of RTMs associated with HNF1B mutations
include MCDK, cystic dysplastic kidneys, a polycystic
phenotype associated with glomerular cysts, as well as lower
tract anomalies such as hydronephrosis.

HNF1B mutations have been described in the “renal
cysts and diabetes” (RCAD) syndrome [28], and the index
case in Family 1 fits this description. However, it is
important to note that only a minority of children with
HNF1B mutations and RTMs have diabetes mellitus and,
furthermore, not all their RTMs contain cysts evident on US
[25]. When diabetes occurs in mutation carriers, it can
manifest as maturity onset diabetes of the young (MODY)
type 5, characterized by C-peptide being persistently
detectable and a lack of pancreas autoantibodies [33]. As
in Family 1, the diabetes typically begins in adolescence
[25, 33] and it can also appear after renal transplantation,
presumably triggered by combinations of stress, and
glucocorticoid and/or tacrolimus therapies [34, 35]. HNF1B
is normally expressed in the developing pancreas [26] and
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mutations can cause pancreas hypoplasia and exocrocine, as
well as endocrine, insufficiency [32, 36]. Offspring of
mothers with diabetes mellitus have long been recognized
to have an increased risk of various malformations,
probably including RTMs [37]. This relationship has been
interpreted as a teratogenic effect of glucose, a contention
supported by experiments showing that hyperglycemia
perturbs metanephric development [38]. However, given
that HNF1B controls both kidney and pancreas maturation,
inherited HNF1B mutations provide another explanation for
the occurrence of maternal diabetes and RTM in offspring.

Other variable features associated with HNF1B muta-
tions are hypomagnesemia [25, 32] (manifest in Family 2),
hyperuricemia and/or gout [32, 39] (manifest in Family 2)
and female genital tract structural anomalies [29, 40]
(possibly manifest in Family 1). Both siblings with HNF1B
mutations in Family 2 have mild sensorineural deafness and
perhaps this is yet another new feature of the syndrome.
Indeed, we note that the gene is implicated in the formation
of the internal ear in zebrafish [41]. There also exist reports
of chromophobe renal cancers arising in adult kidney of
HNF1B mutation carriers [e.g. 42]. Long-term follow-up of
large cohorts with HNF1B mutations are needed to determine
whether such manifestations are rare, or commoner, occur-
rences. A broader spectrum of disease may occur in
individuals with HNF1B mutations where a deletion extends
[33] to putatively disrupt adjacent genes with other functions.
Raile et al. [33] noted that such mutations could be associated
with severe developmental delay, coloboma, and cataract.

Family 3 A boy of Pakistani descent had a third trimester
diagnosis of an unspecified renal tract anomaly and
presented in the first postnatal months with fever and
vomiting when US showed small, echobright kidneys with
cortical cysts, compatible with renal cystic dysplasia.
Cystography showed bilateral VUR but there was no
anatomical bladder outflow obstruction. At age 13, he
received a cadaveric renal transplant. He has a heterozy-
gous HNF1B variant comprising a valine to leucine
missense (V25L) change in exon 1 (c.73G>T). His father
has diabetes mellitus treated with metformin and the same
genetic variant. US in the father demonstrated a normal
right kidney but a small left kidney with “scarring”. The
brother of the index case has mild chronic renal failure and
VUR but had normal HNF1B alleles.

A caveat is that not all HNF1B variants are necessarily
implicated in the pathogenesis of RTMs. This is illustrated
by Family 3 where structural renal anomalies in the index
case and his father segregated with a mis-sense change.
However, the variant allele was not present in the proband’s
brother who also had an RTM. Indeed, the leucine
substitution is predicted to have minimal or no effect on
protein function, and the same heterozygous variant was

found in 3/151 ethnically matched controls [25]. Thus one
can view the variant as incidental or perhaps as a polymor-
phism which determines the severity or type of RTM.

RTMs and PAX2 mutations

Family 4 A Caucasian female neonate with respiratory
distress was incidentally noted to have an elevated plasma
creatinine concentration (178 μM) 3 days after birth. She
was the product of a pregnancy complicated by gestational
diabetes mellitus. Antenatal US was reported as normal but
scanning soon after birth showed that both kidneys were
echobight and small, compatible with a diagnosis of
bilateral renal hypoplasia. By 3 months of age, she
appeared to have abnormal vision on the basis of lack of
eye contact and abnormal eye movements. This impression
was confirmed by finding abnormal visual evoked
responses, consistent with post-retinal dysfunction, and
the discovery of bilateral optic disc colobomas. A provi-
sional diagnosis of renal coloboma syndrome was made
and subsequently a heterozygous mutation was identified in
PAX2 comprising a duplication (c.221_226dupAGACCG)
in exon 3 leading to an insertion of two amino acids
(p.T75_G76insET). At 1 year of age, she had significant
proteinuria with urine albumin/creatinine ratio of 77mg/mmol
(upper normal limit, 9 mg/mmol). She was treated with
Enalapril, with albuminuria falling to 37 mg/mmol. At
16 months, her GFR was 61 ml/min/1.73 m2. Her brother
has normal renal US and normal fundoscopy. The father of
the index case has a “slightly anomalous optic disc” in the
left eye but has no visual impairment; his PAX2 gene and
renal tract have yet to be investigated.

The renal coloboma (also called papillorenal) syndrome
is characterized by hypoplastic kidneys and optic nerve
anomalies (OMIM). As first reported by Sanyanusin et al.
[18], it is caused by dominant mutations of PAX2, a gene
located on chromosome 10q24.3-q25.1 which is expressed
in the developing eye, ear, midbrain/hindbrain, and kidney
[16, 43]. In the metanephros, PAX2 acts as a survival factor,
protecting epithelia from premature apoptotic death [44].
Eye disease associated with PAX2 mutation can be severe,
leading to significantly compromised vision [45], as found
in the index case in Family 4. However, eye symptoms and
signs may be subtle, with essentially normal visual acuity
and minimal changes in the optic disc when assessed by
fundoscopy [6, 45–47]. Thus, it is possible that the father of
the index case in Family 4 may carry a PAX2 mutation.

The characteristic RTM in the renal coloboma syndrome
is bilateral renal hypoplasia [6, 48, 49]. Although this is
technically a histological diagnosis (i.e. finding too few
nephrons/per kidney), it is compatible with US visualiza-
tion of two normally shaped kidneys which are significantly
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shorter than the age-matched lower limit [24]. Furthermore,
a hypoplastic kidney (unlike, for example, a MCDK)
retains some function when assessed by renal isotope
scanning. On the other hand, not all cases of bilateral
hypoplasia have PAX2 mutations [6]. As with the case in
Family 4, the RTM can be accompanied by proteinuria [48]
and progressive renal failure and ESRD can occur [49].
Notably, Quinlan et al. [50] reported that a common
polymorphism of PAX2 is inversely associated with kidney
size in otherwise healthy neonates, suggesting that minor
changes in activity of this gene are one of the (probably
many) factors that determine kidney size and perhaps even
nephron number/kidney which itself shows considerable
variation in normal populations [51]. PAX2 mutations have
also been found in individuals with cystic dysplastic
kidneys [48, 52]. While VUR featured prominently in the
first family found to have a PAX2 mutation [18], VUR has
subsequently been noted in only a small proportion of
individuals with PAX2 mutations [48, 49]. While PAX2
seemed a good candidate gene to explain familial, non-
syndromic VUR, neither PAX2 mutations [53] nor associ-
ation with polymorphisms within the gene [54] have been
found in such families.

Other syndromes associated with human RTMs

Family 5 A Caucasian female child was born to a mother
whose previous pregnancy was terminated at 4 months
gestation, following US detection of oligohydramnios with
an autopsy showing bilateral renal agenesis. In the
pregnancy leading to the current birth, the fetus was noted
to have a solitary, pelvic kidney, and this was confirmed by
scans postnatally. The child also had a laryngeal web with
subglottic stenosis, bilateral upper eyelid colobomas, in-
creased distance between the medial canthi of the eyes
(telecanthus) which were in part fused to the conjunctivae, an
anteriorly displaced anus and soft-tissue fusion (syndactyly)
in hands and feet. In addition, the vagina was absent
although the uterus itself was overtly normal. At 5 months
of age, her estimated GFR was 50 ml/min/1.73 m2 and, at
2 years, plasma creatinine was 46 µM. The clinical
diagnosis for her and her brother was Fraser syndrome.
Genetic testing has not yet been performed.

Fraser syndrome is a rare, autosomal recessive disease
characterized by cryptophthalmos (and lesser eye anomalies),
cutaneous syndactyly, and malformations of renal and
respiratory tracts. The commonest RTM is renal agenesis,
which is usually bilateral [55, 56], as found in the terminated
fetus, above. Rare survivors usually have unilateral renal
agenesis, as did the girl in Family 5. FRAS1 and FREM2 are
two recently discovered genes, mutations of which are
known to cause the syndrome [57, 58]. They encode

membrane-associated proteins coating the basal surface of
metanephric epithelia and are required to maintain the
integrity of the initiation embryonic kidney [59]. They are
also expressed at the interface of the embryonic dermis and
epidermis, with mutations giving rise to hemorrhagic blisters
which heal incompletely, resulting in webs between the
digits and the anomalies in front of the eye. Very recently,
mutations in FREM1, another member of the FRAS gene
family, have been reported to occur in RTMs with minor,
extra-renal syndromic features [60].

Other disorders seen at the Genetic RTM Clinic were the
branchio-oto-renal [61] and the X-linked Kallmann [62]
syndromes, both of which are summarized in Table 1. Also
noted were two unrelated index cases with complex, multi-
organ malformation syndromes. One girl with bilateral RTMs
and pre- and post-natal growth retardation was found to have a
translocation between chromosomes 10/19 with breakpoints
at 10p14 and 9q13.42. The other child is now described.

Family 6 A Caucasian male had a history of intrauterine
growth retardation and poor postnatal growth. He under-
went surgery for pyloric stenosis at 4 weeks of age, and
required surgery for intestinal intussusception when 1 year
old. Other features were: micocephaly, blepharophimosis,
absence of eyelashes on lower lids, narrow face, narrow
nasal bridge, thin lips, short philtrum, posteriorly rotated
and protruding ears, aplasia cutis (absence of a portion of
skin) in the occipital area with fine hair elsewhere on the
head, thin lips, tongue-tie, crowded teeth, speech delay, a
narrow thorax with extra nipple, small nails, clinodactyly of
the fifth finger, bilateral pes cavus, and dry skin. In the first
years of life he suffered recurrent chest infections and
wheezing. Although prenatal US had not reported a RTM,
postnatal imaging revealed bilateral short, echogenic
kidneys with the left side contributing 87% function.
Between 7 and 11 years of age, his plasma creatinine
concentration increased from 106 to 336 µM, and urinary
albumin/creatinine ratio increased from 46 to 149 mg/mmol.
Microarray analysis demonstrated abnormal male karyotype
with a cryptic deletion of chromosome 19 with breakpoints
at 19q12 and 19q13.12. (i.e. 46 X,Y.ish del (19)
(q12q13.12)). The boy’s mother was found to have a normal
microarray result but the father has not yet been tested.

Several of the dysmorphic features of the index case in
Family 6 resemble those in two previous reports [63, 64] of
four individuals with deletions at a similar locus. Transient
perinatal hydronephrosis was noted in the affected del(19)
(q12q13.1) individual reported by Kulharya et al. [63]
whereas renal features were not specifically mentioned in
the three individuals described by Malan et al. [64].
Deletions of which genes in the critical regions are
responsible for the renal, and other, manifestations remain
to be elucidated.
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Conclusions and future directions

Our impressions were that families appreciated having
specific genetic diagnoses made even if these have yet not
led to specific treatments for the RTMs themselves. Such
diagnoses provided families with often long-sought answers
to the question “why was our child born with kidney
disease”. After finding a mutation of HNF1B, one can
inform carriers of the increased risk of diabetes and they
can attempt to avoid exacerbating factors such as obesity. In
addition, such patients can be screened for hypomagnese-
mia to detect, and treat, this deficiency before they become
symptomatic. Precise genetic diagnoses will also help to
define cohorts of children with RTMs for long-term clinical
outcome studies. As examples: (1) do children with
unilateral MCDKs and solitary functioning kidney associ-
ated with HNF1B mutations have a better, or worse, renal
prognosis versus unilateral MCDK without such a muta-
tion?; and (2) do children with renal hypoplasia and PAX2
mutations have a different risk of proteinuria and progres-
sion to ESRF versus those with renal hypoplasia but
lacking PAX2 mutations? Parents also appreciated the
opportunity to discuss in detail the possible pathogenesis
of RTMs even if no definitive genetic diagnosis could yet
be made in their own family. An example is the kindred
described by Kerecuk et al. [65] with autosomal dominant
inheritance of non-syndromic renal hypoplasia and dyspla-
sia but no mutations found in HNF1B or PAX2.

A technical limitation of such a (non-research) clinic is
that few genetic tests relevant to the diagnosing RTMs are
as yet available on the UK Genetic Testing Network [23].
On the other hand, the network did provide access for
testing for HNF1B mutations, and this proved to be an
invaluable resource. In the longer term, one could envisage
that all children with RTMs may be tested for mutations in
a range of “nephrogenesis genes”. One research study that
has begun to take this approach was described by Weber et
al. [31] of 99 unrelated individuals with overtly non-
syndromal renal dysplasia/hypoplasia. By systematically
seeking mutations in five genes (HNF1B, PAX2, EYA1,
SIX1 and SALL1), mutations were found in 17% of this
cohort. Based on other research studies, however, it is
already known that human RTMs can be associated with
mutations of yet other genes such as BMP4, RET, ROBO2,
SIX2, and UPK3 [66–69] and, in the longer term, one
would wish to test for mutations in perhaps several tens of
candidate genes in the context of a specialized clinic.

Another aspect of genetic testing in children with RTMs
involves counseling with regard to future offspring. In
inherited autosomal dominant conditions like renal cysts
and diabetes and renal coloboma syndromes there can be
variability in the renal tract manifestations between gen-
erations. Perhaps polymorphisms or mutations of other

genes must co-exist to generate a severe RTM, with proof
of principle provided by Weber et al. [31] who found
variants of both PAX2 and SIX1 in such individuals. Similar
considerations apply to deciding whether to screen for
RTMs (and then test for mutations) in siblings and/or
parents of index cases. In Family 2, where the father of two
children with MCDKs shared their HNF1B mutation yet
had a normal renal US, his genetic disease manifested as
gout. For these reasons, we suggest that such screening
should be undertaken with nephrologists (ideally both
pediatric and adult) and clinical geneticists working closely
together.
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Multiple choice questions

(Answers appear following the reference list)

(one correct answer indicated for each question)

Question 1.

A. Renal tract malformations (RTMs) account for nearly
all children with end-stage renal failure (ESRF).

B. RTMs are found in about 40% of children with ESRF.
C. There is only one histological type of kidney

malformation.
D. Lower renal tract anomalies rarely occur in the same

individual who has a kidney malformation.

Question 2.

A. Individuals with HNF1B mutations always have both
renal cysts and diabetes mellitus.

B. Individuals with HNF1B mutations can present with
diabetes mellitus after renal transplantation

C. HNF1B mutations never occur de novo.
D. HNF1B mutations always lead to renal failure in the

first decade of life.

Question 3.

A. Eye disease associated with PAX2 mutations may be
minimal despite the presence of a RTM.
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B. The most common renal manifestation of PAX2
mutation is vesicoureteric reflux.

C. PAX2 mutations are not associated with proteinuria.
D. Most children with renal hypoplasia have PAX2

mutations.

Question 4.

A. Making a genetic diagnosis in a child with a RTM has
no relevance to the wider family.

B. Genetic diagnosis in children with RTMs ideally
requires close liaison between the Nephrology and
Clinical Genetics teams.

C. The genetic basis for non-syndromic VUR is well-
established.

D. The mature human kidney arises from a embryonic
structure called the mesonephros.

Question 5.

A. Solitary functioning kidneys never lead to renal
impairment.

B. The severity of RTM in members of the same family
with inherited PAX2 or HNF1B mutations does not
vary.

C. Renal hypoplasia and renal dysplasia mean the same
thing.

D. Pediatric Nephrologists should examine children with
RTMs for extra-renal manifestations.

Question 6.

A. In Fraser syndrome, the characteristic RTM is a
multicystic dysplastic kidney.

B. Fraser syndrome usually does not short life-span.
C. Microarray analysis may find genetic lesions in

children with RTMs accompanied by syndromal
features such as developmental delay, dysmorphology
and multi-organ involvement.

D. Branchio-oto-renal syndrome is autosomal recessive.
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