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A B S T R A C T   

Symptoms-based models for predicting SARS-CoV-2 infection may improve clinical decision-making and be an 
alternative to resource allocation in under-resourced settings. In this study we aimed to test a model based on 
symptoms to predict a positive test result for SARS-CoV-2 infection during the COVID-19 pandemic using logistic 
regression and a machine-learning approach, in Bogotá, Colombia. Participants from the CoVIDA project were 
included. A logistic regression using the model was chosen based on biological plausibility and the Akaike In-
formation criterion. Also, we performed an analysis using machine learning with random forest, support vector 
machine, and extreme gradient boosting. The study included 58,577 participants with a positivity rate of 5.7%. 
The logistic regression showed that anosmia (aOR = 7.76, 95% CI [6.19, 9.73]), fever (aOR = 4.29, 95% CI 
[3.07, 6.02]), headache (aOR = 3.29, 95% CI [1.78, 6.07]), dry cough (aOR = 2.96, 95% CI [2.44, 3.58]), and 
fatigue (aOR = 1.93, 95% CI [1.57, 2.93]) were independently associated with SARS-CoV-2 infection. Our final 
model had an area under the curve of 0.73. The symptoms-based model correctly identified over 85% of par-
ticipants. This model can be used to prioritize resource allocation related to COVID-19 diagnosis, to decide on 
early isolation, and contact-tracing strategies in individuals with a high probability of infection before receiving a 
confirmatory test result. This strategy has public health and clinical decision-making significance in low- and 
middle-income settings like Latin America.   

1. Introduction 

The SARS-CoV-2 pandemic has been one of the most significant 
public health challenges in modern history. By April 2022, more than 
500 million cases have been reported, with over 6 million deaths glob-
ally (Johns Hopkins University, 2022). The COVID-19 pandemic has 
posed a significant challenge in terms of the readiness of healthcare 
systems to mobilize resources for infection diagnosis, contact tracing, 

and supporting adequate infrastructure for treatment. Particularly for 
diagnosis, since the pandemic’s start, low- and middle-income countries 
reported inequities and delays in access to testing, time-to-test consul-
tation, and test results turnaround (Lau et al., 2020). Evidence shows 
that in high-income countries, test turnaround times can be <3 days, 
(McGarry et al., 2021; National Health Services, 2021) in contrast to 
middle-low- and low-income countries, where test turnaround times can 
be between 8 and 10 days, depending on socioeconomic status (Laajaj 
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et al., 2021). Even more, a modeling study suggests that delays of over 3 
days from symptom onset to test result turnaround significantly decrease 
the effectiveness of nonpharmacological strategies such as contact 
tracing (Kretzschmar et al., 2020). 

Given these limitations in testing, other methods for rapid di-
agnostics have been used. Tools such as imaging have been conducted as 
an alternative to clinical testing for COVID-19 diagnosis and disease 
severity. These analyses have included both chest X-ray (CXR) and 
computed tomography (CT) images combining various methods, 
including machine leaning (ML) neural networks, among others (Chen 
et al., 2021; Li et al., 2020a; Singh et al., 2021; Wang et al., 2022). 
However, most interventions related to diagnostic imaging require some 
level of face-to-face medical care, implying an additional challenge to 
healthcare systems in low-to-middle income countries with accessibility 
issues such as Colombia and most of Latin America. 

Therefore, clinical guidelines have provided common symptoms that 
are suggestive of the infection. However, given the low predictive ca-
pacity of these symptoms if presented alone, it may lead to isolating 
people with a very low probability of infection, or no isolation at all. Due 
to this, recent literature suggests to use symptoms clusters to improve 
detection of COVID-19. This strategy is particularly helpful for clinical 
decision-making and testing in primary healthcare settings, with scarce 
diagnostic resources, in particular during pandemic peaks with high 
community transmission when mass unlimited testing is not possible (Li 
et al., 2020b; Long et al., 2020; Mercer and Salit, 2021). Also, in the case 
of telemedicine, this can amplify healthcare access without greater 
infrastructure and overcome difficulties in patient care (Hincapié et al., 
2020; Monkowski et al., 2019). 

Some studies have approached COVID-19 diagnosis using symptoms- 
based models. To our knowledge, two studies have been conducted in 
Latin America regarding SARS-CoV-2 infection prediction. The first 
study used a database from a symptoms-tracking app in Brazil with 
serological testing for SARS-CoV-2. Symptoms such as loss of smell/ 
anosmia and shortness of breath were independently associated with 
SARS-CoV-2 infection with a negative predictive value (NPV) of 93% 
(Dantas et al., 2021). The second study was also conducted in Brazil, 
assessing national seroprevalence and its association with reported 
symptoms such as anosmia, fever, and body ache through a conditional 
inference tree analysis. In this study, those participants that did not 
report these symptoms had a positivity rate of 0.8%, compared to 18.3% 
of those with loss of smell and fever (Menezes et al., 2021). 

In settings with low testing capacity, such as Colombia and Latin 
America, as shown before, where there is low adherence to non- 
pharmacological interventions such as isolation because of socioeco-
nomic reasons, a model for predicting SARS-CoV-2 infection may be an 
alternative to resource allocation, including diagnostic testing capacities 
and prioritization in healthcare and contact tracing. The CoVIDA project 
was an intensified epidemiological surveillance study for SARS-CoV-2 
performed in Bogotá, the most populated city in Colombia (with 7 
million inhabitants). Over 55,000 RT-PCR tests were performed to in-
crease the city’s testing capacity during the first two pandemic waves. 
RT-PCR tests conducted by the CoVIDA project allowed the local health 
authorities to identify positive cases in individuals with mild symptoms 
that may have been missed by traditional epidemiological surveillance 
that focuses mainly on people with moderate to severe COVID-19 
(Varela et al., 2021). Therefore, in this study, we aimed to test a pre-
diction model based on symptoms to predict a positive RT-PCR test 
result for SARS-CoV-2 infection among high mobility working adult 
participants of the CoVIDA project during the 1st year of the COVID-19 
pandemic in Bogotá, Colombia. 

2. Materials and methods 

2.1. Study design and population 

This study used the data from the CoVIDA project, a large sentinel 

epidemiological surveillance study conducted in Bogotá, Colombia, 
from April 2020 to March 2021. This project was created to detect 
transmission patterns among high mobility asymptomatic or mild 
symptomatic populations due to their occupation (healthcare workers, 
public transportation workers, employees in public markets, grocery 
stores, food delivery, construction, cleaning and other home services, 
education, informal workers, police, military forces, firefighters, and 
other essential services). Further description of the CoVIDA project 
sampling and testing allocation methods can be found elsewhere (Varela 
et al., 2021). After participants accepted the informed consent via a 
telephone call, they completed a questionnaire about sociodemographic 
characteristics, including sex, age, socioeconomic strata, contact with a 
confirmed case of COVID-19, comorbidities, and self-reported symptoms 
related to SARS-CoV-2 infection (sore throat, dry cough, fatigue, 
anosmia, diarrhea, fever, dyspnea, confusion, headache, myalgias, 
dysgeusia, chills, vomiting/nausea, rhinorrhea) (Instituto Nacional de 
Salud, 2020; Ministerio de Salud y Protección Social de Colombia, 
2020). In the case of a positive test, the CoVIDA contact center informed 
the participants of the results and provided with recommendations. 
Positive test results were provided to the Colombian health authorities 
according to national guidelines. 

This study was approved by the ethics committee of Universidad de 
los Andes (Act No. 1278 of 2020). Informed consent was obtained via 
telephone call, in order to comply with physical distancing. 

2.2. Specimen collection and testing 

The CoVIDA testing centers performed the RT-PCR test for SARS- 
CoV-2 infection following two testing models: (a) home visit, for mild- 
symptomatic participants, and (b) for asymptomatic patients, drive/ 
walk-through testing. Participants underwent laboratory testing for 
SARS-CoV-2 using RT-PCR tests with nasopharyngeal swab sampling. 
The samples were processed by the GenCore Sequencing Center of the 
Universidad de los Andes following the international Berlin protocol and 
using the U-TOP™ COVID-19 detection kit for one-step real-time RT- 
PCR (Corman et al., 2020). 

2.3. Statistical analysis 

We reported descriptive results of the complete database using ab-
solute and relative frequencies and central tendency measurements ac-
cording to the distribution of the continuous variables. We compared the 
distribution of categorical sociodemographic characteristics and symp-
toms by the test result (positive or negative) using the Chi-square test or 
the Fisher exact test (in variables with reporting frequencies <5) for 
bivariate analysis. For continuous variables, we used the U-Mann 
Whitney test. A p value of 0.05 or lower was considered statistically 
significant. 

2.4. Variable selection for prediction models 

The selection of variables for our prediction model used in the lo-
gistic regression is presented in Fig. 1A. As we included many symptoms 
and biological features in the questionnaire, we aimed to choose the best 
model with the combination of variables that offered the best diagnostic 
accuracy using variables selection. First, the choice of variables was 
based on biological plausibility regarding symptoms used to predict 
SARS-CoV-2 infection according to the literature. Second, we included 
all possible interactions between variables (Sauerbrei and Royston, 
2011) using the fractional multinomial polynomials method for the 
complete database. Variables selected for the final models were based on 
the leaps-and-bounds algorithm which allowed us to reach the best 
combination of variables as predictors for the model using the best 
Akaike information criterion to reduce false-positive rates (Lindsey and 
Sheather, 2015). We calculated the logistic regression’s odds ratios 
(ORs) and 95% confidence intervals (95% CI). 
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Given the low prevalence of the event (an overall positivity rate of 
5.7% observed in the CoVIDA project), (Varela et al., 2021) resampling 
and oversampling procedures were performed to approach to the data 
imbalance. We perfomed an independent sensitivity analysis using the 
following datasets: (a) the complete database; (b) an undersampling 
dataset resulting from a random resampling using a 4:1 ratio of partic-
ipants with negative and positive RT-PCR results, respectively; (c) an 
oversampling dataset obtained by the ROSE method; and d) an over-
sampling dataset obtained by SMOTE. We performed a holdout valida-
tion of the model obteined by randomly splitting all datasets into 
training and testing datasets in a 70:30 ratio (see Fig. 1B). Analyses were 
performed in all datasets. Complete definition of sample balancing 
techniques can be found in Supplementary Note 1. 

2.5. Machine learning analysis 

Sensitivity analysis to assess the diagnostic performance of the pre-
diction model was conducted using multiple ML methods: random forest 
(RF), support vector machine (SVM), and Extreme gradient boosting (XG 
boost). An RF model was performed using a classification approach, 
using GINI reduction based on Breiman’s random forest algorithm. The 
SVM method followed a based Kernel linear approach. The XG boosting 
model was trained in the training set with the hyperparameter settings 
described in Supplementary Note 2. Each ML approach included vari-
ables to the prediction model in order of importance. We assessed 
graphically the importance of each variable included in ML models. 

We assessed the performance of the obtained models with all datasets 
using the following parameters: area under the curve (AUC), sensitivity 
(SE), specificity (SP), positive predictive value (PPV), negative predic-
tive value (NPV), and total accuracy (participants correctly classified). 
We conducted analyses using Stata 16.0 and R version 4.0.5. 

3. Results 

Data used in this study comes from the CoVIDA project, an intensi-
fied epidemiological surveillance study that performed 58,577 RT-PCR 
tests for SARS-CoV-2 from April 2020 to March 2021. A positivity rate 
(response variable) of 5.7% was observed in the CoVIDA sample (Varela 
et al., 2021). 

3.1. Demographic characteristics among participants 

Table 1 shows sociodemographic characteristics and symptoms 
related to SARS-CoV-2 infection. The median age of the sample was 36 
years (IQR = 28–48). Participants with a positive test result showed a 
median age of 35 years (IQR = 27–47), while those with a negative test 
result showed a median of 36 years (IQR = 28–49). Positive RT-PCR for 
SARS-CoV-2 was more frequent in 30- to 59-year-olds, with 56.5%. 
Regarding the sex of participants, 50.8% were female. The 18.4% of the 
participants reported contact with a COVID-19 confirmed case. The 
cumulative positivity rate for those with contact with a confirmed case 
was 7.4%, compared to the 5.3% of participants who did not report 
contact. The most frequent comorbidities were arterial hypertension and 
smoking, with 7.4% and 5.1%, respectively (see Table 1). 

Asymptomatic participants accounted for 87.5% of the sample. Of 
these asymptomatic people, 3.6% had a positive RT-PCR result. Among 
the symptomatic participants, 20.2% had a positive test result. The most 
frequently reported symptoms among the entire cohort were sore throat 
(7.2%), dry cough (5.8%), fatigue (4.6%), diarrhea (3.2%), and anosmia 
(3.1%). In participants with a positive test result, the most frequent 
symptoms reported were dysgeusia (81.3%), anosmia (41.6%), fever 
(37.9%), dyspnea (27.8%), dry cough (26.2%), and fatigue (26.1%; see 
Table 1). 

Fig. 1. Modeling framework for the analysis of symptoms association and SARS-CoV-2 prediction. a) Variable’s selection for the final logistic regression model; b) 
Sampling procedure and hold out validation for logistic regression model and the ML approach. 
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3.2. Model training 

Given the low prevalence of the event (an overall positivity rate of 
5.7% observed in the CoVIDA project),(Varela et al., 2021) resampling 
and oversampling were performed to address the data imbalance. The 
multivariable fractional polynomial algorithm with the complete data-
base suggested an interaction between dry cough and anosmia. How-
ever, this interaction variable was not included in the final model by the 
leaps and bounds algorithm. The variables that were recommended by 
the algorithm for the logistic regression model were age, socioeconomic 
strata, contact with confirmed COVID-19 case, arterial hypertension, 
and symptoms related to SARS-CoV-2 (fever, anosmia, dry cough, fa-
tigue, and headache), as shown in the equation below: 

Probability of a positive RT PCR test =
eprediction

1 + eprediction, where  

prediction = − 2.83+(0.004 × age)+ (1.15

× socioeconomic strata 1)+ (0.99

× socioeconomic strata 2)+ (0.82

× socioeconomic strata 3)+ (0.20

× socioeconomic strata 4)+ (0.24

× socioeconomic strata 5)+ (0.25

× Contact with a confirmed case) − (0.23

× arterial hypertension)+ (1.45 × fever)+ (2.05

× anosmia)+ (1.08 × dry cough)+ (0.66 × fatigue)+ (1.19

× headache)

Table 2 presents the unadjusted and adjusted odds ratios obtained in 
the logistic regression. The contact with a confirmed COVID-19 case was 
associated with higher odds of SARS-CoV-2 infection. Regarding symp-
toms, anosmia showed the highest odds (aOR = 7.76, 95% CI [6.19, 
9.73]) of having a positive test compared to a participant who did not 
report it. Fever had an aOR of 4.29 (CI 95% 3.07–6.02), headache an 
aOR of 3.29 (CI 95% 1.78–6.07), dry cough an aOR of 2.96 (CI 95% 
2.44–3.58), and fatigue an aOR of 1.93 (CI 95% 1.57–2.93). Fig. 2A 
presents the adjusted ORs obtained in the logistic regression model in a 
forest plot. A diagnostic performance assessment of the model was 
conducted in the testing daset of the undersampling database. AUC was 
0.73, with an SE of 26%, SP of 98%, PPV of 73%, and NPV of 86%. With 
the logistic regression model, 85% of participants were correctly clas-
sified. Fig. 2B shows the logistic regression model’s AUC. The variables 
included in each model and the logistic regression estimates for the 
complete database, ROSE dataset, and SMOTE dataset are presented in 
Supplementary Tables 1-3. 

Comparison of the diagnostic performance of logistic regression and 
ML methods is shown in Table 3. Similar AUCs were obtained using the 
complete database, the SMOTE dataset and the undersampling dataset. 
The ROSE dataset had higher AUC, SE, and PPV but lower SP and pro-
portion of correctly classified individuals. Similar SP and PPV values 
were obtained using all datasets. Variable importance for each dataset 
using the ML approach is presented in Supplementary Figs. 1 through 4. 
Anosmia was considered the primary classification variable when using 
the complete and undersampling datasets. 

4. Discussion 

The main finding in this study is the high prediction capacity of this 
symptoms-based model. Our model correctly classified 8 out of 10 
participants with SARS-CoV-2 with an AUC of 0.73. We found that an 
individual with anosmia alone, has over seven times the risk of having a 

Table 1 
Sociodemographic characteristics and symptoms related to SARS-CoV-2 infec-
tion (N = 58,556).  

Variable Total 
N =
58,556 

Positive 
n = 3,325 

Negative 
n = 55,231 

p-value 

Age (years) median (IQR) 36 
(28–48) 

35 
(27–47) 

36 (28–49) <

⋅001*  

Age (years) (n, %)    ⋅001* 
<18 235 (0⋅4) 30 (0⋅90) 205 (0⋅4)  
18–29 17,718 

(30⋅3) 
1,096 
(32⋅9) 

16,622 
(30⋅1)  

30–59 35,119 
(59⋅9) 

1,880 
(56⋅5) 

33,239 
(60⋅2)  

>60 5,484 
(9⋅4) 

319 (9⋅6) 5,165 
(9⋅4)   

Sex (n, %)    ⋅183 
Female 29,736 

(50⋅8) 
1,652 
(5⋅6) 

28,084 
(94⋅4)  

Male 28,794 
(49⋅2) 

1,673 
(5⋅8) 

27,121 
(94⋅2)   

Contact with a COVID-19 
confirmed case (n, %)    

<

⋅001* 
Yes 10,758 

(18⋅4) 
796 (7⋅4) 9,962 

(92⋅6)  
No 47,798 

(81⋅6) 
2,529 
(5⋅3) 

45,269 
(94⋅7)   

Comorbidities (n, %)     
Arterial hypertension 4,352 

(7⋅4) 
228 (5⋅2) 4,124 

(94⋅8) 
⋅193 

Smoking 2,969 
(5⋅1) 

133 (4⋅5) 2,836 
(95⋅5) 

⋅004* 

Obesity 2,551 
(4⋅4) 

139 (5⋅5) 2,412 
(94⋅6) 

⋅609 

Asthma 2,311 
(3⋅9) 

104 (4⋅5) 2,207 
(95⋅5) 

⋅007* 

Diabetes mellitus 1,379 
(2⋅4) 

71 (5⋅2) 1,308 
(94⋅9) 

⋅478 

Chronic obstructive lung 
disease 

295 (0⋅5) 19 (6⋅4) 276 (93⋅6) ⋅652  

Symptoms related to SARS- 
CoV-2 (n, %)     

Asymptomatic 51,254 
(87⋅5) 

1,852 
(3⋅6) 

49,402 
(96⋅4) 

<

⋅001* 
Symptomatic 7,302 

(12⋅5) 
1,473 
(20⋅2) 

5,829 
(79⋅8) 

<

⋅001* 
Sore throat 4,230 

(7⋅2) 
790 
(18⋅7) 

3,440 
(81⋅3) 

<

⋅001* 
Dry cough 3,407 

(5⋅8) 
893 
(26⋅2) 

2,514 
(73⋅8) 

<

⋅001* 
Fatigue 2,713 

(4⋅6) 
707 
(26⋅1) 

2,006 
(73⋅9) 

<

⋅001* 
Anosmia 1,802 

(3⋅1) 
749 
(41⋅6) 

1,053 
(58⋅4) 

<

⋅001* 
Diarrhea 1,871 

(3⋅2) 
413 
(22⋅1) 

1,458 
(77⋅9) 

<

⋅001* 
Fever 1,169 

(2⋅0) 
444 
(37⋅9) 

725 (62⋅0) <

⋅001* 
Dyspnea 1,376 

(2⋅6) 
383 
(27⋅8) 

993 (72⋅2) <

⋅001* 
Confusion 413 (0⋅7) 119 

(28⋅8) 
294 (71⋅2) <

⋅001* 
Headache 254 (0⋅4) 50 (19⋅7) 204 (80⋅3) <

⋅001* 
Myalgias 68 (0⋅1) 15 (22⋅1) 53 (77⋅9) <

⋅001* 
Dysgeusia 16 (0⋅03) 13 (81⋅3) 3 (18⋅8) <

⋅001*†
Chills 25 (0⋅04) 2 (8⋅0) 23 (92⋅0) ⋅616†
Vomiting/nausea 25 (0⋅04) 3 (12⋅0) 22 (88⋅0) ⋅172†
Rhinorrhea 13 (0⋅02) 0 (0) 13 (100⋅0) ⋅376†

*p value <⋅05. 
†Fisher exact test. 
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positive RT-PCR test for SARS-CoV-2 relative to those without this 
symptom. Fever, headache, fatigue, and dry cough were also important 
symptoms in predicting SARS-CoV-2 infection. Combining classical 
statistical methods such as logistic regression and more modern ones 
such as machine learning with RF, SVM, and XG boosting, aided both in 
robustness and interpretation for the results. A model that uses symp-
toms to predict SARS-CoV-2 infection may aid clinical decision-making 
with high SP to aid the application of non-pharmacological in-
terventions such as selective lockdowns, isolation, contact tracing, and 
testing. This strategy can serve as a valuable tool in limited-resource 
settings with scarce testing availability to allow early and precise de-
cisions to improve epidemiological surveillance during the COVID-19 
pandemic. 

Anosmia has been reported as a common symptom in COVID-19 
patients (Lechien et al., 2020; Saniasiaya et al., 2021). This symptom 
has been the main feature addressed by several prediction models 
(Callejon-Leblic et al., 2021; Lechien et al., 2020; Saniasiaya et al., 
2021). While most studies have used a binary categorization for 
anosmia, some studies used a visual analog scale (VAS) assessment of 
symptoms resulting in better diagnostic performance (Callejon-Leblic 
et al., 2021; Gerkin et al., 2021). Anosmia has also been used to predict 
local healthcare stress and to develop public health policies to prevent 
strain in healthcare systems (Pierron et al., 2020). 

Despite the potential of anosmia alone in predicting a positive SARS- 
CoV-2 test result, we found that a combination of symptoms (anosmia, 
fever, headache, dry cough, and fatigue) and clinical features provided 
the best accuracy. The study conducted by Menezes et al. used condi-
tional inference tree analyses to identify which combinations of symp-
toms were most likely to predict positive test results. Changes in smell or 
taste, fever, and body aches had the best diagnostic performance 
(Menezes et al., 2021). Other symptoms such as cough, fever, fatigue, 
malaise or body aches, sore throat, and headache have also been 
included in various models. In a systematic review evaluated the diag-
nostic accuracy of over 80 signs and symptoms related to SARS-CoV-2 
infection, anosmia alone, ageusia alone, and anosmia and ageusia 
combined had the best results, including sensitivities below 50% but 
specificities over 90%. Various combinations of symptoms assessed in 
this review, primarily including fever and cough with other symptoms, 
had an SP above 80% but at the cost of very low SE (<30%) (Struyf et al., 
2020). 

While our model had an AUC of 0.73, with an SP of 98% and PPV of 
73%, the diagnostic performance of the models reported in the literature 

Table 2 
Logistic regression with undersampling dataset (n = 14,475).  

Variable Unadjusted OR 95% CI p-value Adjusted OR 95% CI p-value 

Age 0⋅99 [0⋅99, 1⋅00] ⋅108 1⋅00 [0⋅99, 1⋅01] ⋅052  

Socioeconomic strata       
Low-low 3⋅71 [2⋅42, 5⋅70] < ⋅001* 3⋅16 [1⋅98, 5⋅02] < ⋅001 
Low 3⋅13 [2⋅16, 4⋅52] < ⋅001* 2⋅70 [1⋅82, 5⋅02] < ⋅001 
Middle-low 2⋅74 [1⋅91, 3⋅95] < ⋅001* 2⋅27 [1⋅81, 4⋅01] < ⋅001 
Middle 1⋅37 [0⋅93, 2⋅02] ⋅103 1⋅22 [0⋅81, 1⋅84] ⋅337 
Middle-high 1⋅30 [0⋅84, 2⋅02] ⋅231 1⋅27 [0⋅79, 2⋅01] ⋅332  

Contact with confirmed COVID-19 1⋅62 [1⋅45, 1⋅82] < ⋅001* 1⋅27 [1⋅12, 1⋅46] < ⋅001*  

Arterial hypertension 0⋅78 [0⋅64, 0⋅96] ⋅020* 0⋅79 [1⋅12, 1⋅46] ⋅058  

Symptoms related to SARS-CoV-2       
Fever 15⋅75 [11⋅81, 21⋅01] < ⋅001* 4⋅29 [3⋅07, 6⋅02] < ⋅001* 
Anosmia 17⋅19 [13⋅97, 20⋅91] < ⋅001* 7⋅76 [6⋅19, 9⋅73] < ⋅001* 
Dry cough 8⋅02 [6⋅90, 9⋅33] < ⋅001* 2⋅96 [2⋅44, 3⋅58] < ⋅001* 
Fatigue 7⋅09 [6⋅03, 8⋅33] < ⋅001* 1⋅93 [1⋅57, 2⋅93] < ⋅001* 
Headache 4⋅85 [2⋅80, 8⋅37] < ⋅001* 3⋅29 [1⋅78, 6⋅07] < ⋅001* 

*p value < 0⋅05. 

Fig. 2. Logistic regression model obtained under BIC criterion. a) Forest plot 
for association between sociodemographic characteristics, COVID-19 related 
symptoms and SARS-CoV-2 positive RT-PCR test; b) ROC curve for prediction of 
SARS-CoV-2 positive RT-PCR test result. 
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has varied highly. Other studies reported highly accurate models, 
including only symptoms-related variables with the high AUC (Callejon- 
Leblic et al., 2021; Roland et al., 2020). Other models that have included 
symptoms such as fatigue, cough, fever, and respiratory and gastroin-
testinal symptoms have had slightly lower accuracy (La Torre et al., 
2020; Lan et al., 2020; Menni et al., 2020; Tudrej et al., 2020). 

Diagnostic imaging has also been used for COVID-19 prediction 
diagnosis. Deep learning models using X-rays (XR) and computed to-
mography (CT) radiomics have shown accuracy with AUC ranging from 
0.87 (Wang et al., 2021) to 0.99 (Chen et al., 2021; Li et al., 2020a; Singh 
et al., 2022; 2021). Other models, using radiomics and clinical infor-
mation to predict severity of the disease, had higher AUC (0.897 
compared to 0.847 of radiomics and 0.767 clinical variables alone) 
(Purkayastha et al., 2021). However, accessibility to XR or CT is prob-
lematic in low resourced settings. Countries like Colombia, have highly 
dispersed rural areas where primary care does not include clinical or 
imaging testing for SARS-CoV-2. In highly populated cities such as 
Bogotá, healthcare infrastructure remains insufficient, especially for 
management of mild cases that do not require fixed medical attention 
but may overwhelm healthcare facilities for more severe cases. 

Classical epidemiological methods may be limited for assessing 
prediction models for larger populations, especially when the low 
prevalence of the outcome causes an imbalance in the response variable. 
ML methods have been applied in population-based systems to com-
plement classical statistical methods given their capabilities of pro-
cessing large datasets, detecting patterns, and analyzing trends to 
provide important information to public health (Zeng et al., 2021). 
Recent literature has demonstrated the use of ML in research during the 
COVID-19 pandemic; specifically, on its advantages in diagnostics in 
middle-low- and low-income countries (Li et al., 2020c; Naseem et al., 
2020). In fact, ML methods applied in this paper are highly used in 
tabular data, including XG boosting with promising results in diagnostic 
medicine and clinical data on COVID-19 (Li et al., 2020c). We also 
included two traditional ML methods such as random forest and SVM 
that have previously shown appropriate diagnostic performance when 
assessing severity in the COVID-19 pandemic (Alotaibi et al., 2021; 
Kumar et al., 2021) and in other medical contexts such as genomics 
(Ogutu et al., 2011). Nevertheless, methods such as logistic regression 
provide interpretation input to assess risk in a more intuitive way for 
clinicians and decision makers than ML methods. Hence, both methods 
can complement prediction in public health-related events such as 
COVID-19. 

Other studies have approached COVID-19 with similar ML methods, 
including resampling strategies to address the imbalance in the response 
variables such as was our case. In the specific case of Dantas et al., a 
large sample and low outcome prevalence (positivity rate of 11.8%) led 
them to evaluate several methods to get to a better prediction model. In 

their case, they used the up-sampling balancing strategy (Dantas et al., 
2021). Other sudies have used ML methods for prediction diagnosis. The 
model proposed by Zoabi et al. used a large dataset provided by the 
Israeli Ministry of Health and included symptoms such as cough, fever, 
headache, sore throat, and shortness of breath, as well as variables such 
as age, sex, and history of contact with a confirmed case of COVID-19 
with an AUC of 0.86 (Zoabi et al., 2021). Nonetheless, this model did 
not include anosmia (unlike our study), which has proved to be a rele-
vant symptom in other prediction models. 

The main strengths of our study were the large sample size and the 
comparison of several statistical approaches to develop a symptoms- 
based prediction model. The inclusion of several symptoms in the 
questionnaire applied to the participants allowed assessing relevant 
clinical characteristics. Our model’s high SP and NPV could be advan-
tageous in redirecting the limited testing resources to those patients with 
a higher probability of having COVID-19. Such a strategy provides ele-
ments for clinical decision making, especially in countries such as 
Colombia that require diagnostic test results for case definition. In the 
case of saturation of the public health systems, a triage testing strategy 
could also be helpful in assessing which individuals have the highest 
probability of being infected. 

Also, some limitations of our study should be considered. The first 
was that symptoms were self-reported via telephone survey. In this 
sense, the participant could have reported apparent COVID-19-related 
symptoms that were unspecific and biased symptoms by the informa-
tion spread by media and other sources. Also, the test result and self- 
reported symptoms could not have reflected the specific moment of 
the infection and affected the model’s accuracy. 

5. Conclusions 

Our study produced a symptoms-based model with multiple statis-
tical approaches that correctly identified over 85% of participants. This 
model can be used to strengthen epidemiological surveillance protocols, 
to prioritize resource allocation related to COVID-19 diagnosis, to decide 
on early isolation, and for contact tracing strategies in individuals with a 
high probability of infection and before receiving a confirmatory test 
result. This strategy has public health and clinical decision-making 
significance in low- and middle-income settings like Latin America. 
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Table 3 
Diagnostic performance of prediction models.  

Dataset Variable AUC SE SP PPV NPV Correctly classified 

Complete data set Logistic regression ⋅71 ⋅10 ⋅99 ⋅57 ⋅95 ⋅95 
RF ⋅66 ⋅04 ⋅99 ⋅54 ⋅94 ⋅95 
SVM ⋅59 ⋅02 ⋅99 ⋅48 ⋅95 ⋅94 
XG boosting ⋅73 ⋅07 ⋅99 ⋅55 ⋅95 ⋅95 

Undersampling Logistic regression ⋅73 ⋅26 ⋅98 ⋅73 ⋅86 ⋅85 
RF ⋅81 ⋅28 ⋅98 ⋅72 ⋅86 ⋅85 
SVM ⋅73 ⋅29 ⋅98 ⋅74 ⋅86 ⋅85 
XG boosting ⋅77 ⋅09 ⋅99 ⋅88 ⋅83 ⋅84 

SMOTE Logistic regression ⋅72 ⋅22 ⋅94 ⋅71 ⋅66 ⋅67 
RF ⋅87 ⋅69 ⋅96 ⋅91 ⋅83 ⋅86 
SVM ⋅66 ⋅24 ⋅94 ⋅71 ⋅66 ⋅67 
XG boosting ⋅90 ⋅98 ⋅99 ⋅97 ⋅81 ⋅86 

ROSE Logistic regression ⋅74 ⋅47 ⋅88 ⋅79 ⋅62 ⋅67 
RF ⋅81 ⋅65 ⋅84 ⋅80 ⋅71 ⋅75 
SVM ⋅73 ⋅47 ⋅88 ⋅79 ⋅62 ⋅67 
XG boosting ⋅77 ⋅57 ⋅81 ⋅76 ⋅65 ⋅69  
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