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Thermoelectric properties of 
graphene-like nanoribbon studied 
from the perspective of symmetry
Ye-Bin Dai, Kai Luo & Xue-Feng Wang

We have studied the charge and spin thermopower systematically in a ferromagnetic junction of 
graphene-like zigzag nanoribbon modified by two on-site disorders in the tight-binding model. 
Symmetries of the transmission spectra and geometry configuration of the two disorders are important 
factors in determining the thermoelectric properties of the system. Conditions to achieve pure charge 
and pure spin thermopower are discussed from the perspective of symmetry. Symmetry breaking is 
required sometimes to obtain large figure of merit. The type and strength of the disorders can be used 
to further manipulate the spin polarization of thermal current. Disorders inside nanoribbon instead of 
on edge can then be used to finely tune the performance of the junction. The results may have great 
application value in designing thermoelectric devices.

One-dimensional (1D) materials have been demonstrated to be promising systems for high thermoelectric con-
version efficiency thanks to the expected reduction of phonon induced thermal conductance1,2. Two-probe junc-
tions made of semiconductor nanostructures, molecular wires, or two-dimensional (2D) materials have been 
proposed to achieve high performance in the last years3–11. Specifically, in addition to the traditional charge ther-
moelectric properties, producing spin current from temperature gradient becomes one of the focuses due to the 
recent advances in spintronics12. Pure thermal spin current with large Seebeck coefficients and figure of merit 
(ZT) is highly pursued4,6,11–14.

Graphene has emerged as a prospective 2D material for spintronics because of its long spin relaxation time 
and length15. In addition, special geometry symmetry of graphene can induce spin polarization on edge. Edge 
magnetism has been confirmed experimentally in zigzag graphene nanoribbons (ZGNRs)16,17 and are expected 
also in graphene-like zigzag nanoribbons (ZNRs). ZNRs can be in ferromagnetic (FM) or antiferromagnetic 
(AFM) state classified by the relative spin orientations on their two edges17,18. External magnetic field can drive a 
ZNR in its AFM insulator state into its FM metallic state. In this case, charge and spin thermoelectric properties 
of 1D graphene-like ZNRs have attracted intensive attention in the past decade4,6,19–28.

Following the Mott’s formula, pure thermal spin current may be realized at low temperature when the trans-
mission spectra of opposite spins are mirror symmetric with respective to the Fermi level in the energy space. 
However, the Seebeck coefficients are usually low in perfect intrinsic ZNRs because the slope of transmission 
spectra vanishes for both spins near the Fermi level. Breaking the geometry symmetry of ZNRs may modulate 
the energy dependence of transmission4,19,29,30 and enhance the Seebeck coefficients4,5,23,31. Furthermore, edge 
disorder may enhance the thermoelectric ZT by reducing dramatically phonon thermal transport but affecting 
only weakly the electronic conduction23. Chemical and physical modifications have been proposed to obtain 
demanded thermoelectric properties in this principle. It was predicted that combination of n- and p-type doping 
on opposite edges of ZGNRs can boost the spin thermoelectric effect4. Edge defects can also lead to the occur-
rence of spin-dependent Seebeck effect and the enhancement of charge and spin ZT5. A strong reduction of ther-
mal conductance compared with the single graphene nanoribbon has been predicted in twisted bilayer graphene 
nanoribbon junctions and outstanding ZT values may be achieved in some specific configurations31.

Disorders can also be introduced manually by applying external electric potential in the range of atomistic 
scale employing state-of-art techniques, such as the scanning tunneling microscopy (STM) and atomic force 
microscopy32,33. This allows continuous variation of disorder parameters and facilitates systematic investigation 
on the effects of disorder configuration and profile. In a previous work, using a tight-binding model for FM 
ZNRs, we have studied effects of local potential at a single site on the charge and spin thermopower and obtained 

Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, 1 Shizi Street, 
Suzhou, 215006, China. e-mail: 790013487@qq.com; 1009932349@qq.com; wxf@suda.edu.cn

OPEN

https://doi.org/10.1038/s41598-020-66073-y
mailto:790013487@qq.com
mailto:1009932349@qq.com
mailto:wxf@suda.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-66073-y&domain=pdf


2Scientific Reports |         (2020) 10:9105  | https://doi.org/10.1038/s41598-020-66073-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

inspiring result20. Comparison with the first-principles calculation of edge doped ZGNRs shows that boron atom 
doping corresponds to add an external on-site potential of 3.24 eV.

In this work, we will discuss effects of two on-site disorders on the thermoelectric properties of FM ZNRs. 
The symmetry of the disorder configuration is found a key to achieve high thermoelectric performance. Properly 
choosing disorder profile and obtaining transmission spectra with desired symmetry, we can design systems for 
pure charge or pure spin thermopower with high Seebeck coefficient and high ZT value.

Models and Methods
We consider a FM ZNR in the tight-binding model with external local potentials applied on two separate sites 
via STM tips. As can be seen from Fig. 1, a two-probe junction is established by partitioning the ZNR into the left 
electrode (L), the central device region (C), and the right electrode (R). The two electrodes can be magnetized 
with parallel (p) and antiparallel (ap) magnetizations to make the system into p and ap junctions, respectively. 
The Hamiltonian reads34:
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where σ σ
†c c( )h h, ,  are the creation (annihilation) operators for electrons on site h, with spin index 1( )σ = − ↑  or 

+ ↓1( ). The uniform on-site energy of the corresponding pristine ZNRs is set to zero. T  is the nearest-neighbor 
hopping integral and is chosen as the energy unit in this paper with = .t 2 7eV for ZGNRs. α

α
Uk , with ≡α α αk i j( , ) 

and α = 1, 2 for the convenience, is the α−th extrinsic local potential energy on site αk  which may originate from 
impurities, defects, STM tips, or other disorder sources. ∈ −αi m m[ , ] and ∈αj n[1, ] denote the longitudinal 
and lateral coordinates, respectively, in the central region. σMh remarks the on-site Zeeman energy due to the 
edge magnetization and has the same value on the two edges. It decays linearly in the lateral (y) direction from the 
value on the edges to zero in the mid line of the ribbon. Along the longitudinal (x) direction on edges, σMh has a 
uniform maximal value σM (full magnetization) in the electrodes. In region C, σ σ=M Mh  on edges in p junc-
tions but changes linearly from σM to σ− M in ap junctions.

The electron spin-dependent current σI  in the Landauer-Buttiker formalism without non-coherent effects is 
given by:

∫ ε ε ε τ ε= −σ σ σ σI e
h

d f f[ ( ) ( )] ( ) (2)L R

where ε ε µ= − +βσ βσ βf k T( ) 1/{exp[( )/ ] 1}B  is the Fermi-Dirac distribution of electrons in the β electrode and 
βT  the temperature35. In this paper we focus on thermally related effects in the linear response regime near Fermi 

level µ =βσ 0 and neglect the effect of local potentials on µβσ
. The transmission is given by τ ε Γ Γ=σ σTr G G( ) [ ]L

r
R

a . 
G G( )r a  is the retarded (advanced) Green function corresponding to the Hamiltonian in region C: 

ε ε ε Σ Σ= = − − −+ −G G h( ) [ ( )] [ ]r a
C L R

1, and Γ ε Σ Σ= − +i( ) [ ]L R L R L R( ) ( ) ( )  is the broadening function. Besides, 
the iterative procedure gives the self-energy function ΣL R( ) which is the result of coupling between the device and 
electrode.

In the linear response regime of a small spin-dependent voltage bias ∆ σV  and a small temperature  
difference ∆T  between the electrodes, we expand ∆ = −f f fL R  in a Taylor series and obtain 
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Seebeck coefficients, for an open circuit =σI 0, are given by = +↑ ↓S S S( )/2c  and = −↑ ↓S S Ss , respectively, with
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Figure 1.  Schematic structure of a FM n-ZNR two-probe junction with a central region of length 2 m. Two local 
potentials α

α α
Ui j,  for α = 1, 2 are applied on separate sites α αi j( , ) via two STM tips. ∈ −αi m m[ , ] and ∈αj n[1, ] 

indicate the longitudinal and lateral coordinates of the cites.
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The Mott’s formula π τ µ τ µ≈ − ′σ σ σ σ σS k T e( /3 ) ( )/ ( )B
2 2  can be used to obtain analytical results at low tempera-

tures36–39. In general, we calculate the electron conductance = +↑ ↓G G Gc , the spin conductance = −↑ ↓G G Gs , and 
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40. The charge and spin thermoelectric figures of merit can then be defined as41–43
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where κph denotes the thermal conductance due to the phonon contribution. The spin polarization of current is 
characterized by = − +↑ ↓ ↑ ↓SP I I I I( )/( )44.

The model should be valid if it can mimic the band structure around the Fermi level of a nanoribbon system. 
In a pristine ZNR t determines the band shape and M gives the band separation of opposite spins at the Brillouin 
zone edge. In systems with disorders such as dopants, defects, and applied gate voltages, the profile of on-site 
energies α

α
Uk  describes their effects. It has been shown that an edge dopant of single boron atom in ZGNRs gives a 

U around 3 eV20.

Result and Discussion
The symmetry of transmission spectrum play important role in determining the thermoelectric properties of 
n-ZNR two-probe junctions with even n. The three mainly concerned symmetries are ① Spin degeneracy, i.e. 
τ ε τ ε=σ σ( ) ( ); ② Mutual mirror of opposite spins with respect to the Fermi level, i.e. ( ) ( )τ ε τ ε= −σ σ  with 
σ σ= − ; and ③ Mirror symmetry, i.e. ( ) ( )τ ε τ ε= −σ σ  for both spins. In the following we will use a symmetry set 
(①,②,③) to describe the symmetry properties of any spectrum with symmetry value 1 for the presence and 0 for 
usual absence of the symmetry.

The symmetry of transmission spectra can determine the thermoelectric properties qualitatively according 
Eqs. (2) and (3). At first, the spin thermoelectric effect vanishes with =S 0s  in the presence of symmetry ①. 
Secondly, symmetry ②leads to the disappearance of the charge thermoelectric effects. Since ε∂ ∂f /  is an even 
function of ε and τ ε τ ε= −↑ ↓( ) ( ), we have µ µ= −ν σ

ν
ν σ↑ ↓K T K T( , ) ( 1) ( , ), = −↑ ↓S S , and =S 0c . Finally, both 

charge and spin thermoelectric effects vanish in the presence of symmetry ③. In this case τ εσ( ) is an even function 
while ε ε−σ σf f[ ( ) ( )]L R  is an odd function in the existence of temperature gradient. So the thermal current is zero 
following Eq. (2).

Symmetry of transmission spectra.  The symmetry of transmission spectra is closely relevant to the 
geometry configuration of disorders. We consider at first edge disorders when two local potentials of constant 
magnitude = =U U ti j i j,

1
,

2
1 1 2 2

 are applied on edge with =j j,1 2  1 or n. The disorder configurations of Ui j,
1
1 1

 and 
Ui j,

2
2 2

 are classified according to their 1) lateral positions: on the same edge with =j j n1,1 2
2 or on opposite edges 

with =j j n1 2 ; 2) longitudinal positions: on the same side with >i i 01 2 , on opposite sides with <i i 01 2 , one at the 
midpoint with = ≠i i0, 01 2 , or both at the midpoint with = =i i 01 2 ; and 3) signs: the same sign with 

>U U 0i j i j
1 2
1 1 2 2

 or opposite signs with <U U 0i j i j
1 2
1 1 2 2

.
Under p junction, the transmission spectra are usually spin nondegenerate and has no mirror symmetry. We 

observe symmetry set (0,1,0) in the transmission spectra of n-ZNRs when applying a positive local potential and 
a negative one with <U U 0i j i j

1 2
1 1 2 2

. Symmetry set (0,0,0) appears for >U U 0i j i j
1 2
1 1 2 2

 except for 2-ZNR in cases >i i 01 2  
and = =i i 01 2  with =j j n1 2  where (0,1,0) is observed instead.

Under ap junction, the edge magnetization changes sign in region C and offers more symmetry choices of 
transmission spectrum for thermoelectric manipulation. In Table 1 we list the interesting symmetries observed in 
transmission spectra for different disorder configurations in case =i i1 2 . The result in case ≠i i1 2  is not 
shown since no symmetry can be observed usually and we have trivially symmetry set (0,0,0). We will assume 

=i i1 2  in the rest of the paper if not specified.
As an example, we present the transmission spectra of a 4-ZNR junction with =m 5 and = .M t0 1  in Fig. 2 

under junctions p and ap for four typical disorder configurations. In the absence of local potential the transmis-
sion spectra are fully determined by the energy band and they have the same symmetry as shown in Fig. 2(a). The 
spin up (down) transmission spectrum in case p is a τ = 1 platform except the sharp peak at ε = −M M( ) and has 
the symmetry (0,1,0). This peak originates from the twist of energy band in agreement with the results obtained 
from the DFT simulation for zigzag nanoribbons of graphene4,45, silicone46, and zigzag α− graphyne19. In case ap, 
however, the lateral wave function of π state in one electrode is orthogonal to that of π⁎ state in the other electrode 
for the same spin orientation and the electrons near the Fermi level cannot tunnel between the two elec-
trodes4,19,45,46. As a result, the transmission spectrum become τ = 1 platforms with a τ = 0 gap in range of 
ε ∈ −M M[ , ] and has symmetry (1,1,1).

In the existence of disorders, transmission dips may appear due to the Fano effect arising from the formation 
of impurity bound states. Theses characteristic transmission dips have been confirmed by DFT simulations in FM 
nanoribbons of graphene-like-materials4,19,20,45,46. In addition, the disorders in the central region can break the 
geometric symmetry of the system and couple the orthogonal wave functions between the electrodes in case ap. 
This narrows the conductance gap near the fermi level as also confirmed by DFT simulation19,20,46. In Fig. 2(b), we 
plot the transmission spectra in junction of two positive local potentials with >U U 0i j i j

1 2
1 1 2 2

 in the case =j j 11 2 , and 
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<i i 01 2 . Under p junction, no symmetry appears in the spectra. Under ap junction, the spectra have symmetry set 
(1,0,0) with symmetry ① satisfied. Similarly, symmetry ① also exists in the spectra for >U U 0i j i j

1 2
1 1 2 2

 in case 
=j j n1 2

2 and <i i 01 2 , =j j n1 2  and <i i 01 2 , or =j j n1 2  and = =i i 01 2 , and for <U U 0i j i j
1 2
1 1 2 2

 the case =j j n1 2  and 
= =i i 01 2  as shown in Table 1.

The transmission spectra in the presence of a positive and another negative local potential with <U U 0i j i j
1 2
1 1 2 2

, 
=j j 11 2 , and >i i 01 2  are illustrated in Fig. 2(c). Under p junction, the transmission spectra are determined by the 

energy spectra of electrons in region C. We establish a virtual bulk ZNR with unit cell the same as region C of the 
configuration used in Fig. 2(c) and calculate its energy band for reference as illustrated in Fig. 2(e) and (f). The 
mutual mirror symmetry of opposite energy bands with respect to the Fermi level is not broken and the transmis-
sion spectra show symmetry set (0,1,0) with symmetry ② satisfied. Under ap junction, symmetry ② is usually 
broken and symmetry set (0,0,0) is obtained in the case of Fig. 2(c). However, symmetry ② of the spectra may 

=j j1 2 i i1 2 U Ui j i j1 1
1

2 2
2 ① ② ③

n1 or 2 <0
>0 1 0 0

<0 0 0 1

n

>0
>0 0 0 0

<0 0 1 0

<0
>0 1 0 0

<0 0 0 1

= =i i 01 2

>0 1 0 0

<0 1 1 1

Table 1.  Transmission spectrum symmetries (①,②,③) of an n-ZNR ap junction for even n but different 
disorder configurations. Configurations of the two edge-site disorders (α = 1, 2) are described by their lateral 
positions αj  (1 for upper edge and n for lower edge), longitudinal positions αi  with =i i1 2  (negative for left side 
and positive for right side), and sign of α

α α
Ui j,  with =U Ui j i j,

1
,

2
1 1 2 2

. The presence and absence of symmetry is 
denoted by 1 and 0, respectively.

Figure 2.  Transmission spectra of spins ↑ and ↓ under p (solid and dashed) and ap (dash-dotted and dotted) 
junction in a two-probe junction of 4-ZNR with = = .m M t5, 0 1  for (a) = =U U 01 2 , (b) = =−U t U t,5,1

1
5,1

2 , 
(c) = = −U t U t,4,1

1
5,1
2 , and (d) = = −−U t U t,5,1

1
5,1

2 . The energy bands of a virtual bulk ZNR with supercell the 
same as region C of the configuration in (c) under p junction are also plotted in (e) for spin spins ↑ and in (f) for 
spin ↓.
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appear in ap junction in case <U U 0i j i j
1 2
1 1 2 2

, =j j n1 2 , and ≥i i 01 2  as shown in Table 1. Symmetry ② also appears in 
the spectra in p junction if <U U 0i j i j

1 2
1 1 2 2

.
The transmission spectra in case <U U 0i j i j

1 2
1 1 2 2

, =j j 11 2 , and <i i 01 2  are illustrated in Fig. 2(d). Under p junc-
tion, the transmission spectra show symmetry set (0,1,0) for the same reason discussed in Fig. 2(c). Under ap 
junction, the spectra is described by symmetry set (0,0,1) with symmetry ③ satisfied. As illustrated in Table 1, 
symmetry ③ also appears on the spectra if <U U 0i j i j

1 2
1 1 2 2

 in case =j j n1 2
2 and <i i 01 2 , =j j n1 2  and <i i 01 2 , or 

=j j n1 2  and = =i i 01 2 .

Pure charge or pure spin thermopower.  To achieve pure charge thermal current, we look for systems 
having transmission spectra with symmetry ① and without symmetry ② and ③, i.e. symmetry set (1,0,0). As 
illustrated in Table 1, symmetry ① can be satisfied only in four cases under the ap junction. However, the current 
may vanish in case =j j n1 2 , = =i i 01 2 , and >U U 0i j i j,

1
,

2
1 1 2 2

 due to the wide transmission gap at the Fermi level, 
and in case =j j n1 2 , = =i i 01 2 , and <U U 0i j i j,

1
,

2
1 1 2 2

 since Sc and Ss become zero for transmission spectra with 
symmetries ①, ② and ③. Therefore, pure thermal charge current with ≠S 0c  and =S 0s  can be observed in the 
two cases when <i i 01 2  and >U U 0i j i j,

1
,

2
1 1 2 2

.
In Fig. 3(a,b) we present transmission spectra and Seebeck coefficients versus temperature, respectively, in a 

4-ZNR junction with =m 5 and = .M t0 1  for = =−U U t3,1
1

3,4
2  under ap junction. A large transmission peak 

appears at t0 044ε = − .  while a small one appears at ε = . t0 045 . The transmission spectra satisfy symmetry ① 
but not ② and ③. Sc shows linear dependence on T  (solid) with µ≈dS dT k t/ 3498 V/ Kc B  in agreement with the 
Mott’s formula (dotted) at low temperature and then saturates at high temperature > .T t k0 075 / B. This happens 
when the nonlinear spectra play a great role at the high temperature. Interestingly Ss is strictly zero in the whole 
range of temperature, and the pure charge thermal current is protected by the symmetry of the system.

Pure spin thermal current appears for transmission spectra with symmetry ② but without ① and ③, i.e. 
symmetry set (0,1,0). Symmetry ② can be satisfied only in three cases as shown in Table 1. However, the current 
may vanish in case =j j n1 2 , = =i i 01 2 , <U U 0i j i j

1 2
1 1 2 2

 under the ap junction since Sc and Ss become zero for trans-
mission spectra with symmetries set (1,1,1). Therefore, pure thermal spin current with ≠S 0s  and =S 0c  can be 
observed only in cases <U U 0i j i j

1 2
1 1 2 2

 under the p junction and =j j n1 2 , >i i 01 2 , <U U 0i j i j
1 2
1 1 2 2

 under the ap 
junction.

In Fig. 4(a)we show the transmission spectra in a 4-ZNR p junction with two local potential = − =U U t0,1
1

0,4
2 . 

The spectra show symmetry set (0,1,0) and their slopes remain almost constant over a large range near the Fermi 
level. As a result, as shown in Fig. 4(b), Ss  (dashed) follows very well the Mott’s formula (dotted) with 

µ≈dS dT k t/ 7446 V/ Ks B  until ≈ .T t k0 01 / B which is around the room temperature T = 300K for ZGNRs. On the 
other hand, Sc vanishes strictly in the whole range of temperature, indicating the realization of pure thermal spin 
current due to the symmetry. This suggests promising application potential for thermo-spintronics in large range 
of temperature.

Disorder inside nanoribbon.  The electron transport in ZNRs is carried out via edge states corresponding to 
the energy bands near the Fermi level. Disorders inside nanoribbon have much less influence to the transmission 
spectra than those on edge. The transmission spectra deviate only slightly from those in pristine ZNRs if both 
local potentials are located inside. Nevertheless, proper disorder inside can be used to fine-tune the spectra as 
well as the thermoelectricity. This can be used to improving the symmetry of the transmission spectra to achieve 
higher thermopower performance in some cases as discussed below.

Figure 3.  (a) Transmission spectra and (b) Seebeck coefficients versus the temperature of a 4-ZNR ap junction 
with = = .m M t5, 0 1 , and = =−U U t3,1

1
3,4

2  are presented. Sc estimated from the Mott’s formula is show by the 
dotted line.
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In Fig. 5 we show the transmission spectra, (a) and (b), and Seebeck coefficients, (c) and (d), for a wider ap 
junction made of 10-ZNR for =m 5 and = .M t0 1 . There is one local potential on edge with =U t4,1

1  while a 
second is located inside with =U t4,4

2  (dotted and dash-dotted). For the sake of comparison, we present also the 
results in the absence of the second potential with =U 04,4

2  (solid and dashed).
In the absence of the second potential with =U 04,4

2  the transmission spectra satisfy roughly symmetry ② as 
illustrated in Fig. 5(a). Two peaks with almost the same size appear on both sides of the Fermi level. However, as 
zoomed in Fig. 5(b), the curves of τ↑ and τ↓ are not strictly mirror of each other with respect to the Fermi level. 
The τ↑ peak at ε = − . t0 021  (solid) is much lower than the τ↓ peak at ε = . t0 021  (dashed). The corresponding 
charge Seebeck coefficient does not vanish as shown by the thin solid curve in Fig. 5(c). Though a huge Ss peak is 
obtained around = .T t k0 007 / B (thin dashed), we do not have pure thermal spin current in the system.

Figure 4.  (a) Transmission spectra and (b) Seebeck coefficients versus temperature in a 4-ZNR p junction with 
=m 5, = .M t0 1 , =U t0,1

1 , and = −U t0,4
2 . Ss from Mott’s formula is marked by the dotted line.

Figure 5.  (a) Transmission spectra of a 10-ZNR ap junction for =m 5, = .M t0 1  and =U t4,1
1  with (dotted and 

dash-dotted) and without (solid and dashed) U4,4
2 . (b) Zoom of (a) near the Fermi level. (c) The corresponding 

Seebeck coefficients versus T . (d) Zoom of (c) near = .T t k0 007 / B for the charge Seebeck coefficients.
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This situation can be improved if we add the second potential inside the nanoribbon with =U t4,4
2 . It increases 

(reduces) the τ↑ (τ↓) peak at t0 021ε = − .  (= . t0 021 ) as shown by the dotted (dash-dotted) curve in Fig. 5(b). This 
weakens the asymmetry of the spectra and suppresses Sc significantly at high temperature. At = .T t k0 007 / B, as 
zoomed in Fig. 5(d), =U t4,4

2  reduces Sc  from µ40 V/K to µ20 V/K while remains µ≈ −S 646 V/Ks  intact.

Figure of merit.  In Fig. 6(a), we show the transmission spectra of a 4-ZNR ap junction with =m 5, 
= .M t0 1 , and = =−U U t2,1

1
2,1

2 . They are spin degenerate with symmetry set (1,0,0) and have a huge peak below 
the Fermi level at ε = − . t0 4 . A steep downhill slope passes through the Fermi level and the transmission remains 
relatively low at high energy. The junction shows a pure charge thermopower over µ100 V/K at high temperature, 
a steady temperature dependence of conductance, and almost linear temperature of electron thermal conduct-
ance11 as illustrated in Fig. 6(b–d), respectively. The charge figure of merit Z Tc  can be larger than one near 

= .T t k0 01 / B as shown in Fig. 6(e) if the phonon thermal conductance is negligible which might be reasonable in 
some cases24. Assuming a typical phonon thermal conductance κ = . n0 19 W/Kph  of pristine ZGNR at room tem-
perature6, we obtain a steady ≈ .Z T 0 5c  at high temperature as shown in Fig. 6(f) κ = . n0 19 W/Kph .

Interestingly, using the definition of Z Ts  in Eq. (4), we observe that it vanishes if the transmission spectra of 
junction show any symmetry of ①, ②, and ③. This happens because we have =↑ ↓G G  and =G 0s  in the presence 
of symmetry ① or ② while = =S S 0s c  for symmetry ③. Therefore, a large Z Ts  could be found only when symme-
try ①, ②, and ③ are all broken. One case with significant Z Ts  value is illustrated in Fig. 7, where the transmission 
spectra are plotted with the temperature dependence of conductance and thermoelectric parameters in a 4-ZNR ap 
junction of =m 5 and = .M t0 1  with two local potential = =U U t5,1

1
3,1
2 . At ε = 0 both τ↑ and τ↓ have positive slope 

and τ τ τ τ′ ≈ ′↓ ↓ ↑ ↑/ 3 / , so Sc and Ss have opposite sign but almost the same magnitude as shown in Fig. 7(a,b). In larger 
range of energy, however, τ↑ has a wide gap below the Fermi level and a peak at ε = . t0 04  while τ↓ increases to 1 
around ε = − . t0 09  and has a wide gap above the Fermi level. This variation of τ↑ and τ↓ reverses the sign of ↓S  and 
gives ≈ −S S6S C at = .T t k0 01 / B. The spin conductance Gs does not vanish due to the absence of symmetry ① and 
② in the transmission spectra and the electronic thermal conductance κe increases steadily with the temperature as 
illustrated in Fig. 7(c,d). As a result, a huge thermoelectric figures of merit >Z T 5s  is obtained around = .T t k0 01 / B 
with relative small Z Tc  as shown in Fig. 7(e) if the lattice thermal conductance κph is neglected. As shown in Fig. 7(f), 
a peak value of = .Z T 1 852s  at = .T t k0 0145 / B can be reached even if we use κ = . n0 19 W/Kph , the value for perfect 

Figure 6.  (a) Transmission spectra of a 4-ZNR ap junction with =m 5, = .M t0 1 , and = =−U U t2,1
1

2,1
2  are 

plotted together with the temperature dependence of (b) Seebeck coefficient, (c) conductance, (d) electron 
thermal conductance, (e) thermoelectric figures of merit ZT  neglecting the phonon thermal conductance 
(κ = 0ph ), and (f) ZT  assuming κ = . n0 19 W/Kph , a typical value for pristine ZGNR6.
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ZGNRs at room temperature6, which might be an overestimated value in most of the cases since κph of ZNR can be 
significantly reduced by physical and chemical modification47. Our results suggest that the GNRs with double disor-
der on edges have application potential for high performance spin thermoelectric devices.

Finite temperature bias.  We have seen that charge and spin thermoelectric parameters of FM ZNR junc-
tions can be well manipulated by double local disorders in the linear regime of temperature bias. Especially locat-
ing the two disorders in the domain wall of an ap junction can give ample variety of the parameters and introduce 
desired spin polarization in the systems. In this subsection, we consider a 4-ZNR ap junction with the length of 
region C or the domain wall =m 10 and a maximal edge Zeeman energy = .M t0 15  when the temperature of 
right electrode is fixed at = .T t k0 001 /R B and the strength ratio of the two local potentials reads =U U27,1

1
5,1
2 . The 

variation of the left electrode temperature and the potential strength can also be used to control the spin polari-
zation of current in the system.

In Fig. 8(a) we plot SP as a function of TL for the disorder strength = =U U t27,1
1

5,1
2 . In the linear regime 

≈ = .T T t k0 001 /L R B SP remains almost constant at a value of 0.19. Then it turns upward around 
− = .T T t k0 001 /L R B and increases monotonically in the whole temperature range. At = .T t k0 01 /L B =SP 1 is 

achieved which means spin-down electrons do not contribute to the current. Furthermore, the spin-down elec-
trons reverse their flowing direction leading to >SP 1 at > .T t k0 01 /L B. When we inverse the sign of the disorder 
or set the local potential = = −U U t27,1

1
5,1
2 , SP changes its sign and the SP curve turns upside down as shown in 

Fig. 8(b). Note that the sign inversion of disorder strength can be realized by change the doping type between n 
and p in case of doping disorder20. So we can control the spin type of the thermoelectric system by choosing the 
doping type. This happens because the spin up (down) current is mainly carried by electrons (holes) in a large 
range of energy as illustrated by the transmission spectra in Fig. 8(c,d) for potential strength =U t7,1

1  and 
= −U t7,1

1 , respectively. τ↑ (τ↓) has a big peak above (below) the Fermi level but vanishes below (above) in the 
energy range between ε− . < < .t t0 15 0 15 . In addition we observe another symmetry of the spectra with τ εσ( ) at 

=U t7,1
1  being equal to τ ε−σ( ) at = −U t7,1

1 . This spectra result in the sign inversion of SP with the sign inversion 
of disorder potential U.

A full picture of the SP dependence on the disorder strength is shown in Fig. 8(e), where SP versus U7,1
1  at 

= .T t k0 01 /L B is plotted and we have approximately SP U SP U( ) ( )7,1
1

7,1
1= − − . Pure spin current with infinite SP 

might be achieved near = − .U t0 47,1
1 , 0, and . t0 4 . This corresponds to opposite flow directions of spin-up and 

spin-down electrons so + =↑ ↓I I 0 as shown in Fig. 8(f). In cases of high disorder strength > .U t0 47,1
1 , one of 

the spin channel is blocked and we always have the same type of spin current with = − >↑ ↓I I I 0S . For negative 

Figure 7.  The same as Fig. (6) in disorder configuration = =U U t5,1
1

3,1
2 .
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U  we have negative charge current with = <↓I I 0C  and ≈ −SP 1 while for positive U  we have positive charge 
current with = >↑I I 0C  and ≈SP 1. The above properties allow us to design and control spin polarized current 
in a convenient and highly responsive way, which has great value on the application in spintronics.

Conclusion
Employing the nonequilibrium Green functions in the tight-binding model, we have studied the thermoelectric 
properties of graphene-like zigzag nanoribbons modified by two on-site disorder potentials. We emphasize that 
the characteristic thermopower in a two-probe junction is closely relevant to the symmetry of its transmission 
spectra, and also to the geometry configuration of the host material and the disorders. Junctions of even-width 
FM ZNRs with antiparallel electrode magnetizations have shown ample variation for subtle manipulation. 
Choosing properly the locations of two edge disorders, we can obtain spin-up and spin-down transmission spec-
tra with desired symmetries such as ① spin symmetry, ② mutual mirror symmetry, and ③ mirror symmetry. 
Pure charge thermal current appears in case of transmission spectra with only symmetry ①. Pure spin thermal 
current appears in case of transmission spectra with only symmetry ②. No current can be observed in case of 
transmission spectra with symmetry ③ or both symmetry ① and ②. However, to obtain high Z Ts  value, we need 
to break slightly symmetry ② and get a finite spin conductance. Assuming a lattice thermal conductance 
κ = . n0 19 W/Kph  estimated from perfect ZGNR, we obtain ≈ .Z T 0 5c  and ≈Z T 2s  in some ZNRs modified by 
double edge disorders. Optimistically, >Z T 1c  and >Z T 5s  might be available if the lattice thermal conductance 
can be suppressed by the disorders or other modifications. Disorder potentials of opposite sign work on different 
types of carriers similar to n- and p-type dopings in semiconductors. This suggests another possible symmetry in 
the system and might offers an extra degree of freedom for the spin polarization manipulation of thermal current. 
Different from edge modification, disorders inside ZNRs can have limited effects on thermopower and can be 
used to finely tune the thermoelectric properties.

Received: 27 January 2020; Accepted: 11 May 2020;
Published: xx xx xxxx

Figure 8.  Spin polarization SP versus the temperature difference −T TL R in a 4-ZNR ap junction with =m 10 
and = .M t0 15  at = .T t k0 001 /R B for (a) = =U U t27,1

1
5,1
2  and (b) U U t27,1

1
5,1
2= = − . The corresponding 

transmission spectra are plotted in (c,d), respectively. (e) Spin polarization and (f) the corresponding current 
versus the disorder strength =U U27,1

1
5,1
2  are also plotted for the same junction at = .T t k0 01 /L B, = .T t k0 001 /R B.
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