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Introduction
DNA signature is a short k-mer oligonucleotide fragment with 
an arbitrary length k, which is unique or specific for a particu-
lar group of species selected from a target genome database. 
There are two categories of unique and common signatures 
according to the purpose of usage. The presence of a unique 
DNA signature in any volume of sequences and genetic mate-
rials represents the existence of the corresponding species.1,2 
Therefore, signature discovery is the action of finding specific 
fragments of genome in a database.3 Any pipeline, application, 
or algorithm that is designed for DNA signature discovery 
has to detect an entire database or multiple databases recur-
sively. The procedure varies according to the purpose of using 
DNA signatures.

Despite the impact of the sequences 16S rDNA and 16S 
rRNA in the microbial taxonomy, they are particularly use-
ful for taxa above the rank of species. Because of sequence 
similarities, they are not sufficient to define bacterial species 
and strains.4 Approximately 15% of bacterial genomes contain 
only a single copy of 16S rRNA.5 Since the high-throughput 
sequences are often noisy and partial,6 the application of 16S 

sequences for the next-generation sequencing (NGS) data 
analysis at species level is even less efficient. Concerning the 
large number of DNA signatures in different species and the 
possibility to choose arbitrary lengths of them for identifica-
tion, this approach is not only suitable for polymerase chain 
reaction (PCR) and microarray-based assays but also has great 
potential for NGS analysis. The pipeline high-throughput 
signature finder (HTSFinder) that is proposed in this paper 
has been designed to address some of the challenges of DNA 
signature discovery in order to enhance the usability of DNA 
signatures for NGS analysis.

Several tools and algorithms of DNA signature discov-
ery have been proposed in the literature in order to facilitate 
the design of microbial and pathogen-based diagnostic assays; 
notable instances are discussed in the following sections.

Tool for Oligonucleotide Fingerprint Identification (TOFI)7  
is designed to identify DNA fingerprints of a  single genome 
as suitable probes for microarray-based diagnostic assays. It 
utilizes the whole genome of the pathogen instead of the spe-
cial gene (such as 16s rRNA) or special regions of the genome 
for designing probes.8 In order to design DNA microarray 

HTSFinder: Powerful Pipeline of DNA Signature Discovery  
by Parallel and Distributed Computing

ramin Karimi1 and andras Hajdu1,2

1Faculty of Informatics, Department of Computer Graphics and Image Processing, University of Debrecen, Debrecen, Hungary. 
2Bioinformatics Research Group, University of Debrecen, Debrecen, Hungary.

AbstrAct: Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with 
this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very 
first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identifica-
tion method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. 
In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome 
k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive 
DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget 
databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings 
the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial 
genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identifica-
tion process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation 
sequencing analysis.

Keywords: DNA signature, k-mers, Hadoop, WordCount, MapReduce, Hive

CiTATioN: Karimi and Hajdu. Htsfinder: Powerful Pipeline of Dna signature Discovery 
by Parallel and Distributed computing. Evolutionary Bioinformatics 2016:12 73–85  
doi: 10.4137/EBo.s35545.

TYPE: technical advance

RECEivED: september 28, 2015. RESubmiTTED: november 5, 2015. ACCEPTED 
FoR PubliCATioN: December 05, 2015.

ACADEmiC EDiToR: Jike cui, associate Editor

PEER REviEw: six peer reviewers contributed to the peer review report. reviewers’ 
reports totaled 2604 words, excluding any confidential comments to the academic editor.

FuNDiNg: this study was supported in part by the Project tamoP-4.2.2.c-11/1/
KONV-2012-0001 supported by the European Union and cofinanced by the European 
Social Fund. The authors confirm that the funder had no influence over the study design, 
content of the article, or selection of this journal.

ComPETiNg iNTERESTS: Authors disclose no potential conflicts of interest.

CoRRESPoNDENCE: raminkm2000@yahoo.ca

CoPYRigHT: © the authors, publisher and licensee libertas academica limited. this is 
an open-access article distributed under the terms of the creative commons cc-By-nc 
3.0 license.

 Paper subject to independent expert blind peer review. all editorial decisions made 
by independent academic editor. upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of 
agreement to article publication and compliance with all applicable ethical and legal 
requirements, including the accuracy of author and contributor information, disclosure of 
competing interests and funding sources, compliance with ethical requirements relating 
to human and animal study participants, and compliance with any copyright requirements 
of third parties. this journal is a member of the committee on Publication Ethics (coPE).

 Published by libertas academica. learn more about this journal.

http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.la-press.com
http://dx.doi.org/10.4137/EBO.S35545
mailto:raminkm2000@yahoo.ca
http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Karimi and Hajdu

74 Evolutionary Bioinformatics 2016:12

probes, TOFI reduces the solution space by  discarding DNA 
sequences that are common to the target sequence and one or 
more phylogenetically close sequences. Then, each extracted 
DNA microarray probe is compared with all DNA sequences 
from the chosen reference database.7

Tool for PCR Signature Identification (TOPSI)9 is a  
pipeline for real-time PCR signature discovery. TOPSI 
detects common signatures among multiple strains of bacte-
rial genomes by collecting the shared regions through pair-
wise alignments between the input genomes. It is an extended 
version of TOFI.9,10

Insignia11 provides unique signatures that can be used to 
design primers for PCR and probes for microarray assays. It 
has two main components: the web interface and the com-
putational pipeline. The computational pipeline uses grid 
computing and an algorithm to perform pairwise alignment 
of every pair of target genomes and background genomes for 
their comparison. Insignia provides signatures that are unique 
against the background genomes based on databases of bacte-
rial and viral genomic sequences containing 13,928 organisms 
(11,274 viruses/phages and 2,653 bacteria).12 In fact, when a 
user adjusts the desired options in the Insignia web interface, 
a query runs on the database that contains the results of DNA 
signature discovery which has already been provided.

TOFI, TOPSI, and Insignia use the open-source soft-
ware MUMmer13 that implements a suffix-tree-based algo-
rithm for comparing genomic sequences.7,9,11 It is a package for 
the alignment of very large DNA and amino acid sequences. 
Furthermore, these three pipelines use Basic Local Align-
ment Search Tool (BLAST) for the evaluation of signatures 
regarding specificity.

CaSSiS14 is an algorithm for detecting signatures with 
maximal group coverage within a user-defined specificity range 
for designing primers and probes. It provides signatures for 
single or group organisms in hierarchically clustered sequence 
datasets. This algorithm calculates the Hamming distance 
between a signature candidate and its matched targets. CaSSiS 
uses the rRNA sequences provided by the database SILVA to 
create a signature collection for designing primers and probes.

The consecutive multiple discovery (CMD) algorithm15 
is an iterative method including the parallel and incremental 
signature discovery (PISD) method as a kernel routine to dis-
cover implicit DNA signatures. PISD is a combination of the 
Hamming-distance-based algorithm, the Internal-memory- 
based unique signature discovery (IMUS) approach,16 and 
Zheng’s method17 in terms of using the corresponding incre-
mental and parallel computing techniques. PISD uses a 
mismatch tolerance and previously discovered signatures 
of specific lengths as candidates to find shorter signatures 
instead of scanning the whole database. CMD and PISD can 
find unique signatures for single sequences, but cannot search 
for signatures that are specific for groups;16 they are designed 
to find signatures of sequences from expressed sequence tag 
(EST) databases.

The internal memory-based unique signature discovery 
algorithm IMUS16 is an improvement of Zheng’s method,17 
which is based on the Hamming distance for detecting 
unique signatures. IMUS tries to discard similar substrings of 
a sequence in order to obtain the DNA signatures as unique 
fragments. Parallel internal-memory-based unique signature 
discovery (PIMUS)18 is the improved version of IMUS. Both 
algorithms load the complete DNA database into the main 
memory to find unique signatures in EST datasets.

Distributed divide-and-conquer-based signature dis-
covery (DDCSD)19 applies a divide-and-conquer strategy 
for detecting DNA signatures. When the dataset is large 
and cannot be loaded into the memory all at once, the algo-
rithm splits it into smaller segments in which parts are loaded 
and processed one by one. The discovery node and the discov-
ery routine are the main components of this algorithm. When 
the size of the dataset is larger than the available memory, the 
discovery routine splits the dataset into multiple parts that are 
processed one at a time by the discovery nodes. This algorithm 
is based on searching for similarities and mismatches in the 
patterns. Similar to CMD, PISD, IMUS, and PIMUS, this 
algorithm is designed to search EST datasets, but it can pro-
cess larger databases such as the human whole-genome EST 
database as well. Table 1 contains some more details on the 
algorithms described earlier.

Jellyfish20 is an algorithm to count the k-mers in parallel. 
This algorithm implements a lock-free hash table optimization 
for counting k-mers up to 31 bases in length.

There are other approaches to find signatures or probe 
sequences, such as PROBESEL,21 OligoArray,22 OligoWiz,23 
YODA,24 PRIMROSE,25 and ARB-ProbeDesign.26 All of 
them are limited to one selected target or single sequence in 
each run; thus, they are not applicable for large datasets.14

In practice, despite the respected efforts of abovemen-
tioned and other methods, there are still a number of limita-
tions for DNA signature discovery.

Since most existing methods of DNA signature dis-
covery require significant computational resources, they are 
not applicable for the entire research community. Due to 
the size of genome databases, the large amount of random-
access memory (RAM) and central processing unit (CPU) 
capacity requirements and long execution times are the major 
limitations of most of the abovementioned methods that are 
based on pattern comparison and pairwise alignment of the 
genomes. The determination of the mismatch tolerance level 
as a discovery condition also influences the results.

In some cases, it is necessary to load the whole dataset into 
the main memory for searching for unique or common signa-
tures. When the size of the data exceeds the available memory, 
the execution will fail. For instance, in IMUS, PIMUS, and 
Zheng’s methods, the entire database has to be loaded into the 
memory.19 Thus, for such sequential algorithms like IMUS, 
increasing the number of CPU cores does not increase the 
discovery efficiency of the algorithm.18 Another limitation for 
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most of the abovementioned methods is the lack of efficiency 
to find both unique and common signatures simultaneously. 
Most of them are capable to find only DNA signatures of a 
single genome. In addition, the limitation of some of these 
methods is the lack of the possibility to select an arbitrary 
length (k) for the signatures.

The additional challenge as another major limitation for 
DNA signature discovery methods is the lack of option in 
the choice of target and nontarget genome databases. TOFI, 
TOPSI, and Insignia use BLAST databases (such as nt and nr 
databases) for the background or nontarget genomes for speci-
ficity evaluation of signatures and there is no option for the 
user to choose other target and nontarget genome databases. 
As an example, in the Insignia web interface, the user receives 
a quick response without special requirements on local com-
putational resources. However, this privilege comes with the 
restriction that there is no option to use other sequences as 
the target and background genomes, because they are part 
of the Insignia database.19 With the advancements of the 
sequencing technologies and the increasing number of com-
plete genomes, whole-genome shotgun sequences, and draft 
genomes, it is obvious that some of these signatures will not 
be unique later using BLAST specificity evaluation. This issue 
is a challenge not only for DNA signatures but also for all the 
sequence-based identification methods.

Geographical distribution and diversity of the species, 
ecological and chemical status, host and environmental fac-
tors, isolation or complexity of the samples, and many other 
factors can have a great impact on the selection of target 
and nontarget genome databases for DNA signature discov-
ery. When the absence of a considerable number of species 
in the sample is evident, it seems quite questionable that we 

eliminate a large number of useful DNA signatures through 
their assessment and specificity evaluation against the entire 
background sequence databases such as BLAST. For instance, 
when we are sure that, in the sample, there is nothing from 
zebra fish, mouse, chimpanzee, black cottonwood, Macaca fas-
cicularis, etc., we do not need to check the uniqueness of our 
DNA signatures against their genomes; otherwise, we would 
lose a significant number of signatures.

ESTs are short fragments of mRNA sequences obtained 
by single sequencing of randomly selected cDNA clones. 
ESTs are mostly used either to identify gene transcripts or 
as an alternative cheap method of gene discovery and gene 
sequence determination.27

IMUS, PIMUS, CMD, PISD, and DDCSD are designed 
to scan EST sequences for the unique signatures. However, the 
ESTs represent only fragments of genes, not complete coding 
sequences;28 therefore, many signatures are missed.

The pipeline HTSFinder has significant advantages com-
pared with the DNA signature discovery pipelines and algo-
rithms described earlier.

•	 First, HTSFinder is capable to detect all unique, com-
mon, and maximal group coverage signatures of the 
entire database or multiple databases simultaneously.

•	 Second, it becomes possible to select target and nontar-
get genome databases, based on user requirements. For 
instance, we have the ability to use both forward and 
reverse-complement genome sequences of a database for 
detecting DNA signatures.

•	 Third, the pipeline can be considered either a cluster of 
 low-cost computer nodes that are commonly available in 
research facilities or a high-performance computing (HPC).

Table 1. a comparison of signature discovery algorithms according to the data format, computational resources, and ability to process single or 
multiple sequences.

NAmE DATA  
FoRmAT

ADoPTED PlATFoRm ACCoRDiNg  
To THE PubliCATioN

blAST  
SPECiFiCiTY

AbiliTY FoR  
SiNglE  
SEquENCE

AbiliTY FoR 
mulTiPlE 
SEquENCES

tofi fasta 64 x 1.5 GHz itanium 2 processors running  
on linux with 64 GB of shared memory

  ×

toPsi fasta 98-cores linux cluster   

insignia fasta 192-node linux cluster   

cassis rrna intel core i7 cPu (4 cores, 2.67 GHz) with  
24 GB of ram

×  

cmD and  
PisD

Ests Dell PowerEdge r900 server with two intel  
Xeon E7430 2.13 GHz quad-core cPus,  
12 GB ram

×  ×

imus Ests intel 2.93GHz cPu ×  ×

Pimus Ests intel core i7 870 2.93GHz quad-core cPu  
and 16 GB ram 

×  ×

DDcsD Ests a master node: intel core i7 cPu 870 at  
2.93 GHz and 16 GB ram
10 slave nodes: intel core i7 cPu 3770 K  
at 3.50 GHz and 32 GB of ram for each one 

×  
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•	 Finally, the flexibility of the different phases of the pipe-
line makes it suitable for other bioinformatic and meta-
genomic studies such as NGS analysis.

HTSFinder is very efficient and powerful with high accu-
racy for both unique and group-specific signatures without 
discarding even a single signature from the database, except 
those ones that contain the International Union of Pure and 
Applied Chemistry (IUPAC) nucleotide codes such as K, M, 
N, R, S, W, and Y. Our GkmerG component will remove any 
k-mer containing IUPAC nucleotide codes after generating 
the k-mers. In this pipeline, there is nothing to worry about 
the mismatch tolerance and complexity of comparison and 
pairwise alignment search methods.

Materials and Methods
description of the pipeline. HTSFinder consists of three 

computational phases as shown in Figure 1. This pipeline gen-
erates all the possibilities of k-mers for every genome indi-
vidually and then determines their frequency in the entire 
database. Finally, DNA signatures of every species or strain are 
obtained in the database or multiple databases that have been 
involved in the pipeline. HTSFinder implements the parallel 
and distributed computational tool Hadoop for the second and 
third phases.

data preparation. The first phase of the pipeline is car-
ried out by GkmerG that is designed to obtain all the possibil-
ities of k-mers of genome sequences with FAST-All (FASTA) 
format (*.fna or *.fa). This software tool removes the remarks of 
the genome and splits it to the specific length k. Then, it elimi-
nates the k-mers that contain IUPAC nucleotide codes and 
every subsequence of length less than k which has remained 
from the end of the sequence after splitting. Figure 2 illus-
trates the split of the genome by GkmerG. Concatenating the 
files, sorting k-mers, and removing all duplicates except one 
are the last steps of GkmerG. For the species with multiple 

chromosomes and some bacterial genomes that are composed 
of multiple chromosomes29 and plasmids, GkmerG concate-
nates them into a single file before sorting at the end of the 
first phase. GkmerG copies the original database into another 
directory as the reference database by appending a number 
to the beginning of every species name in it, to simplify the 
future data management. Once we get the output of the first 
phase for a database, we can keep it forever. In case of any 
update in the database, we need only to repeat this phase for 
the updated or new genomes, not for the whole database. The 
output of GkmerG is the input for the second step in the pipe-
line which is described in the following section.

The Apache Hadoop. Dramatic increase in the amount 
of data in various, particularly biological fields of science 
revealed the inadequacy of existing ordinary computers for 
big data analytics. It has prompted the developers to compose 
tools and applications using parallel and distributed comput-
ing that could be applicable on commodity hardware. The 
Apache Hadoop project30–32 has been designed as an open 
source, Java-based software framework for parallel and dis-
tributed computing on large datasets using commodity hard-
ware. Hadoop allows to run simple programming models on 
large structured and unstructured datasets across an arbitrary 
number of nodes in a cluster. A Hadoop cluster has single mas-
ter and several slave nodes that are connected to each other 
through Secure Shell. It can run as a single-node or multi-
node cluster with thousands of nodes. The Hadoop core has 
two primary components: Hadoop Distributed File System 
(HDFS) and MapReduce.

HDFS31,33 is the data storage part of Hadoop. It pro-
vides high-throughput access to large datasets across multi-
nodes of a cluster. HDFS breaks down the data into small 
chunks, which are stored as independent elements. HDFS 
provides input data storage for the Map Reduce framework.

MapReduce31 is a programming model for parallel and 
distributed data processing. MapReduce works by breaking 

1
Generating k-mers of individual genomes for the entire

database with GkmerG.

Counting the frequency of k-mers, using Apache Hadoop
and WordCount program.

Using Apache Hive to find correspondence between
signatures and their related genomes.

2

3

Figure 1. the three main phases of Htsfinder for detecting Dna signatures. We can repeat the second phase with the obtained results if required.
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The result of this step is a large file containing sorted 
and non-duplicate list of k-mers obtained from the files gen-
erated in the first step in one column and another column 
containing the frequencies of k-mers among genomes of the 
database. A k-mer with a frequency value 1 indicates that 
this k-mer is a unique substring that appeared only in one of 
the species in the database. These occurrences are primarily 
what we are looking for as unique DNA signatures. Any value 
preceding a k-mer indicates the number of genomes (species) 
that contain the given k-mer. Table 2 shows a portion of the 
Hadoop and WordCount output. For instance, the 18-mer 
with frequency 8 in the first row of Table 2 means that this 
18-mer occurs in eight genomes among the 2,773 bacterial 
ones, while the 18-mer in the fourth row is a unique signa-
ture in the database. In the second step of the pipeline, we 
can extract all unique signatures or group-specific signatures 
due to the frequency, but we cannot determine the owner of 
the signatures.

Once we execute the second phase for a database, we can 
use the results in the future until the next update of the data-
base. However, as a difference from the updatable first phase, 
in case of any update in the database, we have to repeat the 
second phase for the entire database.

When there are multiple target and nontarget data-
bases, it is possible to merge all of them in the pipeline, but 

Figure 2. splitting of the genome by GkmerG for k = 18 to get all the possibilities of 18-mers. Generating k-mers for a single genome with GkmerG 
includes: purgation, splitting, concatenation, cleaning, sorting, and removing duplicate except one. The output of GkmerG is a file containing k-mers of a 
genome in a single column. The labels above the file numbers in this figure represent the beginning of four k-mers in the head of files.

the processing into two phases: the Map and the Reduce. The 
Map phase processes a set of data in parallel and returns it as 
an intermediate result, and then the Reduce phase reduces it 
to a smaller set of data. Each Map and Reduce works inde-
pendently. In fact, MapReduce decreases the large amount 
of raw input data into smaller amount of useful data for 
further processing.34,35

As another component of the second-generation Hadoop 2 
release of Apache, YARN (Yet Another Resource Negotiator) 
was added in order to upgrade scheduling, resource manage-
ment, and execution in Hadoop.36

Although Hadoop is defined as a distributed system with 
multi-nodes, the ability of Apache Hadoop to use MapReduce 
for parallel processing of large datasets is an extra power to let 
even a single-node processes large datasets exceeding memory 
and CPU capacity.

In this research, we used the Hadoop framework and 
WordCount program to calculate the frequency of k-mers 
in very large genome datasets. In Hadoop 1.2.1 and ear-
lier releases, the JAR (Java Archive) file of WordCount 
is also included. Figure 3 illustrates a MapReduce and 
WordCount process.

In the second step of the pipeline, we copy all the out-
put files of the first step to the HDFS and run the Word-
Count program.
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as the input grows larger, it requires far more computational 
resources. As a suggestion, it is better to implement the first 
and second steps for every database separately. With respect 
to the WordCount function that discards repeated k-mers 
and keeps only one in the output, we can reduce the size 
of output files and also the execution time. Then, we can 
merge the output of the second phase for all the databases 
and repeat the second phase with WordCount in Hadoop 
one more time. In this case, we have a shorter process. More-
over, for the future execution, we can select the output files 
of the second phase as the candidate of their corresponding 
databases. In this case, we do not need to perform the first 
phase of the pipeline for the previously processed databases 
and we can repeat the second phase for target and nontar-
get databases by merging the smaller files. For instance, the 
output of the first phase for the bacterial genome database 
resulted in a file with 177.35 GB of 18-mers. However, in the 
second phase, the size of this file was reduced to 103.03 GB 
that contained all the candidates of 18-mers in the database 
without any repeat. We can use this file as the candidate of 
bacterial genome database for further processing. Figure 4 
illustrates the process of finding DNA signatures of the tar-
get database among nontarget databases.

The input for the third phase of the pipeline is the output 
of the first and second phases. The proper steps of the third 
phase are described in the following section.

The Apache Hive. Hive37–39 is a data warehouse infra-
structure on the top of the Hadoop MapReduce framework. It 
is designed to query a large dataset that is stored in the HDFS 
using an SQL-like language called HiveQL. Traditional, 
 relational databases require the data to be in a structured 
 format, while Hive can handle both structured and unstruc-
tured information. It lets the user to process large datasets 
with relatively little effort and in a reasonably short time. This 
research proves the efficiency of Hive to handle querying on 
billions of rows in a table or multiple tables. With HiveQL, we 
can extract whatever we need from the results of the second 
step of the pipeline. We can extract all the unique signatures 
of a specific species in the database or group-specific signa-
tures that are common among 2, 3, 4, etc. Due to the flex-
ibility of querying in Hive, there are various ways to create 
the tables and design the queries in the third step. Our future 
study is motivated by optimizing querying. After loading the 
data into the tables created with Hive, we can use queries such 
as SELECT and JOIN to extract relationships. We should 
create two tables with Hive: one for the output of the first 
phase and another one for the complete or a special part of 
the output of the second phase. By considering the ability of 
Hive to query very large tables and prevent the repetition of 
queries, we added a column containing the reference number 
to the files from the first step. For example, file 1 contains 
18-mers from the first species in the database, so we inserted a 
column containing reference index 1 before all 18-mers in this 
file. Then, we merged all the 2,773 files in a single large one 
(220.35 GB) with two columns of k-mers and their related ref-
erence numbers. The reference number indicates the number 
that has been appended to the name of the species by GkmerG 
in the first phase.

There are several options to create the table from the 
output of the second step: one is to create the table without 
making any changes in the output and another one is to break 
down the output into smaller groups according to the targeted 

Input

Deer Bear River
Car Car River
Deer Car Bear

Splitting Mapping Shuffling Reducing Final result

Car Car River

Deer Bear River

Deer Car Bear
Deer, 1
Car, 1
Bear, 1

Deer, 1
Bear, 1
River, 1

Car, 1
Car, 1

River, 1

Bear, 1
Bear, 1

Car, 1
Car, 1
Car, 1

Deer, 1
Deer, 1

River, 1
River, 1

Deer, 2

River, 2

Car, 3

Bear, 2

Bear, 2
Car, 3
Deer, 2
River, 2

Figure 3. an example of the overall mapreduce Wordcount process. the original image was made by trifork.

Table 2. an example of Hadoop and Wordcount results.

SigNATuRES oR 18-mERS FREquENCY iN 
THE DATAbASE

aaaaaaaaaaaaaaaGaG 8

aaaaaaaaaaaaaaaGat 25

aaaaaaaaaaaaaaaGca 20

aaaaaaaaaaaaaaaGcc 1

aaaaaaaaaaaaaaaGcG 5

aaaaaaaaaaaaaaaGct 6

aaaaaaaaaaaaaaaGGa 9

aaaaaaaaaaaaaaaGGc 3

aaaaaaaaaaaaaaaGGG 6

aaaaaaaaaaaaaaaGGt 38
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signature. For example, if we are looking for the unique sig-
natures, it would be better to extract only 18-mers with fre-
quency 1. However, if we are looking for a common signature, 
then it would be better to extract the 18-mers with a specific 
frequency number such as 2, 3, 4, etc. In order to have a faster 
and easier implementation with Hive and later steps, we 
 recommend the second option.

Source code for GkmerG and information and command 
lines for Hadoop and Hive are freely available at: http://www.
inf.unideb.hu/∼hajdua/HTSFinder.html, https://sourceforge.
net/projects/htsfinder/, and https://github.com/raminkm/
HTSFinder.

selected sequence databases. Bacterial genome database. 
To prove the efficiency of our proposed method, the bacterial 
genome databases with 2,773 complete genomes in FASTA 
format (*.fna) were downloaded from the National Center for 
Biotechnology Information (NCBI) database. The size of this 
database is 9.7 GB after decompression. The list of the bacte-
rial genomes is available in Supplementary Files.

The reverse-complement bacterial genome database. Another 
database that we used in this study was the reverse-complement 
bacterial genome database. The revcom.pl 1.2 (available at: http://
code.google.com/p/nash-bioinformatics-codelets/) is a Perl pro-
gram written by John Nash ( Copyright ©  Government of Canada, 
2000–2012). We used this program to provide the reverse-
 complement sequences for the whole bacterial genome database.

Human genome database. The whole human genome is 
another database used in this research. The Homo sapiens hs-
ref-GRCh38 sequences in FASTA format (*.fa.gz) were down-
loaded from the NCBI ftp database. The size of the genome 
was 2.9 GB after decompression.

results and discussion
results for the bacterial genome database. GkmerG has 

generated 2,773 files with a total size of 177.35 GB  containing 
all the possibilities of 18-mers from individual bacterial 
genomes in the first step of the pipeline. After  copying the 
results of the first step into the HDFS, we ran the Word-
Count program using Hadoop in order to determine the fre-
quencies of the 18-mers in the 2,773 files. The result of this 
execution was a 103.03-GB file with two columns. The first 
column contained the 18-mers or signatures, while the sec-
ond one contains the frequency number of each 18-mer. Fre-
quency 1 in this file represents the uniqueness of the related 

Extracting frequency = 1

Performing Hadoop and WordCount (second

phase) for each database individually
These signatures are unique in the database1

itself.

Extracting frequency = 1
Extracting frequency = 2

This output

file contains

only two

frequencies of

1 and 2

This output file 

contains k-mers

of all databases

Running Hadoop

and WordCount on

the output of all

databases

together

Running Hadoop

and WordCount

Unique signatures

for database1

against all

databases

1 2 3

Output for

database1

Output for

database2

Output for

database3

Output for

database4

Unique signatures

of all databases

Unique signatures

for database1

Figure 4. The recommended process for detecting unique DNA signatures of a target database against nontarget databases. In step 2 of this figure, the 
frequency number of k-mers varies from 1 to n, where n is the total number of the databases that are used in the pipeline. since there are four databases 
in this figure, the frequency of k-mers in step 2 is from 1 to 4. In step 3, there are two input files with the list of non-repeated k-mers; therefore, the 
frequency of k-mers in the output is 1 or 2. Hence, k-mers with frequency 2 that is common in both input files are the unique signatures of database 1 
against all databases.

Table 3. total number of 10 least and 10 most common signatures in 
the bacterial genome database.

FREquENCY
(lEAST 
CommoN)

NumbER oF 
SigNATuRES
iN THE DATAbASE

FREquENCY
(moST 
CommoN)

NumbER oF 
18-mERS
iN THE 
DATAbASE

1 3,552,866,254 2040 1

2 689,790,798 2042 1

3 245,109,794 2044 1

4 114,234,398 2074 2

5 68,395,645 2075 1

6 48,107,467 2102 1

7 31,544,271 2112 1

8 26,164,511 2113 2

9 23,650,821 2114 2

10 16,156,541 2125 1
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signature in the entire database. In other words, an 18-mer 
with frequency 1 is a unique signature among 2,773 bacte-
rial genomes and an 18-mer with frequency 2 is a common 
signature which is presented in two genomes among 2,773 
bacterial genomes. Table 3 represents the quantity of 10 least 
common and 10 most common 18-mers with their frequen-
cies in the  bacterial genome  databases. This table shows that 
3,552,866,254 of signatures are unique in the database and 
there is one subsequence (18-mer) that is repeated in 2,125 
bacterial genomes.

In the third phase, we have created tables in Hive and 
loaded files from the first and second phases. The table with 
the reference numbers and k-mers (220.35 GB) and the table 
with the list of unique signatures (67.5 GB) are used to run the 
query in Hive in order to specify the species and strains as the 
owners of the unique signatures. We have repeated the query 

on the table containing the list of signatures with frequency 2 
instead of the unique signature’s table to find every pair of spe-
cies with a common signature. For other frequencies, the same 
implementation is required.

As shown in Table 4, the output of the third phase was 
a file with two columns containing the following: the signa-
ture and the reference number indicating its corresponding 
 bacterial genome in the reference database created by GkmerG 
in the first phase.

The following examples are parts of the results obtained 
by HTSFinder to show the efficiency of this pipeline.

No unique DNA signatures with k = 18 were found for 
30 of the bacterial genomes in the database. They are listed in 
Supplementary Files.

The number of unique DNA signatures in 475 genomes 
was ,10,000. Chlamydia as a genus of bacteria with 83 species 

Table 4. an example of the output for the third phase (the right side of the table). the reference numbers in this table indicates the numbers 
appended by GkmerG for easier tracking of data in the pipeline.

SigNATuRE gkmerg  
REFERENCE  
NumbER

NAmE oF THE bACTERiAl gENomE

aaaaacGctctGatatGa 1059 Eubacterium_rectale_ATCC_33656_uid59169

aaaaacGctctGccacca 1520 Methanobacterium_SWAN_1_uid67359

aaaaacGctctGGGaatt 705 Chromohalobacter_salexigens_DSM_3043_uid62921

aaaaacGctcttttattt 472 Campylobacter_hominis_ATCC_BAA_381_uid58981

aaaaacGctGaaacGcct 2649 Tolumonas_auensis_DSM_9187_uid59395

aaaaacGctGaaatccGc 2013 Rahnella_Y9602_uid62715

aaaaacGctGaatGaaGc 39 Acinetobacter_ADP1_uid61597

aaaaacGctGacaataaa 1337 Lactobacillus_brevis_KB290_uid195560

aaaaacGctGaccttcta 1 Acaryochloris_marina_MBIC11017_uid58167

aaaaacGctGacGGaaGt 2126 Ruminococcus_albus_7_uid51721
 

8

Niastella_koreensis_GR20_10_uid83125

Haliscomenobacter_hydrossis_DSM_1100_uid66777

Singulisphaera_acidiphila_DSM_18658_uid81777

Spirosoma_linguale_DSM_74_uid43413

Nostoc_punctiforme_PCC_73102_uid57767

Rivularia_PCC_7116_uid182929

Candidatus_Solibacter_usitatus_Ellin6076_uid58139

Acaryochloris_marina_MBIC11017_uid58167

Microcoleus_PCC_7113_uid183114

Microcoleus_PCC_7113_uid183115
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Figure 5. top 10 bacterial genomes with the highest number of unique Dna signatures in the bacterial genome database.
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and strains in the bacterial genome database has the lowest 
number of unique DNA signatures of 18-mers. The number of 
the unique signatures of 18-mers in 75 of them was ,10,000 
and in 57 it was ,1,000. We have located 13 Chlamydia bac-
teria without unique signatures with k = 18. Top 10 bacterial 
genomes with the highest number of unique DNA signatures 
in the bacterial genome database are shown in Figure 5.

Burkholderia mallei and Burkholderia pseudomallei are two 
closely related pathogens that are very difficult cases for PCR 

assays. These two bacteria are the causative agents of glanders 
and melioidosis diseases in humans and animals.9,40,41 Due 
to the phenotypic and genotypic similarity of them, until a 
few years ago, they were considered to have the same species 
 status. Concerning the literature, only one PCR signature was 
reported to be unique to B. mallei.9,40 The HTSFinder  pipeline 
could detect a considerable number of DNA signatures for 
B. mallei and B. pseudomallei. Although these signatures are 
just unique in the bacterial genome database, due to the nota-
ble number of signatures listed in Table 5, it is evident that 
under different circumstances it would be better to have an 
alternative opportunity to define the uniqueness of the DNA 
signatures and to select the target databases according to the 
requirements. Moreover, it should be noted that much more 
DNA signatures could be found by increasing the length of 
k-mers.

For the frequencies .1, this pipeline detects the com-
mon signatures not only among a single species and its strains 
but also in the entire database. Frequencies 2 and 3 have been 
considered samples to prove the efficiency of this pipeline for 
discovering common DNA signatures within the bacterial 
genome database.

As an example, the following results were obtained for 
Acaryochloris_marina_MBIC11017_uid58167 that is the first 
bacteria in the database.

A total of 689,790,798 signatures of k = 18 with fre-
quency 2 were found in the database, whereas 673,490 of 
them are shared between Acaryochloris_marina_MBIC11017_
uid58167 and 2,382 other species.

There was not any signature of k = 18 with frequency 2 
between Acaryochloris_marina_MBIC11017_uid58167 and 390 
other bacterial genomes. Figure 6 presents the highest  number 

Table 5 B. mallei and B. pseudomallei genomes with their number 
of unique Dna signatures of 18-mers in the bacterial genome 
database.

THE REFERENCE NumbER AND NAmE  
oF THE buRkHolDERiA gENomES

NumbER oF 
uNiquE DNA 
SigNATuRES

Burkholderia_mallei_ATCC_23344_uid57725 90,278

Burkholderia_mallei_NCTC_10229_uid58383 24,858

Burkholderia_mallei_NCTC_10247_uid58385 19,442

Burkholderia_mallei_SAVP1_uid58387 7,649

Burkholderia_pseudomallei_1026b_uid162511 282,992

Burkholderia_pseudomallei_1106a_uid58515 173,688

Burkholderia_pseudomallei_1710b_uid58391 41,153

Burkholderia_pseudomallei_668_uid58389 218,985

Burkholderia_pseudomallei_BPC006_uid174460 81,768

Burkholderia_pseudomallei_K96243_uid57733 195,711

Burkholderia_pseudomallei_MSHR305_uid213227 320,198

Burkholderia_pseudomallei_MSHR346_uid55259 172,551

Burkholderia_pseudomallei_NCTC_13179_
uid226109

382,494
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Cyanothece_PCC_7425_uid59435

Oscillatoria_acuminata_PCC_6304_uid183003

Rivularia_PCC_7116_uid182929

Nostoc_punctiforme_PCC_73102_uid57767

Oscillatoria_PCC_7112_uid18311

Cyanothece_PCC_7822_uid52547

Calothrix_PCC_6303_uid183109

Trichodesmium_erythraeum_IMS101_uid57925

Chroococcidiopsis_thermalis_PCC_7203_uid183003

Chroococcidiopsis_thermalis_PCC_7203_uid183002

Figure 6. ten bacterial genomes with the highest number of signatures common with Acaryochloris_marina_MBIC11017_uid58167 in the bacterial 
genomes database. this is an example of the results for common signatures with frequency 2 obtained by Htsfinder.
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of signatures with frequency 2 which are common between 
Acaryochloris_marina_MBIC11017_uid58167 and 10 other bac-
terial genomes in the database.

The results of the executions for signatures with frequen-
cies 2 and 3 showed that most of the signatures are shared 
among phylogenetically close species of the database.  However, 
there were also a lot of signatures that belonged to unrelated 
bacterial genera and families. Table 6 shows a partial view 
of the results for frequencies 2 and 3. From 245,109,794 sig-
natures of frequency 3 in the database, 160,264 of them are 
shared between Acaryochloris_marina_MBIC11017_uid58167 
and two other species.

A series of lengths k from 21 to 30 have been conside-
red to evaluate the effect of increasing the length of the sig-
nature in the results and to compare the results of the odd 
and the even number of k. Table 7 contains the number of 
unique DNA signatures for the human genome and three 
chromosomes 1, x, and y, which represent large, medium, and 
small sequences in the human genome. This table shows that 
increasing the length of the signature causes increasing the 
number of unique signatures and there is not a meaningful 
difference between the odd and the even numbers.

To compare the number of unique signatures against 
the within-species variability and the entire bacterial genome 

Table 6. a portion of results for signatures with frequencies 2 and 3 in the database. concerning the reference numbers, most of the common 
signatures are shared among the phylogenetically close genomes. However, number of common signatures among unrelated species are also notable.

SigNATuRES wiTH  
FREquENCY =	2

gkmerg  
REFERENCE NumbERS

SigNATuRES wiTH  
FREquENCY =	3

gkmerg  
REFERENCE NumbERS

aaaaaaaaaaGataaata 355 508 aaaaaaaaaaaaatatcG 1709 1708 2677

aaaaaaaaacaGacacaa 2110 2109 aaaaaaaaaaaacaGaac 1249 1255 1267

aaaaaaaaacaGcattaa 2209 2214 aaaaaaaaaataaataca 2726 2734 542

aaaaaaaaacaGGcttac 394 1499 aaaaaaaaaGaaacaaaG 681 678 679

aaaaaaaaaccGccGaac 1046 1048 aaaaaaaaaGatGttaat 969 2384 247

aaaaaaaaaccGctttta 1879 1265 aaaaaaaaaGcaaaacaa 2223 355 102

aaaaaaaaacGaacaaac 101 1813 aaaaaaaaaGtaaatGcG 1793 2731 2730

aaaaaaaaacGattcaGa 2106 2107 aaaaaaaaataGacaatG 498 500 755

aaaaaaaaactaatGctt 349 355 aaaaaaaaatattcatGc 321 897 560

aaaaaaaaactaattctG 1406 1408 aaaaaaaaattcaaaatt 567 505 325

aaaaaaaaaGaaccaaac 544 545 aaaaaaaaatttaGcGat 2714 1814 321

aaaaaaaaaGactGactc 2696 1066 aaaaaaaaatttttataG 703 402 324

aaaaaaaaaGatGttGta 545 544 aaaaaaaacaaGaaGcGc 1426 1427 1428

aaaaaaaaaGGattcGaa 1428 1427 aaaaaaaacaattaGcGa 1128 2677 2404

aaaaaaaaataaaGactc 345 343 aaaaaaaacaGataGtGa 2115 1061 1508

aaaaaaaaataGtGacGa 1686 1693 aaaaaaaacaGcaGcacc 2535 1584 1058
 

Table 7. number of unique Dna signatures in the human genome and its three chromosomes with different sequence sizes for a series of 
lengths of k-mers from 21 to 30.

lENgTH oF  
SigNATuRE

THE wHolE gENomE
(2.8 gb)

CHR1
(222 mb)

CHRx
(147 mb)

CHRY
(19 mb)

k = 21 2.24297e+09 176,137,004 109,691,126 10,221,240

k = 22 2.28624e+09 179,436,876 112,370,062 10,550,076

k = 23 2.31954e+09 181,982,115 114,505,744 10,825,761

k = 24 2.34792e+09 184,157,371 116,349,017 11,070,875

k = 25 2.37333e+09 186,108,431 117,999,580 11,294,439

k = 26 2.39664e+09 187,904,867 119,504,725 11,501,139

k = 27 2.41829e+09 189,580,382 120,891,039 11,693,180

k = 28 2.43849e+09 191,150,531 122,172,724 11,872,250

k = 29 2.45744e+09 192,629,345 123,363,397 12,039,734

k = 30 2.47529e+09 194,027,911 124,472,828 12,196,710
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Table 8. A comparison of five Bacillus strains with the highest number of unique signatures and five others with the lowest number of signatures 
of length 18 within species and in the entire database. This table shows that within-species similarity and variability have more influence on the 
volume of signatures than the remainder of the database.

NAmE oF STRAiNS wiTHiN- 
SPECiES 

iN THE ENTiRE  
DATAbASE

THE oRigiNAl 
gENomE SizE

Bacillus_megaterium_WSH_002_uid159841 4,860,315 4,012,591 5,0 mB

Bacillus_infantis_NRRL_B_14911_uid222804 4,712,042 3,932,760 4,8 mB

Bacillus_1NLA3E_uid81841 4,527,694 3,734,930 4,7 mB

Bacillus_cellulosilyticus_DSM_2522_uid43329 4,441,938 3,688,824 4,6 mB

Bacillus_clausii_KSM_K16_uid58237 4,177,156 3,576,848 4,2 mB

Bacillus_subtilis_168_uid57675 248 205 4,1 mB

Bacillus_amyloliquefaciens_CC178_uid226115 247 202 3,8 mB

Bacillus_anthracis_A0248_uid59385 0 0 5,4 mB

Bacillus_anthracis_A2012_uid54101 0 0 284 KB

Bacillus_anthracis_Ames_Ancestor_uid58083 0 0 5,4 mB
 

Table 9. number of unique Dna signatures for the forward bacterial 
genome database as the target and two other nontarget databases.

DATAbASES FilE SizE NumbER oF  
SigNATuRES

unique signatures of the forward  
bacterial genome database 

67.5 GB 3,552,866,254

forward + reverse-complement  
bacterial genome databases

52.53 GB 2,764,759,739

forward + reverse-complement  
bacterial genome + Human genome  
databases

50.28 GB 2,646,494,945

database, Bacillus species with 81 strains in the database was 
selected. The three phases of the pipeline were executed on 
these strains. Table 8 contains five strains of Bacillus with 
the highest number of unique signatures and five others with 
the lowest number within species and in the entire database. 
Although Bacillus_anthracis_A0248_uid59385 and Bacillus_
anthracis_Ames_Ancestor_uid58083 have larger genome size, 
any unique signature of length 18 could not be found for them 
because of their high similarity with other Bacillus strains.

results on both forward and reverse-complement 
sequences of bacterial genome. In the genome databases such 
as NCBI, only one strand of DNA sequence is provided. 
However, to design the primers, both forward and reverse-
 complement sequences should be considered. Moreover, 
depending on the sequencing technology, generated short 
reads can be from both strands. Therefore, the ability to obtain 
DNA signatures of both strands is potentially useful.

For the reverse-complement sequences, the size of the 
output files and the computational times of the first and sec-
ond phases of the pipeline were the same as in the forward 
genome implementations. The output of the second phase for 
forward and reverse-complement genome databases resulted 
in a file of 103.03 GB for each. We have repeated WordCount 
on both of the databases one more time to determine the fre-
quencies of k-mers as illustrated in Figure 4. The final result 
was a file of 52.53 GB for the forward and the same size for 
the reverse-complement genome database. On the one hand, 
it means that the volume of data containing unique signatures 
for the forward database decreased from 67.5 to 52.53 GB 
similarly to the reverse-complement genome database. On 
the other hand, the overall volume of DNA signatures that 
we could find for the species in the bacterial genome data-
base increased from 67.5 GB containing signatures for a single 
strand to 105.06 GB for both strands of DNA.

Implementation results for the forward and reverse-
complement bacterial genome database and the human 

genome database. We have considered the forward bacterial 
genome as the target database. We have applied the method 
that is described in Figure 4 and found 50.28 GB of k-mers 
for the target genome database which are unique among the 
three databases.

Table 9 presents the file size and numbers of unique DNA 
signatures of the target database against the nontarget ones.

Performance evaluation and computational times. For 
this experiment, we have applied two different platforms. The 
first one was a single node with 12 processors of Intel Core 
i7-4930K CPU at 3.40 GHz and 55 GB of RAM and 6 TB 
of hard disk. The operating system was Ubuntu 12.04.5 LTS, 
Java SE Version “1.8.0–25”, Hadoop Version 1.2.1, and Hive-
0.12.0. We have installed this node as a single-node Hadoop 
cluster. Another platform was a multi-node cluster with seven 
nodes including the master node and six slave nodes. The mas-
ter node was an Intel Core2 Quad CPU Q6600 at 2.40 GHz 
and 8 GB of RAM and 3.2 TB of hard disk, while slaves had 
4 GB of RAM, Intel Core i3-2100 CPU at 3.10 GHz and 
500 GB of hard disk, all with the desktop version of Ubuntu 
14.04.1 LTS 64-bit, Java Version “1.7.0–65” OpenJDK, 
Hadoop 12.1, and Hive-0.12.0.

The first phase of the pipeline executed with GkmerG 
took 156 minutes with five nodes and 780 minutes with a 
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single node from the second platform to generate 18-mers 
from the original bacterial genome database (9.7 GB). As an 
output, we got 2,773 files containing 18-mers with a total size 
of 177.35 GB.

Table 10 contains the corresponding computational 
results and the size of the files in the second and third phases 
of the pipeline for both platforms.

Although the whole computation on the second plat-
form took about nine hours more than on the first one, com-
paring the RAM and CPU capacity of the two platforms 
confirms the ability of a cluster of low-cost computers that 
are commonly available in research facilities to accelerate big 
data analytics.

Table 11 compares the size of the files for frequencies 1–3 
and the time of loading and processing the queries on the first 
platform. The file containing 220.35 GB data was used as the 
second table for all the implementations.

conclusions
Data obtained in this study clearly show the efficiency of 
our proposed pipeline to find all possible DNA signatures 
of a target database. In this pipeline, we intend to overcome 
some limitations of DNA signature discovery by focusing on 
efficiency issues to detect all the possibilities of unique and 
common DNA signatures in a database, regardless of such 
challenges as pairwise alignment and mismatch tolerance. 
Another important feature of this pipeline is its ability to select 
target and nontarget databases. From the standpoint of this 

Table 10. A comparison of computational results of the first and second platforms in the second and third phases of the pipeline in order to find 
unique Dna signatures and their related species in the forward genome database (time in minutes).

STEPS FilE SizE  
(gb)

TimE FoR THE  
FiRST PlATFoRm

TimE FoR THE  
SECoND PlATFoRm

copy k-mers generated by GkmerG to the HDfs 177.35 60 63

Wordcount process 177.35 447 1169

copy the result from HDfs to a local directory 103.03 34 27

Extracting unique signatures and creating tables in Hive 67.5 60 60

loading unique signatures to the Hive table 67.5 23 26

loading k-mers and reference numbers to the Hive table 220.35 79 83

Executing the queries and copy the result to a local directory 83.83 1120 959

total computational time 1823 2387
 

Table 11. a comparison of loading and execution times of the 
frequencies 1–3 in the third phase.

FREquENCY 1 2 3

Size of the file containing signatures (GB) 67.5 13.1 4.66

Time for loading file into the Hive table 
(minutes)

23 4 1

Execution time and copy the result to local 
directory (minutes)

1120 661 557

research, nontarget genome database is not necessarily defined 
as the entire background genome databases such as BLAST 
for the assessment and specificity evaluation of DNA signa-
tures. It can be determined due to the requirements. General 
applicability is another issue that is considered in this pipeline; 
it can be launched either in a cluster of low-cost nodes or in a 
HPC environment. Although the volumes of the datasets in 
this study are very large (eg, 287.85 GB in a single run), DNA 
signatures are detected very precisely and  comprehensively 
in the target databases and the execution times are reason-
ably short. The proposed experiment is just the basic idea, 
and there is a great flexibility to design implementations for 
phases of this approach. Once the pipeline is implemented, 
the users will find how to manipulate their datasets according 
to the requirements. This pipeline can be an efficient method, 
not only for DNA signature discovery but also for other pur-
poses in bioinformatic and metagenomic studies such as the 
alignment and assembly of short reads and next-generation 
sequencing analysis.
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supplementary Materials
download source for GkmerG and supplementary 

data:

1 http://www.inf.unideb.hu/∼hajdua/HTSFinder.html
2 https://sourceforge.net/projects/htsfinder/
3 https://github.com/raminkm/HTSFinder

Content (after decompression):

•	 Hadoop and Hive installation guide and command lines.
•	 Excel file of bacterial genome database reference gener-

ated by GkmerG.
•	 List of bacterial genomes without any unique 18-mers 

(DNA signature) in the database.
•	 The GkmerG algorithm figure.
•	 GkmerG.tar.gz including software components and an 

example of database for testing.
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