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ABSTRACT
Pancreatic cancer is a challenging disease with a high mortality rate. While the importance of
crosstalk between cancer and immune cells has been well documented, the understanding of
this complex molecular network is incomplete. Thus, identification of the secreted proteins
contributing to the immunosuppressive microenvironment in pancreatic cancer is crucial for
effective diagnosis and/or therapy. We utilized a public microarray dataset (GSE16515) from the
Gene Expression Omnibus database to identify genes for secreted proteins in pancreatic cancer.
RT–PCR and ELISA of the pancreatic cancer cell lines validated the cellular origin of the selected
genes. For functional assay of the selected proteins, we utilized human-monocyte-derived
dendritic cells (DCs). From the list of the secreted proteins, trefoil factor 2 (TFF2) was further
examined as a potential chemokine/cytokine. While TFF2 did not significantly affect the
phenotypic maturation and the allostimulatory capacity of DCs, TFF2 preferentially attracted
immature (but not mature) DCs and inhibited their endocytic activity. Our data suggest that
TFF2 from pancreatic cancer cells may attract immature DCs and affect the initial stage of DC
maturation, thereby contributing to the induction of immune tolerance against pancreatic cancer.

Abbreviations: APC: antigen presenting cell; iDC: immature DC; LPS-DC: LPS matured DC; mDC:
mature DC; TFF2: trefoil factor 2
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Introduction

Pancreatic cancer is the fifth leading cause of death from
cancer in developed countries. With a poor survival rate
of approximately 5%, pancreatic cancer has one of the
poorest prognoses among all cancers (Warshaw and Fer-
nández-del Castillo 1992; Magee et al. 2002). Pancreatic
ductal adenocarcinoma, the most common form of pan-
creatic cancer, represents the most lethal type of cancers,
with a median survival of 4∼6 months (Saif 2011). This
poor survival rate is in part related to pancreatic cancer
being generally diagnosed at an advanced stage where
effective therapies are lacking. Aside from its silent
nature and tendency for late discovery, pancreatic
cancer also shows unusual resistance to chemotherapy
and radiation therapy. Only 20% of pancreatic cancer

patients are eligible for surgical resection, which cur-
rently remains the only potentially curative therapy.
The lack of efficient molecular markers that can charac-
terize tumor progression precludes making an effective
diagnosis, monitoring prognosis, and identifying the
therapeutic target of cancers (Lee et al. 2016).

While the immunosuppressive properties of the
tumor microenvironment in a number of solid tumors,
including pancreatic cancer, have been documented
(Dougan 2017), the precise nature and molecular basis
of immunosuppression are not well defined. Many mech-
anisms have been found to contribute to the failure of
the immune system to control tumor growth (Kerkar
and Restifo 2012). Tumor cells often have decreased
expression of major histocompatibility complex (MHC)

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

N
EU

RO
BI
O
LO

G
Y
&

PH
YS

IO
LO

G
Y

CONTACT Si Young Song sysong@yuhs.ac Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Han-Soo Kim hansk@cku.ac.kr Institute for
Healthcare and Life Science and Institute for Translational and Clinical Research, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711,
Republic of Korea Department of Biomedical Sciences, College of Medical Convergence, Catholic Kwandong University, Gangneung-si, Gangwon-do 25601,
Republic of Korea

ANIMAL CELLS AND SYSTEMS
2018, VOL. 22, NO. 6, 368–381
https://doi.org/10.1080/19768354.2018.1527721

http://crossmark.crossref.org/dialog/?doi=10.1080/19768354.2018.1527721&domain=pdf
http://orcid.org/0000-0002-1861-5543
http://creativecommons.org/licenses/by/4.0/
mailto:sysong@yuhs.ac
mailto:hansk@cku.ac.kr
http://www.tandfonline.com


molecules on their surface (Seliger et al. 1998). Tumor
cells are known to produce and secrete many factors
into the circulatory system, such as TGF-β, IL-10, prosta-
glandin E2 (PGE2), nonfunctional Fas receptors (e.g.
RCAS1), and VEGF, which serve to inhibit the function
of antigen-presenting cells (APCs) and immune effector
cells locally and systemically (von Bernstorff et al.
2001). Most tumor cells lack critical costimulatory mol-
ecules, such as CD40, CD80, and CD86, which can con-
tribute to activating T cells (Costello et al. 1999). The
prevalence of immunosuppressive regulatory T cells
and myeloid-derived suppressor cells (MDSC) in the
blood and tumor tissues are contributing factors of pan-
creatic cancer progression that have also been reported
(Hiraoka et al. 2006; Bayne et al. 2012). More recently, the
co-inhibitory receptor/ligand system or immune check-
point proteins (PD-L1/PD-1) expressed on tumor cells
and immune cells has emerged as a critical player in
the immunosuppression exerted by cancer (Loos et al.
2008; Pillarisetty 2014; Song et al. 2014).

While these immunosuppressive factors lead to
reduced numbers and impaired functions of immune
effector cells (Bang et al. 2006), the inhibition of dendritic
cells (DCs) by a tumor can be the first step in immune
evasion by cancer (Pinzon-Charry et al. 2005), as these
cells play a pivotal role in the induction and maintenance
of an effective immune response (Banchereau et al.
2000). Their function and polarizing capacities are deci-
sive for the outcome of T cell-mediated immunity. In
the T cell zone of lymph nodes, they function as APCs,
which prime naïve antigen-specific T cells and drive
their differentiation toward effector helper T cells and
cytotoxic T cells (Banchereau and Steinman 1998).
Studies have shown that DCs pulsed with tumor-
derived peptides, proteins, or mRNAs are able to sub-
stantially augment the anti-tumor immune responses
(Shindo et al. 2014; Prue et al. 2015). Gene expression
profiling of pancreatic cancer tissues may allow us to
acknowledge the tumor microenvironment that is com-
posed of a number of immunosuppressive molecules.
Some of these molecules modulate immune response
to the tumor by reducing the number and function of cir-
culating dendritic cells (Yanagimoto et al. 2005; Bang
et al. 2006). Thus, identifying the molecular signatures
of immunosuppressive molecules is critical to under-
standing the molecular mechanisms underlying this
disease and for the development of novel therapeutic
strategies. In addition, these will guide to the identifi-
cation of predictive tumor markers and/or therapeutic
targets.

To identify genes that could potentially act as immu-
nosuppressive molecules for pancreatic cancer, the
expression of cytokines and chemokines in pancreatic

cancer was analyzed on a public microarray dataset
and validated on RT–PCR of a number of pancreatic
cancer cell lines. The data filtering resulted in a final list
of two genes that had little information on pancreatic
cancer and immunosuppression: trefoil factor 2 (TFF2)
and neuromedin U (NMU). Of these, previous studies
(Johnson et al. 2004; Ketterer et al. 2009) suggest that
NMU plays a role in the immune response and inflam-
mation, but not in immune suppression. On the other
hand, studies have shown that TFF2, also known as a
highly conserved secretory protein in gastrointestinal
tissues also known as human spasmolytic peptide
(SP2), is expressed in lymphoid tissues and is known to
be a negative regulator of inflammation and immune
cell cytokine responses (Farrell et al. 2002; Baus-Loncar
et al. 2005; Kurt-Jones et al. 2007; McBerry et al. 2012;
Wills-Karp et al. 2012) and tumorigenesis (Lefebvre
et al. 1996; Dubeykovskaya et al. 2016). While it has
been suggested that trefoil factors play roles in the
immune responses, a previous study demonstrated
that TFF3 has no direct effect on LPS-induced murine
DC maturation (Loos et al. 2008). However, there are cur-
rently no published results regarding the effect of TFF2
on DC function and maturation. Since dysfunction of
dendritic cells (DC) by tumor is one of the principal
mechanisms of immune escape, we investigated
whether TFF2 affects in vitro DCmaturation and function.

Materials and methods

Microarray data processing

A public dataset was obtained from the Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/)
(Barrett and Edgar 2006). Specifically, dataset GSE16515
([HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array) (Pei et al. 2009) consisted of 36 pancreatic
cancer tissue samples and 16 matched normal pancreatic
tissue samples. Normalization between samples was
performed using the preprocess Affy package of R/Bio-
conductor (Gentleman et al. 2004). After data preproces-
sing, differential expression analysis between pancreatic
cancer and normal samples was performed using the
multi-test package of R/Bioconductor (Pollard and van
der Laan 2005) with a fold change >2 and a p value ≤
0.05 as strict thresholds. A hierarchical heatmap was
generated using heatmap.2 from the R package gplots
(http://cran.r-project.org/web/packages/gplots/index.html).
The selected DEGs list was submitted to the DAVID (Data-
base for Annotation, Visualization and Integrated Discov-
ery) online free tool (http://david.abcc.ncifcrf.gov/home.
jsp) to perform functional annotation based on gene
ontology (Dennis et al. 2003), and pathway enrichment
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analysis based on KEGG (Kyoto Encyclopedia of Genes
and Genomes).

Reagents

The culture media used were RPMI-1640, IMDM, McCoy’s
5a, DMEM, or Ham’s F-12. These media were sup-
plemented with 2 mM L-glutamine, 20 mM HEPES, 1%
antibiotic-antimycotic solution (all obtained from Invitro-
gen, Carlsbad, CA, USA), and 10% heat-inactivated fetal
bovine serum (FBS) (HyClone, Logan, UT, USA). Recombi-
nant human GM-CSF, IL-4, TFF2, IL-8, and MIP-3β were
obtained from Peprotech (Peprotech, Rocky Hill, NJ,
USA). LPS was from Sigma Chemical Co. (St. Louis, MO,
USA). The following fluorochrome-labeled monoclonal
antibodies were used to analyze phenotypes of cells in
peripheral blood mononuclear cells (PBMC) or cultured
DC: CD1a-PE, CD40-FITC, CD80-PE, CD83-FITC, CD86-PE,
and HLA-DR-FITC (all from BD-Pharmingen, San Jose,
CA, USA).

Cell lines

AsPC-1, BxPC-3, Capan-1, Capan-2, CFPAC-1, HPAC,
MiaPaCa-2, PANC-1, Panc 03.27, and Panc 02.13 were
obtained from the American Type Culture Collection
(ATCC, Rockville, MD, USA). SNU-213, SNU-324, and
SNU-410 were obtained from Korean Cell Line Bank
(Seoul, Korea). SNU-213, SNU-324, BxPC-3, Panc 03.27,
Panc 02.13 cells (all primary tumor-derived), AsPC-1
(ascite-derived), and SNU-410 (from liver metastasis)
were grown in RPMI1640 with 10% FBS. Capan-1 and
CFPAC-1 cells (both from liver-metastasis-derived) were
grown in IMDM with 10% FBS. Capan-2 cells (primary
tumor-derived) were grown in McCoy’s 5a with 10%
FBS. PANC-1 and MIA PaCa-2 cells (primary tumor-
derived) were grown in DMEM with 10% FBS and 2.5%
horse serum. HPAC cells were maintained in DMEM/F-
12 with 5% FBS. This study was approved by the IRB of
International St. Mary’s Hospital (Incheon, Korea). All cul-
tures were maintained at 37°C in a humidified atmos-
phere containing 95% air and 5% CO2. For RNA
isolation, cells were washed 3 times with PBS and har-
vested with Trypsin/EDTA (Invitrogen).

RT–PCR

RNA was extracted using a QIAshredder and the RNeasy
kit (Qiagen, Valencia, CA, USA) according to the manufac-
turer’s instructions. RT–PCR was performed using the
following primers specific for TFF2 (forward 5’-AGTGA
GAAACCTCCCCC-3’ and reverse 5’-AACACCCGGTGAGC
CAC-3’) and β-actin (forward 5’- CATGTACGTTGCTATC

CAGGC -3’ and reverse 5’- CTCTCTTAATGTCACGCACGAT
-3’). Amplification was performed with 30 cycles at 94°C
for 30 s, 57°C for 30 s, and 72°C for 45 s, with a final
extension step at 72°C for 10 min. After visualization of
PCR products electrophoresed on a 1.5% agarose gel,
gel images were obtained using the image analyzer
(LAS-1000; Fuji Photo Film Co., Tokyo, Japan).

Enzyme-linked immunosorbent assay (ELISA)

Secreted TFF2 protein levels in the culture supernatants
of the pancreatic cancer cell lines were quantified using
Human TFF2 DuoSet (R&D Systems, Minneapolis, MN,
USA) according to the manufacturer’s instructions.

DC generation and maturation

Healthy donors enrolled in the study gave written
informed consent prior to the procedure. The study
protocol was approved by the Institutional Review
Board of Severance Hospital and met the guidelines
for blood donation. Peripheral blood mononuclear
cells (PBMCs) from healthy donors were prepared by
density centrifugation on a Ficoll-Paque gradient (Phar-
macia Biotech, Uppsala, Sweden). Monocytes were
purified from PBMC by positive isolation using anti-
CD14 conjugated magnetic microbeads (MACS CD14
isolation kit, Miltenyi Biotech, Bergisch Gladbach,
Germany). Purity was checked by flow cytometer with
anti-CD45-FITC and anti-CD14-PE antibodies, and was
routinely > 95%.

Human monocyte-derived DCs were generated with
GM-CSF (100 ng/ml) and IL-4 (20 ng/ml) for 6 days at
37°C in a 5% CO2 atmosphere. Cultures were fed on
Day 3 by adding fresh medium with cytokines. On Day
6, immature DCs (iDCs) were stimulated with LPS
(500 ng/ml) to mature DCs (LPS-DC). In some exper-
iments, TFF2 or IL-10 was added to investigate their
inhibitory effect on DC maturation or function.

Flow cytometric analysis

For flow cytometry, DCs were stained with various mono-
clonal antibodies or isotype control antibodies for 15 min
at 4°C in the dark. The cells were washed in PBS and then
fixed in PBS containing 1% paraformaldehyde. For data
analysis, a CytomicsTM Flow Cytometer (Beckman
Coulter, Fullerton, CA, USA) was used. The DC population
was gated based on its forward-scatter and side-scatter
profile and the data were analyzed with the Flowing Soft-
ware (version 2.5.1, Turku Centre for Biotechnology,
Turku, Finland, http://flowingsoftware.btk.fi/).
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In vitro DC functional assays

The immunostimulatory capacity of DCs was assessed by
allogenic mixed leukocyte reaction (MLR). A total of 2 ×
105 allogeneic T cells were incubated with irradiated DCs
(30 Gy) at different responder:stimulator ratios ranging
between 10:1 and 1280:1 in 96-well flat-bottom plates.
After 4 days of coculture, [3H] thymidine (0.5 μCi/well)
was added during the last 16 h. The amount of [3H] thy-
midine incorporation was measured by liquid scintil-
lation (Wallac, Waltham, MA, USA). Responses were
reported as the mean of triplicate counts per minute
(cpm) ± SD, less the background counts.

Receptor-mediated endocytosis of DCs was assessed
using FITC-tagged dextran. Immature DCs were har-
vested on Day 5 and incubated with FITC-dextran
(20 μg/ml), either at 4°C (internalization control) or at
37°C, for 30 min. The cells were then acquired using
the flow cytometer.

For chemotaxis, migration of DCs in response to che-
motactic factors was assessed using 24-well transwell
plates with polycarbonate filters of 5 μm pore size
(Corning Costar, New York, NY, USA). Cells were
washed 3 times and resuspended in RPMI 1640. TFF2
(final concentration of 10 ng/ml∼10 μg/ml) in 600 µl of
serum-free RPMI-1640 was placed in the lower compart-
ment of the chambers, and 200 µl of cell suspension (5 ×
105 cells) was added to the upper compartment. DC
migration towards MIP-3β (10 ng/ml) or IL-8 (50 ng/ml)
was used as a control for mDC and iDC, respectively.
Cells were allowed to migrate at 37°C for 2 h, after
which time the migrated cells in bottom chamber were
collected and counted by hemocytometer. Alternatively,
the transmigrated cells were collected from the lower
chamber, fixed, and counted on a flow cytometer.

Statistical analysis

Statistical significance was determined by either a
unpaired Student’s t-test, one-way or two-way ANOVA
with a Bonferroni’s post-test using GraphPad Prism soft-
ware, version 5.01 (GraphPad Software, Inc., La Jolla, CA,
USA). P-values < 0.05 were considered statistically
significant.

Results

Identification of candidate genes frommicroarray
dataset

We examined the gene expression profiles of pancreatic
cancer and normal pancreatic tissues of a public dataset
(GSE16515). To identify differentially expressed genes,

we performed a fold-change filtering between the
cancer and normal samples. We first selected outlying
genes that have an average expression ratio >2.0 SD
from the mean. This 2.0 SD cutoff represents a≥ 95%
confidence interval. Since the overexpressed genes rep-
resent greater potential as targets for drug design and
diagnostic perspectives, we focused on the validation
of overexpressed genes. A total of 163 probes represent-
ing 127 genes were identified as being significantly upre-
gulated in cancer patient samples compared to those of
the normal controls (Table 1). Unsupervised hierarchical
clustering using these probes showed good delineation
between pancreatic cancer patients and normal controls
(Figure 1).

As shown in Table 2, upregulated genes were mostly
enriched in 5 BP (biological processes) terms: ectoderm
development (GO:0007398), epidermis development
(GO:0008544), digestion (GO:0007856), cell adhesion
(GO:0007155), and response to external stimulus
(GO:0009605). For the CC (cellular components) term,
upregulated genes were significantly enriched in the
extracellular region (GO:0005576), extracellular region
part (GO:0055532), proteinaceous extracellular matrix
(GO:0005578), plasma membrane part (GO:00044459),
and integral to plasma membrane (GO:0005887). For
the MF (molecular functions) term, structural molecular
activity (GO:0005198), endopeptidase activity
(GO:0004175), serine-type endopeptidase inhibitor
activity (GO:0004867), receptor binding (GO:0005102),
and calcium ion binding (GO:0005509) were most signifi-
cant for upregulated genes.

Selection of immune-associated genes highly
expressed in pancreatic cancer and validation in
pancreatic cancer cell lines

Next, we investigated the functional distribution of the
127 genes that were upregulated in pancreatic cancer.
We observed a list of 106 transcripts associated with
the following GO terms: extracellular region, extracellular
matrix, and extrinsic to plasma membrane. These terms
were followed with the keywords of ligands, cytokines,
growth factors and extracellular matrix (Table 3).

The gene lists were compared with the public data-
base of gene expression profiles from 21 human pan-
creatic cancer cell lines [https://www.ebi.ac.uk/arrayexp
ress/experiments/E-GEOD-40099/] and the online NCBI
database PubMed for reference search. The majority of
the 106 genes were previously reported as pancreas- or
pancreatic-cancer-associated genes. Many of them
were typically associated with general metabolism of
the pancreas, pancreatitis, and pancreatic cancer. The
data filtering narrowed the number of genes to a final
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list of four that had limited information on pancreatic
cancer as well as immunosuppression: secreted phos-
phoprotein 1 (SPP1, osteopontin), granulin, trefoil
factor 2 (TFF2), and neuromedin U (NMU). Of these pro-
teins, we selected TFF2 as it is a relatively unexplored
gene for its immunosuppressive function, and we also
examined the role of TFF2 in DC maturation and func-
tion. Comparison of TFF2 gene expression in normal pan-
creas and pancreatic tumor samples revealed a 2.9-fold
increase in tumors compared to that of normal pancrea-
tic tissues. In order to validate the cellular origin of TFF2,

we performed RT–PCR of the selected genes with human
pancreatic cancer cell lines. As shown in Figure 2(A), the
expression of TFF2 was verified in 9 of 13 cell lines tested.
TFF2 expression was detected in BxPC-3, AsPc-1, Capan-
1, CFPAC, HPac, Capan-1, SNU-213, Capan-2, Panc 03.27,
and Panc 02.13, implying that TFF2 selected from
genome-wide expression profiles is mainly expressed
by tumor cells in the utilized tissue specimens. The
expression and secretion of TFF2 protein from these
cells were further validated by TFF2 ELISA (Figure 2(B)).
Cells expressing high levels of TFF2 mRNA secreted a

Table 1. Upregulated genes in pancreatic cancer tissues.
ID Symbol ID Symbol ID Symbol

1555731_a_at AP1S3 205927_s_at CTSE 220030_at STYK1
1555950_a_at CD55 205960_at PDK4 220177_s_at TMPRSS3
201250_s_at SLC2A1 206023_at NMU 220658_s_at ARNTL2
201291_s_at TOP2A 206482_at PTK6 221132_at CLDN18
201292_at TOP2A 206884_s_at SCEL 221133_s_at CLDN18
201467_s_at NQO1 207517_at LAMC2 222608_s_at ANLN
201468_s_at NQO1 207850_at CXCL3 223278_at GJB2
201650_at KRT19 208083_s_at ITGB6 223484_at C15orf48
201884_at CEACAM5 208170_s_at TRIM31 223631_s_at C19orf33
201925_s_at CD55 208937_s_at ID1 223748_at SLC4A11
201926_s_at CD55 209016_s_at KRT7 223949_at TMPRSS3
202267_at LAMC2 209114_at TSPAN1 223952_x_at DHRS9
202411_at IFI27 209173_at AGR2 224009_x_at DHRS9
202489_s_at FXYD3 209260_at SFN 224428_s_at CDCA7
202504_at TRIM29 209270_at LAMB3 225207_at PDK4
202831_at GPX2 209498_at CEACAM1 225436_at ABHD17C
202856_s_at SLC16A3 209792_s_at KLK10 226535_at ITGB6
202934_at HK2 209803_s_at PHLDA2 227314_at ITGA2
203021_at SLPI 209950_s_at VILL 227475_at FOXQ1
203108_at GPRC5A 210095_s_at IGFBP3 228058_at ZG16B
203510_at MET 210143_at ANXA10 228232_s_at VSIG2
203559_s_at AOC1 210519_s_at NQO1 228707_at CLDN23
203691_at PI3 211002_s_at TRIM29 228846_at MXD1
203726_s_at LAMA3 211657_at CEACAM6 228923_at S100A6
203757_s_at CEACAM6 212143_s_at IGFBP3 228969_at AGR2
203819_s_at NA 212236_x_at NA 229030_at CAPN8
203820_s_at IGF2BP3 212444_at GPRC5A 229271_x_at COL11A1
203824_at TSPAN8 212531_at LCN2 229490_s_at NA
203876_s_at MMP11 212657_s_at IL1RN 229927_at LEMD1
203878_s_at MMP11 212942_s_at CEMIP 230493_at SHISA2
204170_s_at CKS2 212992_at AHNAK2 231646_at DPCR1
204268_at S100A2 214135_at CLDN18 231944_at ERO1LB
204320_at COL11A1 214385_s_at MUC5AC 232056_at SCEL
204351_at S100P 214476_at TFF2 232105_at BLACAT1
204424_s_at LMO3 214974_x_at CXCL5 232164_s_at EPPK1
204602_at DKK1 215034_s_at TM4SF1 232165_at EPPK1
204614_at SERPINB2 215101_s_at CXCL5 232578_at CLDN18
204653_at TFAP2A 215125_s_at NA 236129_at GALNT5
204855_at SERPINB5 217109_at MUC4 237183_at GALNT5
204885_s_at MSLN 217110_s_at MUC4 238017_at SDR16C5
205009_at TFF1 217728_at S100A6 238018_at FAM150B
205044_at GABRP 218332_at BEX1 238439_at ANKRD22
205076_s_at MTMR11 218677_at S100A14 238689_at GPR110
205081_at CRIP1 218960_at TMPRSS4 239272_at MMP28
205083_at AOX1 219014_at PLAC8 239370_at LINC01133
205157_s_at NA 219232_s_at EGLN3 240303_at TMC5
205319_at PSCA 219404_at EPS8L3 241137_at DPCR1
205466_s_at HS3ST1 219429_at FA2H 243764_at VSIG1
205476_at CCL20 219508_at GCNT3 244056_at SFTA2
205552_s_at OAS1 219529_at CLIC3 244780_at SGPP2
205597_at SLC44A4 219787_s_at ECT2 33322_i_at SFN
205767_at EREG 219795_at SLC6A14 33323_r_at SFN
205771_s_at AKAP7 219915_s_at SLC16A10 37892_at COL11A1
205780_at BIK 219918_s_at ASPM 41469_at PI3
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comparably high level of TFF2 proteins into the culture
medium. However, there was no correlation between
TFF2 expression levels and the tumor cell lines obtained
from primary and secondary (metastatic or ascite-
derived) tissues.

TFF2 impair differentiation and function of
dendritic cells

Studies have proposed a role for trefoil factors (TFFs) in
regulating immune responses (Cook et al. 1999;
Hedrick et al. 2000; Makarenkova et al. 2003; Baus-
Loncar et al. 2005; Moriyama et al. 2006; Loos et al.
2008). To investigate whether TFF2 can modulate DC
maturation, monocyte-derived iDCs were cultured
with GM-CSF, IL-4, and LPS in the presence or
absence of TFF2 for 48 h. Because LPS-induced matu-
ration of DCs is inhibited by IL-10 (Steinbrink et al.
1997; McBride et al. 2002), DCs pre-treated with IL-10
were used as a positive control for inhibition of matu-
ration. The phenotype of the different DC groups was
determined by flow cytometry. Mature DCs are
known to express higher levels of CD83, HLA-DR,
CD80, CD86, and CD40 than immature DCs. Non-

treated (immature DCs, iDCs) and TFF2-treated DCs
expressed similar levels of co-stimulatory molecules
in the absence of LPS, while IL-10 treatment led only
to reduction of HLA-DR (data not shown). While LPS
treatment induced maturation of DCs (LPS-DC) by up-
regulation of HLA-DR, CD40, CD83, CD86, and CD80,
IL-10 treatment to the LPS-stimulated DC dramatically
down-regulated the expression of these markers com-
parable to the levels expressed by control iDCs. In
contrast, TFF2 treatment in the presence of LPS signifi-
cantly reduced the expression of the key maturation
markers CD86, CD80, and CD83 (Figure 3).

The primary role of immature DCs is to capture and
process antigens with their phagocytosis/endocytosis
capacity that is developmentally regulated during
maturation (Steinman et al. 1997). We assessed the
receptor-mediated endocytic function of DCs using
Dextran-FITC by DCs treated with TFF2, IL-10, and
untreated DCs. The antigen uptake was very high in
immature DCs (iDCs) (mean fluorescence intensity of
137.0 ± 15.3, n = 3); the addition of IL-10 further
enhanced the endocytic activity of DCs (177.9 ± 29.3).
However, TFF2 treatment significantly reduced the
activity (102.7 ± 14.0) (Figure 4).

Figure 1. Unsupervised hierarchical clustering of 52 samples based on expression levels detected in the microarray experiment using
the 163 probes differentially expressed between pancreatic cancer (PC) and control samples. PC samples are in blue and control
samples are in black. Samples are clustered on the horizontal axis and genes (probes) are clustered on the vertical axis. The lengths
of the branches in the dendrograms represent the degrees of correlation between samples or gene sets. For expression levels,
yellow represents overexpressed genes and red represents underexpressed genes.
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Allostimulatory capacity is one of the key functional
characteristics of mature DCs. To test whether the
mature phenotype of the DCs after LPS treatment

correlates with their capacity to stimulate T cells, DCs
were co-cultured with allogeneic purified CD4+ T cells.
Consistent with phenotypic profile after LPS stimulation,

Table 2. GO pathway enrichment analysis of upregulated genes in pancreatic cancer cellsa.
GO Term Count P value Genes

BP GO:0007398
ectoderm development

10 9.00E-06 FOXQ1, LAMC2, EREG, AHNAK2, LAMA3, TFAP2A, LAMB3, SFN, SCEL, Unknown

CC GO:0005576
extracellular region

32 3.79E-05 LAMC2, EREG, CCL20, CXCL3, TFF1, AOC1, SFTA2, MMP28, PI3, LAMB3, KLK10, ZG16B, MUC5AC,
IL1RN, CXCL5, SFN, COL11A1, FAM150B, MMP11, MUC4, NMU, DKK1, SLPI, LAMA3, LCN2,
IGFBP3, AGR2, MSLN, CRECAM1, MUC4, SERPINB2, TFF2

BP GO:0008544
epidermis development

9 3.85E-05 FOXQ1, LAMC2, EREG, AHNAK2, LAMA3, LAMB3, SFN, SCEL, Unknown

CC GO:0044421
extracellular region part

20 7.06E-05 LAMC2, EREG, CCL20, CXCL3, TFF1, AOC1, LAMC2, MMP28, PI3, LAMB3, MUC5AC, IL1RN, CXCL5,
SFN, COL11A1, MMP11, MUC4, LAMA3, IGFBP3, SERPINB2

BP GO:0007586
digestion

6 4.03E-04 MUC5AC, Unknown, NMU, CTSE, TFF1, TFF2

BP GO:0030216
keratinocyte differentiation

5 0.00109 SFN, EREG, SCEL, AHNAK2, LAMA3

BP GO:0009913
epidermal cell differentiation

5 0.00151 SFN, EREG, SCEL, AHNAK2, LAMA3

MF GO:0005198
structural molecule activity

12 0.00241 EPPK1, CLDN23, MUC4, KRT19, COL11A1, KRT7, LAMA3, CLDN18, VILL, LAMB3, MUC5AC, Unknown

CC GO:0005578
proteinaceous extracellular
matrix

9 0.00251 MUC4, LAMC2, PI3, COL11A1, LAMA3, MMP28, MMP11, LAMB3, MUC5AC

BP GO:0030855
epithelial cell differentiation

6 0.00253 SFN, DHRS9, EREG, SCEL, AHNAK2, LAMA3

BP GO:0007155
cell adhesion

13 0.003 LAMC2, CLDN23, MUC4, KRT19, ITGB6, COL11A1, LAMA3, CLDN18, CLDN18, CLDN18, ITGB6,
LAMC2, LAMB3, MUC5AC, ITGA2, COL11A1, MSLN, CRECAM1, MUC4, CLDN18, COL11A1

BP GO:0022610
biological adhesion

13 0.00304 LAMC2, CLDN23, MUC4, KRT19, ITGB6, COL11A1, LAMA3, CLDN18, LAMB3, MUC5AC, ITGA2, MSLN,
CRECAM1

CC GO:0016323
basolateral plasma membrane

7 0.00388 MET, ITGA2, SLC4A11, SLC2A1, CEACAM5, LAMA3, SLC16A10

CC GO:0031012
extracellular matrix

9 0.00397 MUC4, LAMC2, PI3, COL11A1, LAMA3, MMP28, MMP11, LAMB3, MUC5AC

CC GO:0016328
lateral plasma membrane

3 0.00461 KRT19, AKAP7, GJB2

CC GO:0044459
plasma membrane part

28 0.00463 Unknown, CLDN23, LAMC2, KRT19, ITGB6, EREG, CEACAM5, AKAP7, CEACAM6, CLDN18, ITGA2,
SLC4A11, VSIG2, SLC6A14, CD55, GPRC5A, TM4SF1, SLC16A3, MUC4, SLC2A1, LAMA3, FXYD3,
AP1S3, GABRP, MET, CRECAM1, GJB2, SLC16A10

BP GO:0060429
epithelium development

7 0.00474 SFN, DHRS9, EREG, SCEL, AHNAK2, LAMA3, TFAP2A,

BP GO:0009888
tissue development

12 0.00585 FOXQ1, LAMC2, DHRS9, EREG, AHNAK2, COL11A1, LAMA3, TFAP2A, LAMB3, SFN, SCEL, Unknown

BP GO:0048513
organ development

22 0.0066 FOXQ1, LAMC2, EREG, DHRS9, AHNAK2, ASPM, LAMB3, ITGA2, SFN, SCEL, COL11A1, PHLDA2,
Unknown, BIK, DKK1, LAMA3, TFAP2A, MET, CRECAM1, HK2, ID1, GJB2

BP GO:0043542
endothelial cell migration

3 0.00987 ID1, S100A2, S100P

MF GO:0004175
endopeptidase activity

8 0.01032 CAPN8, CTSE, TMPRSS3, TMPRSS4, MMP11, MMP28, SERPINB2, KLK10

CC GO:0044420
extracellular matrix part

5 0.0109 MUC5AC, LAMC2, COL11A1, LAMA3, LAMB3

CC GO:0005615
extracellular space

12 0.01211 LAMC2, EREG, CXCL3, CCL20, TFF1, AOC1, IGFBP3, IL1RN, CXCL5, SFN, SFN, SERPINB2,

BP GO:0048856
anatomical structure
development

27 0.01881 FOXQ1, LAMC2, DHRS9, EREG, AHNAK2, ASPM, LAMB3, ITGA2, SFN, COL11A1, Unknown, SCEL,
PHLDA2, BEX1, BIK, DKK1, LAMA3, S100A6, TFAP2A, IGFBP3, MET, ECT2, IGF2BP3, CRECAM1, ID1,
HK2, GJB2

MF GO:0004867
serine-type endopeptidase
inhibitor activity

3 0.02123 PI3, SLPI, SERPINB2,

BP GO:0009605
response to external stimulus

13 0.02249 Unknown, ITGB6, EREG, ARNTL2, CXCL3, CCL20, COL11A1, ITGA2, IL1RN, CXCL5, AOX1, CD55,
SERPINB2

CC GO:0031225
anchored to membrane

6 0.02327 CEACAM5, AKAP7, MSLN, CEACAM6, PSCA, CD55

BP GO:0048731
system development

25 0.02403 FOXQ1, LAMC2, EREG, DHRS9, AHNAK2, ASPM, LAMB3, ITGA2, SFN, SCEL, COL11A1, PHLDA2,
Unknown, BEX1, BIK, DKK1, S100A6, LAMA3, TFAP2A, IGFBP3, MET, CRECAM1, HK2, ID1, GJB2

MF GO:0005102
receptor binding

12 0.02605 MUC4, ITGB6, NMU, EREG, DKK1, CXCL3, TFF1, CCL20, LAMA3, ITGA2, IL1RN, CXCL5

CC GO:0005887
integral to plasma membrane

16 0.02761 Unknown, MUC4, ITGB6, EREG, CEACAM5, CEACAM6, FXYD3, MET, ITGA2, VSIG2, CRECAM1,
SLC6A14, TM4SF1, CD55, GPRC5A, SLC16A3

aTop 30 terms were chosen according to the P value. GO gene ontology.
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IL-10-treated DCs in the presence of LPS were less
effective in activating allogeneic CD4+ T cells than
control mDCs (LPS-DC) (Figure 4(B)). In contrast, the allos-
timulatory activity of TFF2-treated DCs in the presence of
LPS was comparable to that of LPS-DCs, suggesting that
TFF2 does not affect the T cell stimulatory capacity of
DCs. Thus, our data indicate that addition of TFF2 does
not substantially alter the DC maturation induced by
LPS. Although LPS induction of IL-12p70, an essential
cytokine for DC maturation or activation, was signifi-
cantly reduced in the presence of IL-10, TFF2 did not
affect the production of this cytokine in the presence
of LPS (data not shown).

Acquisition of migratory capacity to the secondary
lymph node via chemokine-chemokine receptor inter-
action is a hallmark of DC maturation and is essential
for induction of T cell-dependent immune responses
against pathogens. We examined the in vitro migratory
capacity of immature and mature DCs in response to
IL-8 (CXCL8) and MIP-3β (CCL19), which are chemotactic
to immature DCs and LPS-DC, respectively. As shown in
Figure 5, immature DCs exhibited a strong migratory
capacity to IL-8, whereas LPS-mature DCs showed
enhanced migration to MIP-3β. While TFF2 induced the
migration of immature DCs in a dose-dependent
manner, LPS-stimulated DCs exhibited poor migratory
activity in response to TFF2, implying that TFF2 secreted
by tumor cells is a chemoattractant for immature
DCs, preventing their migration to lymph nodes from
tumors.

Discussion

Several reports have described tumor tissue as an immu-
nocompromised environment, with circulating and
tumor-infiltrating DCs being functionally defective in
tumor patients (Orsini et al. 2003; Bang et al. 2006;

Table 3. Classification of genes for secreted proteins that are
upregulated in pancreatic cancer cells.
Functional
Categories Gene Symbol

Growth factor/
Ligand

ITGB6, EREG, ARNTL2, CXCL3, CCL20, ITGA2, IL1RN,
CXCL5, AOX1, SERPINB2, NMU, DKK1, TFF1,TFF2

Secreted LAMC2, EREG, CCL20, CXCL3, TFF1, AOC1, SFTA2,
MMP28, PI3, LAMB3, KLK10, ZG16B, MUC5AC, IL1RN,
CXCL5, SFN, COL11A1, FAM150B, MMP11, MUC4,
NMU, DKK1, PI3, SLPI, LAMA3, LCN2, MMP11, IGFBP3,
AGR2, MSLN, CRECAM1, AGR2, SERPINB2, TFF2

Extracellular matrix MUC4, LAMC2, PI3, COL11A1, LAMA3, MMP28, PI3,
LAMB3, MUC5AC, MMP11

Figure 2. The expression of TFF2 in various pancreatic cancer cell lines. (A) TFF2 transcript was detected in 9 of 13 human pancreatic
cancer cell lines by RT-PCR. β-actin was used to control for the amount of amplified cDNA. The results shown are from one representa-
tive of three independent experiments performed. (B) ELISA detected TFF2 that had been secreted into the culture medium of human
pancreatic cancer cell lines. The results shown are from one representative of three independent experiments.
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Shurin et al. 2013). It is well established that tumor cells
secrete a number of molecules that can negatively affect
the function of immune cells. The majority of molecules
that have been identified in this context thus far are che-
mokines and cytokines such as VEGF, IL-10, and TGF-β,
which impair the function of effector T cells and DCs
by altering the phenotype or by enhancing spontaneous
apoptosis. Some of these findings have been associated
with poor prognosis in patients. However, the release of
other undefined soluble factors by tumor tissue has also
been shown to be a relevant mechanism of immunosup-
pression in vivo as well as in vitro.

In order to identify genes associated with immune
escape, we focused on genes coding for secreted pro-
teins from two pancreatic cancer microarray datasets
from the Gene Expression Omnibus database. The
majority of the genes identified in the present study
have previously been reported as upregulated in

pancreatic cancer tissues. The majority of secretome
genes are associated with extracellular matrix (ECM),
cell communication, cytokine, and protease activity.
The upregulated gene list in the present study may
serve as potential markers of pancreatic adenocarci-
noma. Among these genes are CKLF, DKK1, DKK3,
EFNA4, IGFBP3, KLK6, KLK10, LIF, MDK, MSLN, SHISA5,
SFN, and TAGLN2. Of 106 secretome genes identified,
TFF2 was selected for subsequent immunological func-
tional study.

Trefoil factors are widely distributed secreted proteins
of mucin-producing cells. Of three trefoil factor (TFF)
family proteins of human and other mammals, the
gastric TFF1 (pS2), the spasmolytic polypeptide (hSP,
TFF2) and intestinal TFF3 (hP1.b/hTIF), trefoil factor 2
(TFF2) is mainly synthesized and secreted by the gastro-
intestinal tract (primarily by the stomach). The abundant
expression of TFF2 in a site-specific pattern in the normal

Figure 3. Treatment of monocyte-derived dendritic cells with TFF2 during maturation slightly alters the phenotype of monocyte-
derived DCs. (A) Human monocyte-derived (iDCs) were cultured with LPS (1 μg/ml) in the presence or absence of IL-10 (10 ng/ml)
or TFF2 (1 μg/ml) for 48 h and stained with antibodies against HLA-DR, CD40, CD1a, CD80, CD83, and CD86 to determine the phenotype
of DCs. Histograms represent the overlay image of corresponding antibody staining (red line) and matching isotype control antibody
staining (black line) with geometric mean fluorescence intensity (MFI). The results shown are from one representative of three inde-
pendent experiments performed. (B) Statistical significance of the DC maturation marker expression in the cultured DCs in the presence
of LPS, IL-10, or TFF from three independent experiments was determined using one-way ANOVA with a Bonferroni’s post-test. (*p < 0
0.05, **p < 0 0.01 and *** p < 0 0.001)
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physiologic state, as well as its ectopic expression in
various ulcerative conditions suggests an important
role in mucosal defense and repair. Azarschab et al.
reported that aspirin upregulates TFF2 expression in
human gastric cancer cell lines (Azarschab et al. 2001),
and May et al. concluded that TFF2 expressed in
normal and malignant breast epithelial cells stimulates
the migration of breast cancer cells (May et al. 2004).
Cook et al. showed that TFF2 and TFF3 are expressed
by lymph nodes, spleen, and the gastrointestinal tract
(Cook et al. 1999). They also showed that in the spleen,
these genes can be upregulated by experimental inflam-
mation and are able to stimulate monocyte migration.
Together, these observations suggest a potential role
for TFFs in the immunological responses as chemokines
(Baus-Loncar et al. 2005) that may control the migration
of immune cells between tissues (Heirani-Tabasi et al.
2017).

More recently, studies have revealed that TFF2 con-
tributes to the protection of mucosa from infection by
suppressing Th1 response or driving Th2 response
(McBerry et al. 2012; Wills-Karp et al. 2012). A potential
role of TFF2 in pancreatic cancer cell migration was
demonstrated in pancreatic cancer cell lines (Guppy
et al. 2012). Although CXCR4 was identified as a low-
affinity signaling receptor for TFF2 (Dubeykovskaya
et al. 2009), the expression of this chemokine receptor
on DCs is not significantly modulated by maturation
(Luft et al. 2002), implying that TFF2-induced migration
of immature DCs is mediated by other signaling recep-
tor(s) (Madsen et al. 2010). Yet, there is no conclusive
report that TFF2 plays a role in dendritic cell function
and pancreatic cancer immunity. The gene for the 25-
amino-acid peptide neuromedin U (NMU) also exhib-
ited 2.9 fold upregulation in the pancreatic cancer data-
base, and previous studies (Johnson et al. 2004;

Figure 4. TFF2 affects the function of immature human dendritic cells (iDCs). (A) TFF2 suppresses the endocytic activity of iDCs. Imma-
ture DCs were left untreated or treated with IL-10, TFF2, or LPS as described, and FITC-dextran uptake was subsequently measured by
flow cytometry. Data are shown as representative histograms of FITC-dextran uptake at both 37°C (red line) and 4°C (black line, control)
and as mean ΔMFI (MFI at 37°C – MFI at 4°C) ± SEM for three independent experiments. Values of p were calculated using two-way
ANOVA, *p < 0 0.05 and ***p < 0 0.001. (B) TFF2 did not affect the allostimulatory function of mature DCs. Human monocyte-
derived iDCs were cultured with LPS (1 μg/ml) in the presence or absence of IL-10 (10 ng/ml) or TFF2 (1 μg/ml) for 48 h. mDCs
were harvested and used to stimulate allogeneic T cells. T cells were cocultured with DCs at various stimulator:responder ratios for
5 days, and cell proliferation was measured by [3H]thymidine uptake for the last 16 h. Results are shown as mean cpm ± SD of triplicate
determinations and are representative of three independent experiments performed. *P < 0.05 and **P < 0.01 versus that of LPS-stimu-
lated DC.
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Moriyama et al. 2006) imply that this protein plays a
role in proinflammation, without affecting tumor cell
growth.

Cancer specificity is one of the key requirements for
diagnostic and/or therapeutic markers. We showed that
the identified genes are from pancreatic cancer cell
lines, and that they can modulate the function and/or
maturation of DCs. We found that TFF2 are expressed
in pancreatic cancer cell lines via RT–PCR as well as
ELISA. These results are in sharp contrast with a
recent study that examined the tumor suppressive
role of TFF2 in human pancreatic ductal adenocarci-
noma (PDAC) tissues and cell lines (Yamaguchi et al.
2016); the expression of TFF2 in PDAC was reduced
compared to that of normal tissues, and transgene
overexpression suppressed the proliferation of pan-
creatic cancer cell lines. The study revealed that TFF2
is expressed in pancreatic cancer cell lines while the
expression appears to be epigenetically regulated; the
TFF2 promoter was hypermethylation in TFF-2 low-

expressing Panc-1 cells but not in TFF2 high-expressing
AsPC-1 cells. Our data from 13 pancreatic cell lines
reveal that a majority of them expressed TFF2 transcript
and secreted significant amounts of TFF2. Unfortu-
nately, we were unable to find a correlation between
TFF2 expression levels and cancer cell lines of
different stages, as many of these tumor cell lines are
of an uncertain origin and stage. Further studies are
necessary to confirm the precise role of TFF2 in pan-
creatic cancer.

Although TFF2 marginally affected the phenotypic
maturation of DCs by suppressing antigen presenting
molecules (HLA-DR) and costimulatory molecules
(CD40, CD80, and CD86), the allostimulatory capacity
of LPS-induced mature DCs in the presence of TFF2
was unaffected. While TFF2 was a strong chemotactic
factor for iDCs, it also effectively modulated the phago-
cytosis capacity of iDCs. Reduction in the endocytic
activity of iDCs is evident in the presence of TFF2.
Thus, TFF2 strongly attracts iDCs and inhibits the

Figure 5. TFF2 induces the chemotaxis of iDCs, but not mDCs. Human monocyte-derived iDCs (A) or LPS-matured DCs (B) were analyzed
for migration toward CXCL8 (IL-8, 50 ng/ml), CCL19 (MIP-3β, 10 ng/ml), and TFF2 (1μg/ml) in transwell assays. While iDCs migrate
efficiently to IL-8 and TFF2, LPS-DCs were only attracted to MIP-3β. Results are shown as mean migrated cells ± SD of triplicate deter-
minations and are representative of three independent experiments. *P < 0.05 and ***P < 0.001 versus that of media.
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antigen uptake function of attracted DCs. Once DCs
initiate the maturation process, mDCs become nonre-
sponsive to the action of TFF2, possibly via downregu-
lation of prospective receptor(s). The chemoattraction
of immature DCs by tumor cells has clinical impor-
tance. The correlation of a high number of systemic
tolerogenic/immature dendritic cells in the tumor
microenvironement with poor prognosis was observed
(Tjomsland et al. 2010), and the interaction between
tolerogenic DCs and regulatory T cells has been
reported in pancreatic cancer (Jang et al. 2017).
These results strongly suggest that tumor-cell-derived
TFF2 is a selective chemotactic factor for iDCs and
may lead to deficiency of active DCs in the pancreatic
cancer microenvironment. Upon sequestration of
immature DCs within the tumor sites, the tumor may
induce the maturation arrest of infiltrating DCs, or
induce generation of tolerogenic DCs or myeloid-
derived suppressor cells (MDSCs), leading to tumor tol-
erance and immune evasion.

In conclusion, we identified 106 highly upregulated
genes for secreted proteins from a public database of
pancreatic cancers and provide evidence that TFF2
modulates the function of human dendritic cells by
acting as a chemokine for immature DCs and impairing
their antigen uptake activity. This may be a general pro-
tective mechanism by TFF2 against the hyperactivation
of DCs in pathogenic inflammatory conditions. In this
regard, the identification of signal transduction events
that participate in the differentiation inhibition and
modulation of DC function by TFF2 would further con-
tribute to the elucidation of the mechanisms underlying
the complex anti-inflammatory effects of TFF2 and would
allow the construction of a theoretical framework for its
eventual therapeutic use. The impairments of DC func-
tion by tumor-derived cytokines/chemokines can
deviate and compromise the possible T cell-mediated
immune responses, leading to the immune escape of
cancer. The results described here suggest that the pres-
ence of TFF2 in tumor tissue may participate in immuno-
suppression in synergy with other previously described
immunosuppressive factors. Further studies are necess-
ary to investigate the biological role of TFF2 in pancreatic
cancers.
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