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Robust closed-loop control of 
spike-and-wave discharges in a 
thalamocortical computational 
model of absence epilepsy
Yafang Ge1, Yuzhen Cao1, Guosheng Yi2, Chunxiao Han3, Yingmei Qin3, Jiang Wang2 & 
Yanqiu Che  4,5

In this paper, we investigate the abatement of spike-and-wave discharges in a thalamocortical 
model using a closed-loop brain stimulation method. We first explore the complex states and various 
transitions in the thalamocortical computational model of absence epilepsy by using bifurcation 
analysis. We demonstrate that the Hopf and double cycle bifurcations are the key dynamical 
mechanisms of the experimental observed bidirectional communications during absence seizures 
through top-down cortical excitation and thalamic feedforward inhibition. then, we formulate the 
abatement of epileptic seizures to a closed-loop tracking control problem. Finally, we propose a neural 
network based sliding mode feedback control system to drive the dynamics of pathological cortical area 
to track the desired normal background activities. the control system is robust to uncertainties and 
disturbances, and its stability is guaranteed by Lyapunov stability theorem. our results suggest that 
the seizure abatement can be modeled as a tracking control problem and solved by a robust closed-loop 
control method, which provides a promising brain stimulation strategy.

Epilepsy, a common chronic neurological disorder characterized by recurrent seizures, affects about 1% of peo-
ple in the world1. Childhood absence epilepsy (CAE) is a form of generalized epilepsy commonly observed in 
children with transient impairment of consciousness and brief interruption of ongoing activities2,3. The most 
significant clinical manifestation of AE is the periodic 2.5–4 Hz spike-and-wave discharges (SWDs) in electroen-
cephalography (EEG) in a bilateral, synchronous, and symmetric pattern4,5. Despite important progress on basic 
mechanisms of SWDs from experimental and clinical observations over the past few decades6, the underlying 
mechanisms responsible for the spontaneous transitions between normal ongoing activity and SWDs have not 
been fully understood. On the other hand, elimination of seizures as early as possible is critical for children to 
optimize their cognitive development and improve their behavior and quality of life7. As opposed to focal epilep-
sies, neurosurgical resection of epileptic foci area is generally not an option in patients with generalized epilepsies, 
while available anti-epileptic drug treatments often cause serious side-effects due to the chronic nature of the 
disorder8. Therefore, alternative seizure control methods are in great demand.

Computational models at different scales play a major integrative role in exploring the mechanisms under-
lying the initiation, evolution and abatement of epileptic seizures9–12. EEG recordings result from macroscopic 
ensemble dynamics of electrical activities over large scales of neural networks. Hence population models (neural 
mass models (NMMs) and neural field models (NFMs)), describing the average activity of interconnected sub-
populations of principal neurons and interneurons, have been established from the 1950s to 1970s13–17. Over the 
last decades, a series of epilepsy and seizure models have been developed based on these seminal works18–24. Since 
many experimental and clinical recordings have shown that the subcortical thalamus is highly involved in the 
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generation and evolution of generalized epilepsies25–27, thalamocortical computational models of epilepsy have 
been subsequently developed19,22,24,28. By extending the lumped model of alpha rhythm generation15, Suffczynski 
et al. proposed a network model consisting of mutually interconnected excitatory pyramidal cell population (PY) 
and inhibitory interneuron population (IN) in the cortex and the thalamocortical relay cells (TC) and reticular 
nucleus (RE) in the thalamus19. This model not only successfully reproduced the spontaneous occurring 11-7 Hz 
SWDs during the ongoing activity observed in AE rats27, but also provided useful insights into the interpretation 
of physiological mechanisms in AE. Motivated by this study and following Amari’s approach17, Taylor et al. pre-
sented a cortico-thalamic model with similar structure at the macroscopic level to account for SWDs dynamics of 
the cerebral cortex in AE humans with the aim to develop seizure abatement techniques24.

Epileptic seizures can be viewed from the perspective of dynamical diseases29,30. That is, the onset of a seizure 
is thought to correspond to the appearance of sustained high-amplitude nonlinear oscillations, suggesting a bifur-
cation from a steady state to a limit cycle or a chaotic attractor11,19,22. Specifically, the dynamics of SWDs can be 
understood by a bistable neuronal network, where the seizure state coexists with the background state19,24,31. The 
macroscopic models19,24,31 allow to examine dynamical properties of the system and different mechanisms for sei-
zure generation. Bifurcation analyses of thalamocortical models revealed that Hopf bifurcations play a dominant 
role in governing the transitions from ongoing background state to SWDs or tonic-clonic seizures19,22. Recent 
experimental results in behaving animals have further demonstrated that paroxysmal oscillations of absence sei-
zures are driven by top-down PY-to-TC excitation and framed by feedforward RE-to-TC inhibition32. However, 
how the bidirectional cortico-thalamic communications shape the seizure dynamics and its transitions have not 
been fully examined from a dynamical point of view.

For patients with drug-resistant epilepsy like AE, brain stimulation has been studied as a potential treatment 
option33–36. Most deep brain stimulation (DBS) protocols utilize open-loop control by continuously delivering 
high-frequency electrical pulses37,38. DBS has also been tested in computational models on controlling absence seizures 
and effective control could be obtained with properly targeted brain regions and fine-tuned stimulation parameters39,40. 
Compared to the open-loop methods, closed-loop brain stimulation, which could eliminate seizures without induc-
ing side effects of continuous stimulation, has become a promising alternative36,41–46 in clinical trials47,48. Closed-loop 
transcranial electrical stimulation (TES)36,41,42, DBS43,44 and optogenetic stimulation45,46 can dramatically reduce SWDs 
in rodent models of generalized epilepsy. The clinically-utilized RNS System (NeuroPace, Inc. USA) shows at least com-
parable effectiveness with the traditional continuous DBS47,48. These closed-loop seizure control systems consisting of 
on-line seizure detection and real-time stimulation works as a responsive neurostimulator. That is, brain stimulation 
with pre-defined parameter settings is triggered when seizure events are detected. The underlying idea is to take advan-
tages of the dynamical feature of multi-stability of neural system during seizures, with the hope of perturbing the brain 
state into the basin of attraction of normal background activities. For the SWDs in a bistable setting, it is possible to 
annihilate seizures by an appropriate stimulus delivered at a specific phase of the abnormal oscillations11,19,24. However, 
the effects of pre-defined stimulations on abating noise-induced SW seizures are highly dependent on several factors, 
such as the stimulation patterns, stimulation parameters and the timing of the stimulations11,24,36,41–46,49, which suggests 
that a robust closed-loop control approach with adaptive stimulation is necessary.

In this paper, we use the well developed thalamocortical neural mass model24 to investigate the mechanisms 
and control of absence seizures. Specifically, we first examine the underlying dynamical mechanisms of bidi-
rectional cortico-thalamic effects on absence seizures using bifurcation analysis. Then we propose to formulate 
seizure elimination as a tracking control problem and use a closed-loop control framework. Considering the 
high nonlinearity, unmodeled dynamics and ubiquitous disturbances in the neural system, we design a hybrid 
control consisting of feedback control, radial basis function neural networks (RBFNN)50 and sliding mode control 
(SMC)51. With this control method, we can guarantee robust seizure control in presence of noises and uncertain 
external disturbances. The results presented in this paper can be used to construct an on-line closed-loop brain 
stimulation system for seizure abatements.

Methods
thalamocortical model. Neural mass models can well characterize the macroscopic dynamics of neuronal 
networks and provide a potential way to illustrate the mechanisms underlying absence seizures. In this paper, we 
use a macroscopic model of thalamocortical system consisting essentially of the synaptic circuitry of thalamus 
and cortex to investigate the effects of stimulation on SWDs24.

Figure 1 shows the connectivity scheme of the thalamocortical system19,24, where the cortical subsystem 
includes an excitatory pyramidal neuronal population (PY) and an inhibitory interneuronal population (IN), 
and the subcortical thalamus subsystem consists of the specific relay nucleus (TC) and thalamic reticular 
nucleus (RE)19,24,49. The interactions between different populations are represented by connectivity parameters 
cee,ei,et,ie,te,tr,re,rt,rr. All populations are interconnected in agreement with experimentally known connections26.

The interactions within the thalamocortical system are described as the following differential equations:
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where PY, IN, TC and RE are the state variables, representing the fractional firing activity in each neuronal pop-
ulation. he,i,t,r are input parameters, τe,i,t,r are time scale constants mediated by different excitatory and inhibitory 
neuro-transmitters. f [x] = 1/(1 + ε−x) is the sigmoid transition function describing the cortical dynamics, and 
s[x] = ax + b is the linear activation function describing the thalamic subsystem. cee,ei,et,ie,te,tr,re,rt,rr are the connec-
tivity strengths between different neuronal populations. The parameter values used in this paper are given in 
Table 124,49.

simulation methods. The numerical calculations were conducted in the MATLAB (Math Works, USA) 
simulation environment, where a standard fourth order Runge-Kutta method was used to solve differential equa-
tions, and the integration step was fixed at 1 ms. The cortical macroscopic dynamics were described by the sim-
ulated EEG signal y, which was calculated as the combination of excitatory and inhibitory population in cortex 
y = c1 · PY + c2 · IN with c1 > c2 > 0 and c1 + c2 = 1 the scaling factors. Although pyramidal cells have a greater open 
dipolar field influence than interneurons to the surface EEG52,53, a general demonstration of the effects of c1 and 
c2 given in Supplementary Fig. S1 shows that, the shape of the simulated EEG y(t) in different cases is almost con-
sistent. For comparison with previous results24,49, we took c1 = c2 = 0.5 in the following simulations. The dominant 
frequency of the simulated EEG signals was calculated using Fast Fourier Transform (FFT). The complex state 
transition mechanisms were explored by using bifurcation analysis, where the bifurcation diagrams were calcu-
lated in Xppaut (http://www.math.pitt.edu/bard/xpp/xpp.html).

Results
Complex dynamics of epileptic seizures. In order to demonstrate the ictal bidirectional cortico-tha-
lamic communications during absence seizures observed in recent experimental results32,54,55, in this subsection, 
we investigate the combined effects of cortical excitation and thalamic inhibition on the onset and elimination of 
SWDs. Therefore, the parameters cte and ctr in Eq. (1) are taken as the key parameters to reveal how they affect the 
transition dynamics of the model.

Given certain parameter values and proper initial states, the model may inherently produce several qualita-
tively different behaviors without a stimulus, including spontaneous SWDs. Figure 2 shows the overall distribu-
tion of dominant frequencies and corresponding states of the thalamocortical model in the parameter space  
(ctr, cte). Figure 3 gives typical waveforms of the simulated EEG. With changes of the parameter values, the model 
can generate various states and induce several different types of transitions between them. We can see clear 
boundaries among different regions of states and dominant frequencies. In particular, there are five different 
states: tonic oscillations (TO), low saturated steady state (LS), high saturated steady state (HS), spike-and-wave 
discharges (SWD), and clonic oscillations (CO). Roughly speaking, when the value of parameter cte is small 
enough (cte < 2), no matter how the value of parameter ctr changes, the simulated EEG is basically in pathological 

Figure 1. Schematic diagram of the neural field model of thalamocortical system used in this paper. It is 
composed of the cortical PY-IN subnetwork and the subcortical RE-TC subsystem. Lines with solid dots 
indicate the excitatory synaptic functions, lines with bars represent the inhibitory synaptic functions. PY: 
excitatory pyramidal neurons, IN: inhibitory interneurons, TC: thalamocortical relay cells, RE: thalamic 
reticular nucleus.
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tonic oscillations with a very high frequency and relatively low amplitude (Fig. 3(a), ctr = 0.15 and cte = 1). This 
may correspond to the interaction conditions within the cortex and thalamus that the excitatory synaptic connec-
tion of the loop from cortex to the TC in thalamus plays the role and the thalamus can not successfully receive 
information from the cortex when cte is too weak. With slightly bigger cte, LS states dominate in a wide range of ctr, 
which correspond to normal background activities (Fig. 3(b), ctr = 0.15 and cte = 2.3). In the region with big cte and 
small ctr, pathological HS states would occur (Fig. 3(h), ctr = 0.15 and cte = 3). With medium values of cte and ctr, 
the typical SWD and multi-spike-and-wave discharges (m-SWD) can be observed as that in absence epilepsy56 
(Fig. 3(c), 5-SWD, ctr = 0.1 and cte = 2.36; (d) 4-SWD, ctr = 0.15 and cte = 2.47; (e) 3-SWD, ctr = 0.15 and cte = 2.5; 
(f) 2-SWD, ctr = 0.15 and cte = 2.65; (g) SWD, ctr = 0.15 and cte = 2.17). For large values of cte and ctr, CO are the 
dominant phenomena (Fig. 3(i), ctr = 1.5 and cte = 3.5).

To illustrate how the changes of synaptic coupling strengths affect the transitions of different states, as shown 
in Fig. 4, we calculate extreme values of simulated EEG (yextrema) in dominant states and corresponding frequen-
cies as functions of one parameter ctr (Fig. 4(a), cte = 3) or cte (Fig. 4(b), ctr = 0.15). At a moderate strength of 
top-down excitation from PY to TC (cte = 3), increase in connection strength of feedforward inhibition from 
RE to TC will induce state transitions from HS to 2.5–4 Hz m-SWD (typically observed in absence epilepsy), to 
normal background activities (LS) and even CO (typically observed in tonic-clonic epilepsy). On the other hand, 

Parameter Interpretation Value

he PY input −0.35

hi IN input −3.4

ht TC input −2

hr RE input −5

τe PY timescale 26

τi IN timescale 32.5

τt TC timescale 2.6

τr RE timescale 2.6

cee PY → PY connectivity strength 1.8

cei IN → PY connectivity strength 1.5

cet TC → PY connectivity strength 1

cie PY → IN connectivity strength 4

cte PY → TC connectivity strength 3, varied

ctr RE → TC connectivity strength 0.6, varied

cre PY → RE connectivity strength 3

crt TC → RE connectivity strength 10.5

crr RE → RE connectivity strength 0.2

ε Sigmoid steepness 2 · 105

a Linear intersection steepness 2.8

b Linear intersection offset 0.5

Table 1. The parameter values used in this paper.

Figure 2. Distribution of different dominant frequency and corresponding states of the output in the parameter 
space (ctr, cte). There are several different types of states, including high saturated states (HS), spike-and-wave 
discharges (SWD), clonic oscillations (CO), low saturated states (LS) and tonic oscillations (TO).
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with a very weak feedforward inhibition from RE to TC (ctr = 0.15), a series of transitions from high-frequency 
TO to normal LS to low-frequency m-SWD, and to pathological HS can also be observed.

Bifurcation analysis. To further explore the dynamical mechanisms underlying the above state transitions, we 
conducted bifurcation analysis. Figure 5 shows the one-parameter bifurcation diagrams corresponding to Fig. 4, 
where equilibrium points (EP) are corresponding to the steady states (HS and LS), while limit cycles (LC) are 
corresponding to the repetitive pathological states (SWD, TO, and CO). There exist several different multi-stable 
regions with varying ctr or cte. BS, TS, HB and dc represent bi-stability, tri-stability, Hopf bifurcation and double 
cycle bifurcation, respectively. In Fig. 5(a) it is illustrated that the system transits within the monostable, bistable 
and triple stable states as ctr changes. At HB1, the stability of equilibrium point EP1 changes from stable to unsta-
ble, and then an unstable limit cycle appears. The amplitude of the unstable LC becomes larger and finally coa-
lesces with stable limit cycle (LC1) at bifurcation point dc1. Thus, in the range between dc1 and HB1, there exists 

Figure 3. Different types of states with certain parameters in the thalamocortical model. TO: tonic oscillations, 
LS: low saturated state (normal background activity), m-SWD: m-spikes and wave discharge activity (here m 
can be 1, 2, …, 5), CO: clonic oscillations, HS: high saturated state.

Figure 4. Bifurcation diagrams: the extrema of the simulated EEG y and the corresponding transitions 
of dominant frequency. (a) The dynamics transitions of the system over changes in ctr with cte = 3. (b) The 
dynamics transitions of the system over changes in cte with ctr = 0.15. The transitions of states include HS, m-
SWD, LS, CO, and TO, where m can be 1, 2, …, 6.
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bi-stability of EP and LC, corresponding to the coexistence of HS and SWD states. Similarly, the coexistence of 
LS and SWD states occurs in the range between HB2 and dc3 and between dc4 and dc2, while the coexistence of LS 
and CO states occurs when ctr is beyond dc5. Note that in the range between dc3 and dc4, there exists tri-stability 
of one stable EP (EP2) and two stable LCs (LC1 and LC2), corresponding to coexistence of LS and two types of 
m-SWDs. In Fig. 5(b), the amplitude of stable limit cycle becomes smaller with the increase of cte, and finally 
disappears at bifurcation point HB3. Meanwhile, the stability of the equilibrium point changes from unstable to 
stable. Coexistence of LS and SWD (between HB2 and dc2), and HS and SWD (between HB1 and dc1) can also be 
observed in certain ranges of cte.

Figure 6 shows the two-parameter bifurcation diagram of the thalamocortical model in ctr − cte space. Hopf 
bifurcations (HB1, HB2, HB3) and double cycles (dc1, dc2, dc3, dc4 and dc5) are represented as solid and dashed 
lines, respectively. Therefore, the two-paramater space in Fig. 6(a) is partitioned into 10 qualitatively different 
regions (A–J) by these curves. Figure 6(b) gives a schematic phase portrait and corresponding states in each 
region. Among these regions, only in region B, the system behaves as normal background activities. The system 
states are very sensitive to system parameters and there are many pathways to pathological activities. For exam-
ple, too weak excitation from PY to IN will induce high-frequency tonic oscillations (TO in region A), while too 
strong excitation from PY to IN may induce SWD (in regions C, F and G) observed in absence epilepsy or even 
tonic-clonic seizures (in regions C, D, F and G). In the bi-stable (C, E, G and J) or tri-stable (D and I) regions, the 
system behavior is very sensitive to the initial states or external disturbances.

Stimulation induced state transitions. Previous studies have shown that, a single-pulse stimulation can induce 
the onset and termination of SWDs in this model24. The results depend not only on the stimulus but also on the 
timing of the stimulus applied. Here, we further demonstrate the difficulties in using open-loop stimulation to 
eliminate SWD seizures.

Figure 5. Bifurcation diagrams: the maximum and minimum of state PY. (a) The dynamics transitions of 
the system over changes in ctr with cte = 3. (b) The dynamics transitions of the system over changes in cte with 
ctr = 0.15. The transitions of states include HS, m-SWD, LS, CO, and TO, where m can be 1, 2, …, 5. BS is bi-
stability, TS is tri-stability, HB is Hopf bifurcation and dc represents double cycle bifurcation.

Figure 6. Two-parameter bifurcation diagrams in the ctr − cte space. (a) The bifurcation curves separate the 
parameter space into 10 qualitatively different regions (A–J). (b) Schematic phase portraits and corresponding 
states in different regions.
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As shown in Fig. 7(a,b), we chose a pair of parameters in region I (ctr = 0.45, cte = 3), where triple stability 
exists, that is, coexistence of LS, 2-SWD and SWD. Then we applied pulses stimulation on RE and observe the 
state transitions. The system initially exhibits 2-SWD state, and a properly chosen negative single pulse (applied 
at t = 10) successfully induced the system to normal background activities. However, a positive single pulse drove 
the system back to pathological 2-SWD. Moreover, when the same single pulse as the first one was applied to 
the system, it not only failed to abate the seizures, but even induced SWD with a larger amplitude. Figure 7(c,d) 
shows an another experiment. The parameter set was chosen in the region D (ctr = 1.5, cte = 3.5), where three 
stable states, LS, SWD and CO coexist. Although the second single pulse succeeded to abate the SWD, the first 
one failed and the third one induced the system back to SWD again, indicting the normal LS state is very sensitive 
to external disturbances. Single pulses with a bigger amplitude also couldn’t guarantee successful abatement of 
seizures. They may even cause more serious clonic oscillations (the fourth pulse).

Overall, the single-pulse applied on RE can change the oscillation dynamics among pathological SWD (2-SWD), 
LS or CO through the pathway RE-TC-Cortex, which can be attributed to the regulatory mechanism of the tri-stability 
in Fig. 7(b,d). The pulses stimulation can push the system state across the basin of attraction (dotted circles in phase 
portraits (b) and (d)). Although the single-pulses applied on RE can induce the transition from pathological SWDs to 
normal background resting states, the same stimulation may also induce transitions from normal activity to patho-
logical SWDs. Moreover, the excitability, bi-stability or tri-stability of the system highly depend on initial parameter 
conditions and stimulation setting. Therefore, it is unreliable to use open-loop single-pulse stimulation to eliminate 
the pathological SWD during absence seizures, and we need to seek a more comprehensive close-loop control strategy.

seizure abatement using feedback control. Due to the complex dynamics of epilepsy system, the 
success of open-loop stimulation for seizure abatement is highly dependent of the stimulus itself, the system 
states and the stimulation timing24,41,49. For example, the previous proposed optimal pulse stimulation control is 
required to be applied at certain phase of the SWD oscillation, which is very difficult to detect. Here, we focus on 
a close-loop strategy.

Seizure abatement problem formulation. We first formulate the seizure abatement to a tracking control problem. 
We assume that there exists a cortical area exhibiting normal background activities. We use the measured normal 
EEG to represent the desired brain activity, and design a control system to force the cortical areas with pathologi-
cal dynamics to behave similar dynamics of the measured normal EEG. Thus, the seizures can be abated.

Figure 7. Single-pulse stimulation induced state transitions among pathological SWD or 2-SWD, normal 
background state and CO. (a) ctr = 0.45, cte = 3, time series of simulated EEG, (b) phase portrait on RE-TC plane 
corresponding to (a). (c) ctr = 1.5, cte = 3.5, time series of simulated EEG, (d) phase portrait on RE-TC plane 
corresponding to (c). The dotted circles in phase portraits (b) and (d) are the boundaries of different attractors.
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In the thalamocortical model, the system under control can be described as a general differential equation:

= + +


t t t tx F x d u( ) ( ( )) ( ) ( ) (2)

where x = (x1, x2, x3, x4)T = (PY, IN, TC, RE)T is the system state, F = (F1, F2, F3, F4)T is the mapping function as 
described in Eq. (1), d = [d1, d2, d3, d4]T ∈ R4 is the disturbance and u = [u1, u2, u3, u4]T is the controller. Here, we 
apply our control on PY and IN subpopulations, simulating external stimulations on the cortical area, that is 
u1 = u2 = u and u3 = u4 = 0.

The system output is defined as the simulated EEG, y = c1x1 + c2x2. The desired state yd can be measured from 
a normal minicolumn. The goal is to control the system output y to track the desired state yd. We will design a 
neural network based sliding mode control, which guarantees stable tracking under uncertain dynamics and 
external disturbances.

Traditional sliding mode controller design. Sliding mode control (SMC) is characterized by a discontinuous con-
trol action that alters the dynamics of a nonlinear system by forcing the system to a set of predetermined sliding 
surfaces51. When reaching the sliding surface, the motion is independent of parameters and disturbances, result-
ing in a very robust system57.

We define the tracking error as e = y − yd, then its dynamics is
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where g(x) = c1F1(x) + c2F2(x) and d = c1d1 + c2d2.
Following the traditional sliding mode control design, we first choose the sliding surface as s(e, t) = e(t). As 

long as the system operates in the sliding mode, it satisfies the equations = =s t s t( ) ( ) 051, thus = =e t e t( ) ( ) 0. 
Then we choose the reaching law as a constant-rate one, λ= −s s, where parameter λ > 0 is determined such that 
the sliding condition is satisfied and the sliding mode motion occurs. Now the desired sliding mode control input 
is determined as

λ= − +u t s u( ) (4)s eq

where ueq is equivalent control to deal with g(x), d and 
yd in Eq. (3).
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where L is the boundary of + + g d yx( ) d. Thus the stability condition ≤V 0 is always satisfied when ρ ≥ L.

RBFNN based controller design. Another method to design ueq is to use a RBFNN model to approximate the 
unknown function g(x) and deal with the disturbance by properly choosing the robust adaptive update laws. A 
RBFNN is an artificial neural network with RBFs as the activation functions and a linear combination of these 
RBFs as the output. According to approximation theory, an unknown nonlinear smooth function g(x):Rn → R can 
be approximated by the RBFNN gnn(x) = θTφ(x)58, where the input vector x ∈ Ωz ⊂ Rn with Ωx being a compact 
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set, the weight vector θ ∈ Ωθ ⊂ Rm with m being the NN node number, and basis function φ(x) chosen as the 
commonly used Gaussian functions with fixed centers and widths. According to50, θTφ(x) with sufficiently large 
number of NN nodes can approximate any continuous function f(x) over the compact set Ωx to arbitrary accuracy 
in form of

θ φ ε Ω= + ∀ ∈⁎g xx x( ) ( ) , (11)T
x

where θ* is the ideal constant weight vector, and ε is the approximate error which is assumed to have an upper 
bound.

Typically, θ* is chosen as the value that minimizes |ε| for all x ∈ Ωx, i.e.

θ θ φ=








−






θ Ω Ω∈ ∈θ

⁎ ⁎ gx x: arg min sup ( ) ( )
(12)x

T

x

Since θ* is generally unknown and needs to be estimated in controller design, let θ̂ be the estimate of θ*, and 
denote θ θ θ= − ˆ ⁎ as the weight estimate error vector.

Assumption 1. The ideal weight vector θ* is bounded by an unknown positive value θM so that ||θ*|| ≤ θM
We choose the following adaptive update laws for NN weights:

θ φ θγ γ= − − | | ˆˆ s k s (13)c

where kc is a given constant.
Sliding variable s will be used as a single input signal for establishing an RBFNN model to calculate the control 

law ueq(t)

θ φ= − ˆu s( ) (14)eq
T

2

Then the actual control is designed as

θ φλ λ= − + = − − ˆu t s u s s( ) ( ) (15)a eq
T

2 2

Consider the following Lyapunov function candidate

θ θ
γ

= +  V s1
2

1
2 (16)

T2

Differentiating Eq. (16) with respect to time and noting Eqs (13) and (15), we obtain

θ θ

θ φ θ φ θ

θ θ

γ

λ ω
γ

γ γ

λ ω

= +

= − − + + − − | |

= − − | | +

� � �

� �

�

ˆ

ˆ

ˆ

( )
V ss

s s s k s

s k s s

1

1 ( )

(17)

T

T T
c

c
T

2

2

According to Assumption 1, we have

θ θ θ θ θ θ θ θ θ θ θ= + ≥ − ≥ −      ˆ ⁎ ⁎( ) (18)
T T

M

2 2

Applying the above inequality to Eq. (17), we have

θ θλ θ ω≤ −| | | | + − −� � �V s s k[ ( ) ] (19)c M N
2

which is negative as long as the term in square bracket is positive.
Completing the square for the term inside the square bracket in Eq. (19) yields

θ θ

θ θ

λ θ ω

θ λ ω

| | + − −

= − − + | | −

 



s k
k k s

( )
( /2) /4 (20)

c M N

c M c M N

1
2

2 2

which is positive as long as

θ ω λ| | > +s k( /4 )/ (21)c M N
2

or

θ θ θ ω> + + k k/2 ( /4 )/ (22)M c M N c
2

Thus, V  is negative outside a compact set. According to a standard Lyapunov theorem extension59, this demon-
strates the uniformly ultimately bounded (UUB) of both ∥e∥ and θ , and hence of θ̂ .
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RBFNN based sliding mode controller design. In order to take advantages of sliding mode control and RBFNN, 
we combine these two methods. That is, the nonlinear function g(x) is approximated by a RBFNN θ φˆ s( )

T
 and the 

disturbances caused by d, 
yd and approximation errors are dealt with by SMC −ρsign(s). Then the actual control 

is designed as

θ φλ ρ= − − −ˆu t s s s( ) ( ) sign( ) (23)a
T

3

Considering the same Lyapunov function candidate as Eq.(16) and following the similar proof process, we can 
derive the stability condition

θ ω ρ λ| | > + −s k( /4 )/ (24)c M N
2

or

θ θ θ ω ρ> + + − k k/2 ( /4 )/ (25)M c M N c
2

Thus, if we choose ρ θ ω> +k /4c M N
2 , the ≤V 0 can always be guaranteed and the tracking error will con-

verge to zero.
In practice, it is important to avoid chattering phenomenon caused by discontinuous function −ρsign(s). 

Here, we use a low-pass filtering (LPF) of the high-frequency switching term sign(s) in the control law Eq. (23). 
The LPF can be implemented as a first-order differential equation

τ = − +z z ssign( ) (26)

where τ is a small positive scalar representing the time constant of the filter. Now, we obtain the final controller as

θ φλ ρ= − − −ˆu s s z( ) (27)
T

The overall control diagram is shown in Fig. 8.

Control performance. To illustrate the effectiveness of the proposed control method on seizure abatement, 
we conduct several numerical experiments. In the simulations, the system under control is chosen as Eq. (1) with 
ctr = 0.6 and cte = 3 in bistable regimes with coexistence of SWD and background activity. Proper initial condition 
was chosen so that the system was in a SWD state. A Gaussian noise with mean 0 and standard deviation 1 and a 
randomly distributed pulses series were added to RE subpopulation to simulate background noises and unmod-
elled or unexpected projection from other brain areas respectively. In Case 1, the desired normal EEG signal yd 
is generated using Eq. (1) with the same parameters ctr = 0.6 and cte = 3 but in a background state with properly 
chosen initial conditions. A Gaussian noise with mean 0 and standard deviation 1 is also added to RE subpop-
ulation, mimicking background noises. In Case 2, we chose the desired EEG tracing as a channel clinical scalp 
EEG waveforms in alpha band from CHB-MIT database (https://www.physionet.org/pn6/chbmit/)60. Control 
parameters were chosen as λ = 1, ρ = 1, kc = 1, m = 11, and p = 1 in all simulations.

Figures 9 and 10 give the control results of the two cases with different control methods: (a) method 1, with 
only the feedback control u = −λs, (b) method 2, with the feedback control and RBFNN u = −λs − ρz, (c) 
method 3, with the feedback control and SMC θ φλ= − − ˆu s s( )

T
, and (d) method 4, with all the three control-

lers θ φλ ρ= − − −ˆu s s z( )
T

. The controller was switched on at time t = 4s (The switch-on time has no effects on 
control performance, see Supplementary Fig. S2. As shown in Figs 9(a) and 10(a), in both Case 1 and Case 2, the 
feedback control reduces the amplitudes of the pathological oscillations but can’t effectively suppress them. The 
effects of the random disturbances in RE can still evoke SWDs. When the feedback and RBFNN control methods 
are considered (see Figs 9(b) and 10(b)), the tracking performance is improved by RBFNN approximating the 
unmodeled dynamics, but the controlled system is still sensitive to external disturbances. The introduction of 
SMC, as shown in Figs 9(c) and 10(c), will further decrease the amplitudes of the oscillations and increase the 
robustness to external disturbances. But the tracking errors are still large. Finally, we combine all the three control 

Figure 8. The control diagram constructed by feedback method, RBFNN and Sliding mode control. The 
random disturbance d is imposed to the RE and the control signals are applied on PY and IN. The tracking 
error is defined as e = y − yd and taken as the sliding surface. And the control signal u includes three parts: the 
unknown nonlinear smooth function approximated by the RBFNN, the reaching law designed by feedback 
method and the filtered discontinuous function designed by SMC.
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methods to achieve best control performances, as shown in Figs 9(d) and 10(d), and the seizures are totally 
suppressed.

In order to intuitively represent the control performances of different control strategies, we calculated the 
root-mean-square (RMS) value and the mean value and standard deviation as performance indexes for the above 
two cases about the tracking error e(t) (RMS e and mean e in Fig. 11(a)) and the control signal u(t) (RMS u and mean 
u in Fig. 11(b)). The numbers in horizontal axis represent four different control methods (1: with only feedback, 2: 
with feedback and RBFNN, 3: with feedback and SMC, and 4: with feedback, RBFNN and SMC). All performances 
with different control methods keep consistent in Case 1 and Case 2. As shown in Fig. 11(a), although method 2 has 
the lowest mean error, it has much bigger RMS e and standard deviation than method 4, which indicates its weaker 
robustness to external disturbances. Method 4 has very small mean errors, and the smallest RMS and standard devi-
ation of e(t). The cost to get such a robust control result is the consumption of more control energy (see Fig. 11(b)). 
We also compared the power spectral density (PSD) of simulated EEG signals before and after control with that 
of the desired EEG as shown in Fig. 11(c,d) for Case 1 and Case 2 respectively. In Case 1, the desired EEG behav-
ing as normal background activities shows no dominant frequencies and very small PSD (dark line in Fig. 11(c)), 
while in Case 2 the desired EEG in alpha band shows dominant frequencies around 12 Hz as expected (dark line in 
Fig. 11(d)). Simulated abnormal EEG before control shows clear dominant frequencies around 3 Hz (red lines) as 
observed in clinical SWDs. Method 1 with only the feedback control (purple lines) and Method 2 with the addition 
of RBFNN suppresses the PSD but dominant frequencies around 3 Hz still exist (brown lines). The addition of SMC 
in method 3 further suppresses the PSD (green lines). Finally, the PSD of the signal after control by method 4 is sim-
ilar to that of the desired normal EEG (blue lines). Considering all the indexes together, we conclude that method 4, 
taking advantages of feedback, RBFNN and SMC, provides the best control performance.

The above simulations have demonstrated the effectiveness of our proposed control methods in seizure abate-
ment even under big and frequent disturbances. The main advantage of this continuous closed-loop control is to 
guarantee seizure-free all the time. In practice, when the disturbance that causes seizures is not frequent, we may 
implement our control method in a responsive way and satisfactory seizure control may be obtained by using 
only the feedback control. That is, the control is only switched on when seizures are detected or predicted. As 
an attempt in this direction, we propose a variance-based on-demand closed-loop feedback control as shown in 
Fig. 12. We set the system in the bistability regime as that in Fig. 9. The desired EEG tracing yd(t) (black lines) is set 
as the background activity. We introduce the variance of simulated EEG Var(y) as a seizure indicator to determine 

Figure 9. The control results. Case 1: the desired EEG tracing is in a background state. (a) With only feedback 
method, (b) with feedback and RBFNN methods, (c) with feedback and SMC methods, (d) with all the feedback 
control, RBFNN control and SMC methods. yd is the expected normal output, y is actual output, d is the random 
pulses disturbance applied on RE. e(t) is the tracking error, u(t) is control signal. The control was switched on at 
t = 4s.
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the state of the system, where the variance is calculated using the moving window technique with window size 
0.5 s and sliding step 0.05 s. When Var(y) > Varth and lasts more than 0.1 s, seizures are believed to occur, and 
the feedback control is triggered on and continue in action for 1 s. As shown in Fig. 12(a), without control, ini-
tially the brain is in a state exhibiting normal background EEG activity (t < 4s), where the variance of simulated 
EEG Var(y) is very small, much lower than the threshold Varth = 0.002. A single-pulse stimulation mimicking an 
unexpected disturbance may change the brain state from normal to SWD at t = 4s, whereafter the Var(y) is much 
bigger than the threshold Varth. A second single pulse stimulation at t = 10s) has little effects. Figure 12(b) shows 
the control results. Since the stability of control system is guaranteed, we can observe that with only feedback con-
trol for a short time period, the pathological activities can be well-controlled and the brain state is driven into the 
attraction basin of the background activity. Moreover, the control signal adaptively decays as the SWD is abated, 
which is suitable for energy-saving applications in clinical practice.

Discussion
In this paper, we have investigated the complex states and various transitions in a thalamocortical computational 
model (Eq. (1)) of absence epilepsy by using bifurcation analysis. In order to understand the mechanisms of 
absence seizures including SWDs, many studies have been conducted on how the model parameters affect the 
states and their transitions of the system, such as the input constant parameter61, direct PY-to-TC excitation 
cte and feedforward TC-to-PY inhibition cet

62, and the feedforward inhibition and excitation from TC to cor-
tex63. Motivated by the recent experimental results about the bidirectional communications of absence seizures 
in thalamocortical circuit32,54,55, we here focus on the top-down PY-to-TC excitation cte and the feedforward 
RE-to-TC inhibition ctr. We have identified 10 qualitatively different regions in two-dimensional parameter 
space separated by Hopf bifurcation and double cycle bifurcation curves (Fig. 6). Various state transitions and 
dynamics including SWDs and tonic-clonic seizures and have been observed (Figs 2, 3, 5 and 6). The existence of 
multi-stable states (such as SWD, CO and LS in Fig. 7) are determined by the occurrence and relative positions 
of Hopf bifurcations and double cycles bifurcations, which are sensitive to parameter values. There are two-fold 
impacts of the characteristic multi-stability in absence epilepsy. On the one hand, it makes possible the use of 
single-pulse stimulations to successfully drive absence seizures to background activities19,24. On the other hand, 
there is no guarantee for the success of this kind of open-loop stimulation24,64. It is worth noting that the effect 
of single-pulse on eliminating pathological SWD is highly dependent on the initial states, parameter values and 

Figure 10. The control results. Case 2: the desired EEG tracing is in normal alpha band. (a) With only feedback 
method, (b) with feedback and RBFNN methods, (c) with feedback and SMC methods, (d) with all the feedback 
control, RBFNN control and SMC methods. yd is the expected normal output, y is actual output, d is the random 
pulses disturbance applied on RE. e(t) is the tracking error, u(t) is control signal. The control was switched on at 
t = 4s.

https://doi.org/10.1038/s41598-019-45639-5


13Scientific RepoRts |          (2019) 9:9093  | https://doi.org/10.1038/s41598-019-45639-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

the imposed stimulation. For example, SWDs can be induced by single cortical pulses in a genetic absence ani-
mal model when the rats are in a drowsy state64. The previous proposed optimal single-pulse seizure abatement 
stimulations require the successful detection of the SWDs phase, which is difficult due to the complex dynamics 
of SWDs and ubiquitous noises24,62. We here also illustrate that the single-pulse stimulation may induce epilep-
tic seizures instead of abating them (see Fig. 7), which indicates the unpredictable state transitions caused by 
open-loop direct stimulations. Therefore, closed-loop feedback control approach is necessary for reliable abate-
ment of abnormal SW seizures.

Figure 11. Control performance. (a) Root-mean-square (RMS) of tracking error (RMS e) and the mean and 
standard deviation of tracking error (mean e), (b) RMS of control u (RMS u) and the mean and standard 
deviation of u. These indexes are calculated using the last 12 seconds signals. (c) and (d) Power spectral density 
of different signals for Case 1 and Case 2 respectively. Case 1: the uncontrolled system is in a background state. 
Case 2: the desired EEG tracing is in normal alpha band. The four different control strategies are 1: feedback, 2: 
feedback and RBFNN, 3: feedback and SMC, and 4: feedback, RBFNN and SMC.

Figure 12. Variance-based on-demand closed-loop feedback control. (a) Without control. (b) With control.
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Since the pioneering work of Schiff on neural control engineering65,66, several model-based control strategies 
have been proposed and tested on different neural systems67,68. In this paper, we have formulated the seizure 
abatement issue into a tracking control problem. We assume that there is a reference signal describing the normal 
background brain activities. The controller should be designed to drive the pathological activities to follow the 
desired normal activities. However, there are various uncertainties in neural systems, such as the dynamics of cell 
nonlinearity and residuals, the unmodeled dynamic characteristics, noises, and external disturbances69. At pres-
ent, the stimulation used in the open-loop as well as the closed loop seizure control methods in animal experi-
ments or clinical trials need to be pre-tested with trial-and-error to set good stimulation patterns and parameters, 
which remain unchanged during the treatment process36–38,41–46. Lack of adaptability and anti-interference ability 
makes seizure control with fixed stimulation prone to causing adverse events38. The previously proposed optimi-
zation control requires real-time detection of details about the epileptiform activity, such as the phase of seizure 
oscillations, which may not be accurately obtained due to the variability of seizure oscillations, noises and distur-
bances24,49. Consequently, we proposed RBFNN and SMC methods with feedback to construct the control strat-
egy, where the RBF method can adaptively fit unmodeled dynamic characteristics50,58,59, and the SMC method 
has strong anti-interference ability51,57. Therefore, even for different patients or in different stages of seizure states, 
using the same control parameter settings, we can solve the tracking problem and achieve good seizure control 
results (see Figs 9–11 and Supplementary Figs S3–S5 for control of clonic seizures). The stabilities of the track-
ing error dynamics and the robustness of the control are guaranteed by Lyapunov stability theory, and thus the 
abatement for seizures can be obtained. As long as the control is on, seizures can always be suppressed and the 
states will maintain in the basin of the attractor of the desired normal activities. Our control design can be used to 
improve the robustness and adaptability of the current closed-loop seizure control systems41–46. Furthermore, the 
existing seizure detection algorithms41–46,70,71 can be easily implemented into our control system to further facili-
tate its practical applications (see Fig. 12). Put into other words, the proposed control method proves a universal 
and robust control strategy for brain stimulation of seizure abatement.

To implement the proposed seizure control methods in clinical practice, the desired EEG trace yd(t) should 
be firstly obtained. We suggest that one way is to pre-record a EEG signal of normal background activity of the 
patients. Another way is to online detect and classify the EEG signals into epileptic seizures and background activ-
ities, and choose one of the background activity traces as the reference signal yd(t). The control will be switched on 
for those brain areas with epileptic seizures. Optimal trade-offs between robustness and performance, which vary 
depending on patients’ conditions, should also be considered. SMC provides strong robustness and makes the 
closed-loop system insensitive to variations, while it also costs more energy (see Fig. 11). When big disturbances 
to the brain are rare, control methods without SMC implemented in a responsive way may also result in satisfac-
tory seizure abatements with much less energy consumption (see Fig. 12(b)).

Several limitations in this study would be addressed in future research. First, there exist various models 
describing epileptic seizures at diverse physiological scales10,11,72. We have only examined the macroscopic behav-
iors from a nonlinear dynamics point of view. The model used in this paper can successfully reproduce resting 
background activity and paroxysmal activity like SWDs or COs, but no ongoing activity like alpha or beta waves 
in EEG. The results obtained by bifurcation analyses in this paper only provide qualitative but not quantita-
tive reproduction or predictions of changes of brain states with varying connection parameters. Some of these 
predictions (like tri-stability regime) need further tests and observations in experimental or clinical studies. It 
will also be a big challenge to perform integrated qualitative and quantitative analyses of a multi-level computa-
tional model of epilepsy that reproduces various brain activities. Second, there are also many paths regulating the 
genesis and evolution of seizures in the cortico-thalamo-cortical loops45,46,63,73–75, and we have only investigated 
mechanisms of the top-town PY-to-TC excitation and feedforward RE-to-TC inhibition. The next step study 
would consider more comprehensive dynamical and physiological mechanisms of epileptic seizures with multiple 
changing parameters, and also other target brain regions for seizure control45,46. Third, we only consider one cor-
tical column of brain area in this paper. Using spatially extended models with patient-derived connectivity49,76–78 
and incorporating our method into the network control framework79 would be very promising. Last, we here 
mainly focus on the controller design for seizure abatement. On the other hand, seizures prediction and preven-
tion has been a long challenge and it’s crucial to prevent the seizures before its clinical onset80,81. Recent analysis 
of EEGs have revealed that SWDs are preceded by precursor activity such as changes in delta-theta oscillations71 
and synchrony44,77 in thalamocortical neural networks, which provides the feasibility of seizure prediction81. 
Implementation of advanced seizure prediction technologies81 into our control framework would be a significant 
step towards development of robust closed-loop seizure prevention systems.

Data Availability
All data included in this publication or MatLab codes used for the analysis will be made available on reasonable 
request by contacting one of the corresponding authors.
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