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Abstract: Physical exercise contributes to the success of rehabilitation programs and rehabilitation
processes assisted through social robots. However, the amount and intensity of exercise needed
to obtain positive results are unknown. Several considerations must be kept in mind for its imple-
mentation in rehabilitation, as monitoring of patients’ intensity, which is essential to avoid extreme
fatigue conditions, may cause physical and physiological complications. The use of machine learning
models has been implemented in fatigue management, but is limited in practice due to the lack of
understanding of how an individual’s performance deteriorates with fatigue; this can vary based on
physical exercise, environment, and the individual’s characteristics. As a first step, this paper lays
the foundation for a data analytic approach to managing fatigue in walking tasks. The proposed
framework establishes the criteria for a feature and machine learning algorithm selection for fatigue
management, classifying four fatigue diagnoses states. Based on the proposed framework and the
classifier implemented, the random forest model presented the best performance with an average
accuracy of ≥98% and F-score of ≥93%. This model was comprised of ≤16 features. In addition, the
prediction performance was analyzed by limiting the sensors used from four IMUs to two or even
one IMU with an overall performance of ≥88%.

Keywords: fatigue diagnosis; classification models; inertial measurement units; EMG; walking
rehabilitation; physical exercise

1. Introduction

Exercise rehabilitation during or after medical treatment is considered an effective
means of restoring physical and psychological function [1–3]. Recent reviews highlight the
following benefits provided by physical exercise used as a therapeutic measure. Physical
exercise contributes to achieving and maintaining therapeutic goals and improving quality
of life, physical function, functional capacities, muscle strength, emotional well-being,
and can even reduce depression and anxiety and increase self-esteem [4]. Additionally, it
can lower the risk of heart disease, diabetes, cancer, stroke, reduce the risk of orthopedic
problems, recover mobility of limbs, strengthen the immune defense (influenza), among
others [4–7]. In this context, physical exercise has the potential to affect people’s health
conditions in many ways; hence, the American Health Association established physical
exercise as one of the main components of improving people’s health and decreasing
morbidity and mortality levels [8,9].

Although these positive health-related outcomes of regular physical exercise are well
documented, the amount and intensity of exercise needed to obtain these positive results
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are unknown [10–12]. Several considerations must be kept in mind for its implementa-
tion in rehabilitation. For instance, elderly patients have more severe impairments and
comorbidities than younger patients; therefore, the rehabilitation needs of the older are
different from those of younger patients [1]. The same occurs with individuals with dif-
ferent diseases. Consequently, an essential question when prescribing exercise is what is
the optimal therapeutic dose required to produce a specific health benefit according to
the individuals’ needs? Typically, when considering exercise dose about health outcomes,
exercise is characterized by type, intensity, and volume (session duration and frequency)
according to the age, weight, fitness level and pathologies of each patient [13]. Recent
studies have shown that intensity is the most relevant feature in prescribing physical
exercise [14,15] because it determines the amount of energy expenditure and can be seen as
the “dose” of the prescription [16]. Since controlling exercise intensity avoids overtraining
patients, which can affect their rehabilitation and make them suffer health consequences
(i.e., physical, or physiological complications) [17–19]. In this context, it is essential to
clarify the meaning of the various terms associated with physical activity and exercise for
consistent interpretation of exercise intensity in the context of dose–response issues.

Intensity is the magnitude of the increase in energy expenditure necessary to perform
the activity (aerobic or endurance exercise) or the force produced by the muscle contractions
(resistance or strength exercise) [20,21]. Thus, the intensity has been used to classify the
physical exercise into three groups: low-intensity exercises that are composed of soft
activities which demand low energy cost (50% of the maximal HR (HRmax)), and are
usually used for patients with extreme risk conditions; moderate-intensity exercises that
contemplate non-stop activities with a long duration that require a low or moderate effort
around 50% to 75% of the patient’s HRmax; and high-intensity exercises that are workouts
that alternate hard-charging intervals with a short duration (15 s to 5 min) that increase
the HRmax up-to 85% to 100% with a recovery period of equal or longer duration than the
work interval [16,22]. Regarding prescribing exercise, moderate-intensity training is the
most implemented in the rehabilitation process because it involves large muscle groups in
dynamic activities that result in substantial increases in HR and energy expenditure [23,24].
The main challenge for the implementation of these exercises is the difficulties in managing
the intensity, which makes their prescription a complex task [19,22,23].

Some successful rehabilitation programs have been explored to supervise the exercise
intensity during therapies through monitoring of the patient’s fatigue state [1,21,24–26].
Fatigue has generally been defined as a subjective state of tiredness or exhaustion and the
reduction of capacity for regular activity [27]. Additionally, it is defined as the inability of
the muscles to maintain the required level of strength during exercises. It can also result
in the deterioration of health in the long term, including work-related musculoskeletal
disorders [28], chronic fatigue syndrome [29] and compromised immune function [30].
Therefore, fatigue is a common concern among clinicians and individuals who participate
in physical activities based on training or rehabilitation [27]. An important first step in
managing fatigue is the rapid and accurate detection of its occurrences. However, because
of the wide range of factors that can produce fatigue, there is no scientifically accepted
method to identify it.

2. Related Works

Diverse fatigue detection techniques have been studied and used in rehabilitation
that can be divided into qualitative and quantitative approaches. Qualitative methods
are centered around the use of subjective scales of fatigue perception [31–33]. Some ques-
tionnaires consist of asking patients about their perceived tiredness level according to a
pre-established ordinal numeric scale [34,35]. One of the most implemented in physical
rehabilitation is the ten points Borg Rating of Perceived Exertion scale (Borg CR10) where a
lower number represents a state of absence of fatigue, and a higher number represents a
state of extreme fatigue [36]. However, the understanding of how an individual’s perfor-
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mance changes throughout rehabilitation is limited because the qualitative methods do not
always represent the actual intensity has led to a decrease in reliability [32,37,38].

Quantitative approaches such as physiological parameters and exercise performance
have been proposed for continuous monitoring of patients with chronic diseases during
physical sessions [29,39–42]. Regarding physiological parameter measurement, one of their
applications is the indirect estimation of fatigue [30,43–45]. The parameters most related to
fatigue are: oxygen uptake (VO2) that represents the oxygen consumption that the body
takes up and utilizes the exercising muscle [46]; heart rate (HR), which is one of the most
used physiological parameters to control fatigue [47,48] due to its measurement facility
and the linear relationship with VO2 [49]; and blood lactate, which is one of the most
often measured parameters during clinical exercise testing as well as during performance
testing of athletes [50]. It is essential for clinicians to understand the pathological response
as well as the normal response to exertion [51]. However, it requires a blood sample
and a specialized instrument, which are not easy to get during physical therapies [52].
Although the physiological parameters are considered accurate in measurement technique
terms, these parameters present difficulties to monitor in real-time due to their acquisition
processes. In addition, they may present different behaviors depending on the exercise
type performed (e.g., moderate or high-intensity exercise), which makes it difficult to relate
them to the fatigue level.

Considering that regardless of the exercise type performed the exercise performance
has a directly proportional relationship with fatigue [53], several methods for monitoring
fatigue through exercise performance have been implemented using ambulatory sensors
(e.g., electromyography and inertial sensors) or non-ambulatory sensors (e.g., motion
analysis system) to identify when an event exists outside the typical pattern, which supports
the rehabilitation process and performance monitoring of activities [54].

Electromyography (EMG) is considered the gold standard to detect muscular fatigue
considering that it directly assesses the bio-electrical muscle function [55,56]. However,
EMG processing is a complex task to execute in real-time, since it requires power and
frequency analysis [57] to identify fatigue progression. Therefore it inhibits their daily
usage for real-time fatigue detection. Inertial measurement units (IMUs) are reliable and
cheap sensors that are used to capture a person’s acceleration and motion data in real sce-
narios without the use of external sources or devices [58–60], allowing to assess the activity
performance through estimations of the kinematic and spatiotemporal parameters [61],
and motion analysis [62]. Although it is possible to identify the person’s fatigue level using
these sensors, considering that the kinematic study in fatigue is still an early topic, the
use of other physiological parameters like blood lactate [63], EMG [64], or even perceived
level of fatigue [65] are widely used to corroborate the results. A motion analysis system
is widely used in fatigue estimation due to its high accuracy and robustness in the mea-
surement of the kinematic parameters. The motion analysis system is based on the use of
infrared cameras to estimate the position of reflective markers to segment an object or an
individual and measure variables such as position and orientation [66]. However, motion
capture systems often require special setups which make them better suited for controlled
environments [67].

As this article has already pointed out, humans’ performance changes as a function of
a person’s individual characteristics (e.g., age, gender, fitness level, injury history, etc.), time
(which can be manifested through detrimental performance due to fatigue and improved
performance due to learning effects) and degree of exercise difficulty. Therefore, to enhance
fatigue estimation the use of artificial intelligence systems in optimizing and transforming
human performance has been implemented as a further alternative to monitor and un-
derstand how an individual’s performance deteriorates with fatigue accumulation [38,68].
These models appear as a complementary alternative to collected human performance
data from the diverse detection techniques (i.e., qualitative or quantitative approaches)
that allow classifying fatigue levels. Table 1 summarizes fatigue modeling research using
artificial intelligence systems. These studies differ between the physical activity movement
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performed, the sensors used, and the fatigue identification. For instance, some studies
attempted to identify high/extreme fatigue that results in an inability to generate muscle
forces and consequently, an individual’s performance decrease and inability to perform the
physical activity [69–72]. The other studies focused on detecting fatigue without reaching
exhaustion, where individuals are still able to perform their physical activity at a dimin-
ished level [38,73–75]. Since exhaustion in physical activity is often localized, the associated
literature [69–73,75,76] focused on one physical activity only (e.g., walking or squats) pri-
marily utilized 3D motion capture systems, EMG, accelerometers or IMUs, which were
used to model the individual’s performance, whereas only two studies developed models
to focus on a more complex task [38,74], which utilized IMUs and HR monitors. Five
studies used a subjective fatigue scale as a reference of the individuals’ fatigue perception
in contrast to their implemented fatigue detection method [38,70,73,74].

Table 1. A summary of fatigue modeling research.

Research Physical
Activity

Fatigue Detection
Technique Method

Maman et al.
(2020) [38]

Manufacturing
task

IMUs, HR,
Borg Scale SVM, RF, LR, PLR

Maman et al.
(2017) [74]

Manufacturing
task

IMUs, HR,
Borg Scale PLR

Zhang et al.
(2014) [69] Walking 3D optical tracking,

IMUs SVM

Karg et al.
(2014) [70] Squats 3D optical tracking,

subjective scale HMM, LR

Lee et al.
(2009) [75] Walking 3D optical tracking LDA, Statistical test

Karg et al.
(2008) [71] Walking 3D optical tracking LDA, SVM, kNN, NB

Helbostad et al.
(2007) [76] Walking Accelerometers Statistical test

Kavanagh et al.
(2006) [72] Walking EMG Statistical test

Yoshino et al.
(2004) [73] Walking subjective scale,

EMG, accelerometers LR

SVM = support vector machines, RF = random forest, LR = logistic regression, PLR = penalized logistic re-
gression, HMM = hidden markov models, LDA = linear discriminant analysis, kNN = k-nearest neighbors,
NB = naive bayes.

These models presented a significant potential for clinical scenarios because they
provide an objective indicator of the user’s fatigue condition. However, they considered
only two fatigue states, i.e., fatigued, or non-fatigued state, which were generally obtained
in two separate steps; in the first step, the participants have no fatigue while in the second
step fatigue is induced to the participants. The above limits the accurate monitoring of the
user’s exhaustion during therapy, restricts the possibility to determine the adequate “dose”
(i.e., intensity) of the individuals to produce a specific health benefit according to their
individuals’ needs, and thus limits improvements to the user’s performance during therapy.
On the other hand, from a detailed literature review, we could not identify any article that
discussed or established the best classifier for the identification and diagnosis of fatigue.
This may be attributed to the lack of understanding of how an individual’s performance
deteriorates with fatigue accumulation, which can vary based on user conditions and
physical activity.

As a first step, this paper proposes a framework for developing a fatigue identification
model based on the individuals’ exercise performance assessment to classify four fatigue
diagnosis stages (low, medium, high, and very high). The fatigue diagnosis stages allow
clinicians to pinpoint the hazard directly. They can then prescribe interventions from a
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large number of options, including assigning rest breaks (which can reduce the level of
fatigue before it reaches potentially dangerous levels) or redesigning the activity (which
can eliminate the development of fatigue) [38]. Four fatigue stages allow accurate mon-
itoring of patients’ fatigue conditions during exercise to avoid any injuries or affect the
rehabilitation process.

To this end, our framework takes benefits from the advances and widespread use of
wearable sensors for data collection. These sensors offer an individualized insight into
the individuals’ performance and present a unified performance benchmark that does
not depend on process cycle time (it is essential for real-time scenarios). Furthermore, we
have chosen to focus on monitoring fatigue in walking tasks since (i) localized muscle
fatigue is a potential risk factor for injury or falls as muscle fatigue adversely affects
proprioception, movement coordination and muscle reaction times, leading to postural
instability and gait alterations [65,69,73,76,77]; therefore, gait patterns associated with
fatigue may help in the assessment of fatigue-related fall risks or injuries in various
environments; and (ii) moderate-intensity training as walking exercises are one of the
most used in physical rehabilitation process due to improving cardiovascular system and
skeletal muscle function [20,22,23,78].

In this context, this framework allows to understand how an individual’s performance
deteriorates with fatigue accumulation in walking tasks. The code and data implemented
in this work are offered as supplementary materials to encourage adoption in practice and
further investigations by researchers.

Finally, it is significant to emphasize that social interaction has been shown to have
a positive impact on general mental and physical well-being in physical exercise ther-
apy [79,80]. Therefore, the use of these artificial intelligence systems has a great potential
in physical rehabilitation scenarios application through the use of socially assistive robots
(SAR) [81–83]. SAR is a system that employs interaction strategies, including the use of
speech, facial expressions, and communicative gestures, to assist according to a specific
healthcare environment [80]. Several studies have shown that SAR systems improve (i) the
ability to influence the patient’s intrinsic motivation to perform the task and (ii) the ability
to personalize the social interaction to maintain user engagement in the task through
permanent patient monitoring and feedback [79,81–86]. Therefore, with the support of
the machine learning models, this technology has been used to provide better service and
improve patient’s experience and treatment outcomes [81,83]. An example of the above is
the study conducted by Casas et al. [81], who implemented a social robot to act as a training
assistant in a cardiac rehabilitation program in a clinical setting. The results suggested
that SARs are well received by patients and have a positive impact on their willingness
to perform prescribed rehabilitation exercises. In summary, the social robot achieved
continuous monitoring and continuous feedback to patients on their performance, leading
to an increase in their motivation during the rehabilitation session. Similar outcomes are
reported by [79,83]. In this regard and the context of fatigue detection, a future better
application would be to implement these machine learning models in the RAS. Because this
would provide continuous monitoring and feedback on the patient’s performance, allowing
to control the intensity and the correct execution of the exercise. Similarly, alerts could be
generated when the patient is presenting high levels of fatigue or there is a variation in
exercise performance parameters. This is very promising for clinical scenarios and would
be of great help to avoid overtraining in patients, which could affect their rehabilitation
and even suffer physical or physiological complications.

3. Materials and Methods

The study has been divided into two parts: an experimental setup to obtain the
corresponding dataset and a proposed framework for a fatigue classifier to develop and
assess the fatigue estimation models. Specifically, six classification strategies have been
proposed and implemented to automatically identify four fatigue diagnosis levels in
walking exercises by monitoring 43 kinematic/temporal and biomechanical features.
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3.1. Experimental Setup

The experimental protocol was performed to quantify the detection success ratio of the
fatigue classifiers. A total of 24 healthy subjects (14 males, 10 females, 21.75 ± 1.16 years old,
1.71 ± 0.09 m) performed the study, who perform regular physical exercise and who had
no known physical or cognitive disability, injuries, pain, or any impediment to exercise (see
Table 2 for further information). The participants enrolled in this study, must not present
any fatigue state, i.e., they had to be in a non-fatigued state to avoid affecting their test
performance. To this end, five different types of fatigue—general fatigue, physical fatigue,
mental fatigue, reduced motivation, and reduced activity—were assessed using the “mul-
tidimensional fatigue inventory” [87] questionnaire. All subjects presented non-fatigued
conditions, and were informed about the scope and purpose of the experiment. Written
consent was obtained from each of them before the study. The Ethics Committee of the
Colombian School of Engineering Julio Garavito, Bogota, Colombia approved the protocol.

Table 2. Summary of participants’ descriptive data (M ± SD). BMI, body mass index.

Gender Age [Years Old] BMI [kg/m2] Walking Speed [m/s]

Male 21.83 ± 1.40 22.84 ± 2.90 0.18 ± 0.37
Female 21.64 ± 0.74 22.25 ± 3.09 0.18 ± 0.35

Volunteers were first instructed to perform three 10 m tests at a self-selected speed
to determine their average overground speed, which was successively set on a treadmill
(NIZA RX K153D-A-3, SportFitness, Bogota, Colombia). Participants were equipped with
four Shimmer3 (Shimmer, Dublin, Ireland) IMU units, one located on their foot dominant
instep and one located around the center of L5-S1 with a sample rate of 128 Hz. The
remaining two units were configured with a sampling rate of 512 Hz to obtain EMG signals
in four muscles (tibialis anterior, rectus femoris, biceps femoris, and gastrocnemius) of the
participant’s dominant leg. One IMU was located on the outer lateral part of the thighs and
one on the calves’ outer side with elastic bands, the EMG signal was recorded from a pair
of Ag–AgCl electrodes (interelectrode distance 3 cm) after cleansing the skin by alcohol. In
addition, participants were equipped with a Zephyr HxM BT (Medtronic, Ireland) on their
chest with an elastic band, with a sample rate of 1 Hz. The selection of the Zephyr BT sensor
is based on accuracy, reliability, cost, availability, and comfort [88,89]. The experimental
setup described is illustrated in Figure 1.

Participants were then asked to walk for at least 120 s on the already configured
treadmill at a zero-degree inclination, where different parameters were assessed. The first
two parameters directly indicate the fatigue level: blood lactate and a perceptive fatigue
scale using the Borg CR10. Therefore, they were used as reference values to diagnose
and classify the participants’ fatigue level. At the same time, kinematic/spatiotemporal
parameters, and EMG signals were recorded. Afterward, participants’ fatigue inducement
was carried out. Volunteers had to perform as fast as possible a physical exercise circuit
composed of four exercises: high knees, jumping jacks, squats, and short runs. At the end
of the physical exercise circuit the participants returned to the treadmill and the whole
process was repeated.
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Shank Shimmer 
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Figure 1. Experimental setup. Each participant was instrumented on their dominant side with an
IMU placed on the dorsal side of their foot and with an IMU placed on their spine between L2 and S1.
two more IMUS located on each thigh and shank with different electrodes situated in tibialis anterior,
rectus femoris, biceps femoris, and gastrocnemius. Participant’s heart rate was captured using the
Zephyr sensor located on their chest.

The above was repeated four times to increase the participants’ fatigue level. The
difference between each round was the execution time of the physical circuit that increased
progressively. In other words, the time corresponding to the performance of each exercise
increased by 15 s each round; for the first time, each exercise was performed for 30 s, the
second round for 45 s, the third round for 60 s, and the last round for 75 s. Note that if
the participants’ HR overcame 90% of the HRmax, or a 10 Borg value was notified, the test
was immediately concluded. The entire experiment, including donning/doffing times
related to instrumentation procedures and walking tasks, was completed within 60 min for
all volunteers.

It is worth highlighting that to get an approximation of each volunteer’s HRmax,
Tanaka’s formula using the user’s age (in years) was implemented as is shown in Equation (1).
Tanaka’s equation is recommended for healthy individuals such as those involved in this
study because this equation significantly overpredicts maximal HR. Therefore, for people
who present some diseases, it is recommendable to adapt this method when using exercise
testing [90].

HRmax = 206.9 − (0.7 ∗ age) (1)

Regarding the measured parameters, they were measured every time that participant
returned to the treadmill. The blood lactate sample was taken from the participant’s
earlobe with a new lancet. The blood was collected with a new test strip, and finally,
the strip was inserted into the Lactate Pro2 (Arkray, Japan) to measure the blood lactate
level. On the other hand, the Borg CR10 scale was obtained by asking the volunteer how
tired they felt according to the scale; Table 3 was used to explain the values meaning
to each volunteer according to the four fatigue levels (low, moderate, high, very high).
The participant was also instructed only to focus on the total effort sensation and not on
shortness of breath or muscle pain. Concerning the data acquisition, it only started once
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the self-selected speed was reached, and the treadmill speed was only reduced after all
data were acquired to prevent data capture during the transient state.

Table 3. Borg scale description and classification

Borg CR10 Value Description Classification

0 No exertion at all
Low1 Very easy

2 Easy

3 Somewhat moderate
Moderate4 Moderate

5 Somewhat hard

6 Hard
High7 Very Hard

8 Very Very Hard

9 Extremely hard Very High10 Maximum exertion

3.2. Proposed Approach for Fatigue Classifier

Figure 2 presents an overview of the proposed framework for managing physical
fatigue. This framework was divided into two phases. The first phase consisted of the
selection of an appropriate classifier model for prospective analysis. To this end, the first
phase is comprised of three main steps: (i) data preprocessing and feature generation,
where the sensors’ data are prepared for analysis and generated the dataset; (ii) model
construction and validation, where statistical and data analytic models are trained for dis-
tinguishing between the four fatigue states (non-fatigued, low-fatigue, moderate-fatigue,
high-fatigue); (iii) data analysis, where the classifier models are evaluated based on accu-
racy, precision, recall and F-score. In the second phase, where the best model is established,
the subset of features/predictors that are most frequently used in predicting the fatigue
state are identified.

3.3. Phase 1: Fatigue Detection
3.3.1. Data Preprocessing

The first step in analyzing data is to ensure that the data is correct and cleaned.
Therefore, the fourth main cleaning step was proposed. First, the gyroscope and ac-
celerometer outputs were treated with a second-order low-pass filter Butterworth for noise
removal [91,92]. Second, the collected data were visualized to check any additional er-
roneous data (e.g., faulty sensor values (too high and too low)), i.e., data that were not
corrected through the automated filtering in the previous step. Third, the data from the
different sensors were synchronized and any observations that were captured outside of
the experimental window were eliminated. Fourth, the data were partitioned using a non-
overlapping time window, where the selection of the length of the time window depended
on the identification of each participant’s gait event. Considering that gait presents a
repetitive behavior, an automated procedure was implemented to detect each participant’s
gait cycle. Specifically, the process consisted of determining each heel-strike event by
detecting the second minimum value in the angular velocity signals of each stride time.
This process outcome is represented in Figure 3, where a sample of each heel strike of the
corresponding signal from a participant’s test record can be observed. In addition, a zoom
of a signal part is presented in Figure 3, where gait event detection throughout the angular
velocity of an inertial sensing system over two gait cycles can be appreciated [60]. The
selection of the correct threshold value was carried out as in [93], whose study validated
all possible thresholds of the gait cycle within a range, and whose limits were visually
established from signals acquired in a preliminary analysis.



Sensors 2021, 21, 6401 9 of 25

Data acquisition

Feature extraction

Test set
Training set

Data Cleaning

Training set
Test set

Cross-Validation

K-fold
Train-Test Split

Machine learning models

Model Validation / Evaluation

Best 

Hyperparmeters grid

Yes

No

Grid Search

Best models selection 

Calculate the performance measures 

Data Analysis 

Select model with highest 
performance

Phase 2:
Feature selection and 
dimension reductionFeatures importance

Remove unncesary features

Sensor combination 
testing

Features limiting 
testing

Select features:
- Usefulness (high performance)

Select sensors:
- Ease of Use (less sensors)
- Usefulness (high performance)

hyperparameters

Figure 2. Flowchart that illustrates an overview of proposed method.
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Figure 3. Heel strike detection using an inertial detection system on a participant’s test record. The
zoom part represents two gait cycles and the identification of each gait phase: TO = Toe-Off (first
dashed line), MS = Mid-Swing (second dashed line), and HS = Heel Strike (third dashed line).

Regarding feature generation, two IMUs were attached at the participants’ foot instep
and around L5-S1 to measure the acceleration associated with a person’s dynamic motion
(spatiotemporal and kinematic parameters). These features captured the intensity and
spread, which are commonly used in the fatigue detection literature [74,94,95]. Likewise,
two more Shimmer3s were used and configured to obtain EMG signals in four muscles
(tibialis anterior, rectus femoris, biceps femoris, and gastrocnemius) to register electrical
potentials [96]. These potentials are directly related to muscular strength, which allows to
estimate the effort and evaluate the participants’ exercise performance [97]. The description
of the proposed features is provided in Table 4. Note that these features are calculated for
each time window, i.e., for each gait cycle.

Table 4. Features generated.

N◦ Feature Description Ref.

0 gait_mean_acce Average gait acceleration
1 gait_std_acce Average gait acceleration std
2 gait_max_acce Average gait maximum acceleration
3 gait_var_acce Average gait acceleration variance
4 gait_median_acce Average median gait acceleration
5 gait_energy_acce Average gait acceleration energy
6 gait_entropy_acce Average gait acceleration entropy
7 gait_kurtosis_acce Average gait acceleration kurtosis
8 gait_maxfreq_acce Average gait acceleration maxfreq
9 gait_stdfreq_acce Average gait gyro stdfreq

10 gait_mean_gyro Average gait angular velocity mean
11 gait_std_gyro Average gait angular velocity std
12 gait_max_gyro Average gait maximum angular velocity
13 gait_var_gyro Average gait angular velocity variance
14 gait_median_gyro Average median gait angular velocity
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Table 4. Cont.

N◦ Feature Description Ref.

15 gait_energy_gyro Average gait angular velocity energy
16 gait_entropy_gyro Average gait angular velocity entropy
17 gait_curtosis_gyro Average gait angular velocity kurtosis
18 gait_maxfreq_gyro Average gait angular velocity maxfreq
19 l2_mean_acce Average ts acceleration [9,95]
20 l2_std_acce Average ts acceleration std [98,99]
21 l2_max_acce Average ts maximum acceleration [94,100]
22 l2_var_acce Average ts acceleration variance [101,102]
23 l2_median_acce Average ts acceleration velocity [76,103]
24 l2_energy_acce Average median ts acceleration energy [70].
25 l2_entropy_acce Average ts acceleration entropy
26 l2_kurtosis_acce Average ts acceleration kurtosis
27 l2_maxfreq_acce Average ts acceleration maxfreq
28 l2_stdfreq_acce Average ts acceleration maxfreq std
29 l2_mean_gyro Average ts angular velocity mean
30 l2_std_gyro Average ts angular velocity std
31 l2_max_gyro Average ts maximum angular velocity
32 l2_var_gyro Average ts angular velocity variance
33 l2_median_gyro Average median ts angular velocity
34 l2_energy_gyro Average ts angular velocity energy
35 l2_entropy_gyro Average ts angular velocity entropy
36 l2_Kurtosis_gyro Average ts angular velocity kurtosis
37 l2_maxfreq_gyro Average angular velocity maxfreq
38 l2_stdfreq_gyro Average ts angular velocity maxfreq std
39 rms_gastro RMS envelope of the gastrocnemius signal
40 rms_tibilisAnterior RMS envelope of the tibilis anterior signal
41 rms_rectusFemoris RMS envelope of the rectus femoris signal
42 rms_bicepsFemoris RMSenvelope of the biceps femoris signal

Ref. = References; ts = torso swing; std = standard deviation; Maxfreq = maximun frequency; stdfreq = frequency
standard deviation; RMS = root-mean-square.

It is essential to highlight that feature variability caused by each participant’s phys-
ical condition makes it difficult to perform a direct comparison among the volunteer
registers, which requires a normalization of the data according to each initial subject per-
formance [104–106]. All features extracted were normalized by dividing them with the
corresponding initial value (see Equation (2)). Note that the test number zero of each
volunteer was taken as a reference since it was considered that the volunteer did not
have fatigue, which was corroborated with the blood lactate, the Borg CR10 scale, and the
multidimensional fatigue inventory questionnaire.

Fi = (
Fi

Fre f erence
) (2)

where Fi corresponded to each feature extracted in each time window and Fre f erence is the
average of the first ten time window values of the test number zero where volunteers were
not fatigued.

3.3.2. Model Construction and Validation

In machine learning, there are several methods of data partitioning for experimen-
tation. The most popular methods are typically referred to as training/test partitioning
or cross-validation [107,108]; both were implemented in this research to evaluate the best
classifier performance.

The training/test partitioning typically involves the partitioning of the data into a
training set and a test set in a specific ratio, e.g., 70% of the data are used as the training set
and 30% of the data are used as the test set. This data partitioning can be done randomly or
fixed. The fixed way is typically avoided (except when order matters) as it may introduce
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systematic differences between the training set and the test set, which leads to sampling
representativeness issues. To avoid such systematic differences, the random assignment of
instances into training and test sets are typically used [108,109].

Cross-validation is conducted by partitioning a data set into n folds (or subsets),
followed by an iterative process of combining the folds into different training and test sets.
In other words, each of the n folds is, in turn, used as the test set at one of the n iterations,
while the rest of the folds are combined as the training set [110]. A typical approach to
cross-validation is dividing the dataset into 10 folds, where the models are selected based
on the average/median prediction performance across 10 non-overlapping test datasets.
The literature suggests that 10-fold cross-validation may reduce the variation between the
training and test performance [111]. However, cross-validation is generally more expensive
in terms of computational cost than training/test partitioning.

Regarding the selection of the machine learning models, several classification methods
are viable candidates for utilization in fatigue prediction. However, from our framework’s
perspective, it is impossible to predetermine which methods will work best for fatigue
prediction in the walking task. Because these methods are data-driven and thus, are
application-dependent, i.e., dependent on the exercise, extracted features, sensors, scenar-
ios, among others, several methods were applied during our preliminary analysis of the
data to develop the fatigue prediction model. The models evaluated included: logistic
regression (LR), decision trees (DT), k-nearest neighbors (KNN), support vector machine
(SVM), naive Bayes (NB), linear discriminant (LDA), artificial neuronal network (ANN),
and random forest (RF). The open-source python library “scikit-learn” [112] was used to
execute a quick general training for these classifiers. Afterward, according to the accuracy
metric and due to their relatively poor performance, LDA and NB were eliminated. Hence,
our case study focused on using the best six classification models (LR, KNN, SVM, RF,
ANN,and DT), adjusted and retrained, by modifying their training hyperparameter auto-
matically through computational iterations. For a detailed introduction on the classifier
mentioned above, the reader is referred to [113,114].

3.3.3. Data Analysis

Developments in machine learning classifiers from imbalanced data have been mainly
motivated by numerous real-life applications since it faces the problem of unequal repre-
sentation of the data [115]. Most of the machine learning models used for classification
have been designed around the assumption of an equal examples distribution for each
class [116]. This means that an incorrect application of a model may focus on learning
the characteristics of the abundant observations only, neglecting the examples from the
minority class increasing false positives. However, a slight imbalance, i.e., the distribution
of examples is uneven by a small amount in the training dataset (e.g., 4:6), is often not
a concern [117,118]. In this context, to evaluate the performance of the proposed fatigue
detection models, it was essential to consider the following performance measures.

Recall or true positive rate (TPR), which captures the ability to detect the fatigued
cases, i.e., quantifies the number of positive class predictions made of all positive examples
in the dataset, is computed as follows

Recall =
True Positive

True Positive + False Negative
(3)

where a true positive (TP) is considered if the classifier prediction and the reference value
match. Otherwise, such classification is regarded a false positive (FP), i.e., it is the number
of registers that belongs to other groups and were wrongly estimated. Likewise, accuracy
presents the percentage of correct classifications made by a given model (Equation (4),
where n represents the complete amount of data).

Accuracy =
1
n
(

TP + TN
TP + FN + FP + FN

) (4)
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where the non-fatigue state is similarly detected by a classifier and reference signal corre-
spond to true negative (TN); otherwise, they have been accounted for by false negatives
(FN). Precision, which quantifies the number of positive class predictions that actually
belongs to the positive class, was measured as follows

Precision =
TP

TP + FP
(5)

The last metric considered was F-score (Equation (6)) which provides a single score
that balances both the concerns of precision and recall in one number.

F1microscore =
Precision ∗ Recall
Precision + Recall

∗ 2 (6)

3.4. Phase 2: Feature Selection and Dimension Reduction

Once the best prediction model is identified, it is essential to consider that a critical as-
pect for technology adoption is usability. When the number of potential features/predictors
is large, the computational complexity for model training increases. Feature reduction is
typically applied to reduce the computational burden. In general, models are more inter-
pretable if the number of features is smaller, which could (i) equalize or even increase the
performance metrics of the classifier by removing unnecessary features from the data, and
(ii) increase the generalization capability [119]. In the context of our framework, usability
can be measured using a total number of features selected; therefore, we hypothesize that
the chosen prediction model will have a relatively low number of features. Considering
that the proposed framework enables the diagnosis of fatigue and the recommendation
of an appropriate intervention, the feature selection/reduction was performed through
univariate statistical approaches where the feature selection was based on their relation-
ship to the response and their prediction performance. From this step, practitioners can
understand which features affect fatigue and how they are associated with changes in the
potential classifier. Therefore, any unchanged features in the fatigued and non-fatigued
states should be removed. This suggests that the result would be a more interpretable
fatigue classifier with relatively large prediction performance, i.e., a good fatigue detection
classifier with a low false alarm rate.

4. Results

Table 5 summarizes the samples numbers of the four fatigue states. The “Low” class
presents most of the registers with 43%, followed by the “Moderate” with and “High”
classes with similar proportions (26.41% and 25.08% ). The “Very High” class has the
lowest value, with a difference of 10% between the “Moderate” and “High” classes, and
a difference of 16.70% regarding the “Low” class. The difference between the classes
represents an imbalanced dataset.

Table 5. Data distribution in the dataset according to each fatigue state.

Class Number of Samples

Very High 463 (15.86%)
High 732 (25.08%)

Moderate 771 (26.41%)
Low 953 (32.65%)
Total 2919 (100%)

The predictive performance of the six models is summarized in Table 6. The table
shows the mean for each of four metrics. The reported results are based on 2919 dataset
samples from the respective partitioning method: training/test (i.e., 80% of the data were
used as the training set and 20% of the data was used as a test set). For the first three
numeric columns, a higher value is desired since it reflects a better prediction performance.
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Note that since the data set obtained is imbalanced, which causes an increase of the false
positives, the F-score was considered as the most relevant feature for the performance
classifier selection. Moreover, Table 6 reports the parameters and the performance of the six
classifiers implemented. The logistic regression (LR) classifier implements the large-scale
bound-constrained optimization as a penalty algorithm (solver = newton-cg), and a value
of 1,000,000 for its inverse of the regularization strength learning parameter (C = 1,000,000).
The k-nearest neighbor (KNN) method using Euclidean distance classified the registers
by a majority vote of its nearest elements with three neighbors (K = 3). The decision
tree (DT) method using the function to ensure the quality of a split (criterion = entropy)
and the tree depth to control the size of the tree to prevent overfitting (max depth = 12)
can create arbitrarily small leaves (min samples split = 11) and guarantees that each leaf
has a minimum size (min samples leaf = 4), avoiding low-variance over-fit leaf nodes in
regression problems. The support vector machine (SVM) has a radial basis function kernel
(kernel = balanced) and a constrain value of 64 (C = 64). The artificial neuronal network
has a stochastic gradient-based optimizer (solver = adam), 100, 100, and 100 as hidden
layer sizes (HLS = (100, 100, 100)), activation function for the hidden layer (activation =
tanh), learning rate schedule for weight updates (learning rate = constant), and regulation
term parameter (alpha = 0.0001). Finally, the best model is a random forest classifier with
100 estimators (n estimators = 100), which means that the model integrates 100 decision
tree models to merge their prediction. Note that all the hyperparameters used for the
generation of the classifiers are presented in Table 6, allowing for their easy replication.

Table 6. Mean performance of the classification methods for fatigue detection in walking task. Bold
values show the best score for each performance metric

Model Hyperparameters Accuracy Precision Recall F1-Score

RF estimators = 100 0.965 0.931 0.929 0.928

ANN

activation = tanh
solver = adam

HLS = (100, 100, 100)
alpha = 0.0001

learning_rate = ‘constant’
max_iter = 1000

0.949 0.896 0.898 0.894

SVM
kernel = rbf

class_weight = ‘balanced’
C = 64

0.907 0.809 0.809 0.806

DT

criterion = entropy
max depth = 12

min samples split = 11
min samples leaf = 4

0.907 0.806 0.805 0.804

KNN neighbors = 3 0.908 0.807 0.805 0.804

LR solver = newton-cg
C = 1,000,000 0.822 0.626 0.624 0.620

The next step is to analyze how the prediction performance varies while limiting
the number of features or the number of sensors used in the study. The random forest
method was selected to analyze the effect of removing features according to the highest
performance metric reported in Table 6. The results of this approach are presented in
Table 7, with (i) feature reduction using all sensors, and (ii) where features are limited to
those from one and two sensor combinations.
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Table 7. Mean performance of the random forest model for fatigue detection in walking task using
feature reduction and different sensors combinations. The best performance model is in bold.

Sensors Estimators Features Accuracy Precision Recall F1-Score

60 25 0.965 0.934 0.928 0.930
Thigh (EMG), 40 16 0.965 0.932 0.927 0.929
Shank (EMG), 80 13 0960 0921 0916 0917

L5-S1, Foot 80 11 0963 0.926 0.925 0.925
100 8 0946 0.895 0.883 0.888

L5-S1, Foot 80 17 0.940 0.883 0.876 0.879
L5-S1 80 16 0.839 0678 0.658 0.664
Foot 80 19 0921 0.856 0.827 0.838

The confusion matrix obtained from the best three RF classifiers models with feature
reduction implemented after exploring in a grid search manner is shown in Figure 4,
where along the x-axis are listed the true class labels and along the y-axis are the class
prediction. Along the first diagonal are the correct classifications, whereas all the other
entries show misclassifications.
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Figure 4. RF classifier confusion matrix for (a) 23 features, (b) 13 features (c) 11 features.

Regarding the feature reduction used, it was essential to consider the feature im-
portance properties for the initial RF model. The feature importance property measures
a relative weight value to each feature, which represents a direct relationship with the
importance of the corresponding feature for this classical machine learning model. Figure 5
presents a cumulative graph which represents the relative importance values obtained for
each feature, sorted from the highest to the lowest values.
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Figure 5. Features relative importance for random forest classifier using the original train data.

5. Discussion

The determination of the four fatigue states was achieved using qualitative methods
such as the Borg scale, as well as quantitative methods using blood lactate measurement.
This last parameter was the most considered and used to measure the performance and fa-
tigue of individuals. This is because in response to progressively increasing exercise, lactate
will increase exponentially. An individual’s endurance performance is well correlated with
their blood lactate [50]; therefore, lactate monitoring increases the confidence of healthcare
personnel in assessing the patient’s effort in physical therapies [51]—in other words, blood
lactate is a direct indicator of fatigue. This, in turn, makes the fatigue classification model
more accurate and reliable, since the data delivered by the sensors are directly related to
what is happening physiologically with the user.

The heart rate was not considered as a feature in the classification models considering
that this variable is more related to controlling the intensity of the exercise rather than
determining the individual’s physical fatigue (i.e., it is not directly proportional to the indi-
vidual’s fatigue state) [49]. For instance, given a scenario where the individual is exercising
at a constant speed, the HR may remain stable and the individual may be experiencing
a level of fatigue which is not reflected in the measurement, and vice versa. The second
reason for not considering HR was bearing in mind that it is determined by different
variables such as age, the physical condition of the individual, comorbidities, and gender;
therefore, when standardizing this variable it may cause a degree of uncertainty [47,48].

According to the dataset distribution presented in Table 5, the main difference between
classes was 16.79%, which is considered as a slight imbalance, and it is acceptable for
data analysis and training computational models [117,118]. Considering the report by
Fernandez et al. [116] that a slight imbalance can often be treated like a normal classification
predictive modeling problem as long as true negatives are considered, the selection of the
best model was performed mainly based on the F-score.

The fourth main observations from the predictive performance of our six models
presented in Table 6 need to be highlighted. First, as expected from the preliminary
analysis, the classifiers implemented with training/test presented a higher performance
in all metrics than the classifiers implemented with cross-validation. Hence, a simple
training/test split is sufficient for larger datasets. Second, the performance of the five
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models, except for the LR classifier, is relatively high with an overall average F-score
greater than 80.4%. Third, according to the literature review, it was expected that the
LR classifier presented a better performance given the positive results obtained with this
classifier in [38,73,74]. However, this model presented the lowest performance with a 62%
F-score, which would not represent an optimal or good classifier. This can be associated
with two main factors: (i) These studies considered only two fatigue conditions: fatigue
or non-fatigued, whereas this work contemplated four fatigue states. It increased the
probability of failing in the estimation and suggested that this classifier performed better
for binary classifications problems. (ii) Regarding the lack of understanding of how an
individual’s performance deteriorates with fatigue accumulation, which can vary based
on user conditions, physical activity, features extracted, and fatigue detection technique,
it is essential to have a general framework for fatigue estimation classifiers as presented
in Section 3.2 to guide the implementation, evaluation, and continuous improvement
of fatigue monitoring in rehabilitation scenarios regardless of physical activity or user
conditions. Fourth, the RF model presented the best performance in all features with an
overall of 92% considered as an optimum classifier for the fourth state estimation of fatigue
in walking tasks.

Once the best prediction model is identified, the next logical research question was
to examine how the prediction performance varies while limiting the number of features
and sensors used. To evaluate this question, we utilize the random forest model since
Table 6 showed that it had the highest mean accuracy, precision, recall, and F-Score when
compared to the other classifiers. From this, a list of predictive/important features was
established from most important to least important (see Figure 5) and a feature reduction
was applied to have a more interpretable classifier. Table 7 reports the prediction results
when features are limited to those from 25, 16, 13, 11, and 8. From the results in Table 7,
one can see that the prediction performance does not vary significantly as the number
of features’ is reduced. Some even match the RF performance utilizing all features (i.e.,
43 features). Considering that the RF model presented a similar performance among
23, 16, and 11 features, their confusion matrix was analyzed to observed the prediction
performance in two minority classes, i.e., very high fatigue and high fatigue states. These
predictions are more interesting and more valuable since they are essential to avoid any risk
in rehabilitation scenarios. The RF classifier presented fewer misclassifications between
the low class and the two minority classes with 16 features illustrated in Figure 4b. Based
on this observation, it is recommended to use the RF classifier with 16 features with an
overall of 91.5% in all features. While the prediction performance is almost the same, the
unnecessary features from the data were removed, optimizing computational costs and
running time. Moreover, a smaller number of features facilitates the interpretation of the
model, which is essential in the fatigue identification and diagnosis phases.

The prediction performance variation, while limiting the sensor used, is also reported
in Table 6. Note that the sensor used to measure EMG is removed considering that EMG
is invasive, which complicates its daily usage for real-time fatigue detection. Hence, the
characteristics obtained by the EMG sensor were not considered. This means that the main
features that detected fatigue were eliminated according to the sensor used. As expected,
without EMG measurements the classifier presented a performance reduction since these
features presented great importance in fatigue detection (see Figure 5). However, the
classifier performance remains positive using two sensors (IMUS placed on footstep and
around L2-S1) with an F-score of 88% and an overall average of 94%. Similarly, using one
IMU located in the footstep has a performance of 84% and an overall average of 92%. Based
on this observation, it suggests using only the IMU located on foot. While the prediction
performance is almost the same, the costs incurred by the clinics are much lower, and the
usability of the system by using only one sensor is significantly improved. These results are
comparable with the studies that proposed fatigue estimation models during the walking
task [69,71,73,75], which have shown accuracy values among 77% and 92%, with only two
fatigue conditions—fatigued and non-fatigued. Besides, these studies [69,71,75] use motion
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capture systems as fatigue detection techniques that often require special setups, which
makes them better suited for controlled environments than real rehabilitation scenarios.

Considering these observations, one can indicate three main contributions. First, the
framework proposed has shown higher detection performance (with fewer features) and
detects four fatigue diagnosis states in walking tasks, which allows clinicians to better
monitor the patient and pinpoint the hazard, and to prescribe and manage interventions
according to each individual’s needs. Second, the insights from the fatigue identification
phase of our framework can be used to inform sensor placement and selection. Third, and
more importantly, our framework presents a systematic approach that can answer the ques-
tion: “what are the gains associated with wearing an extra sensor?” In essence, this question
is left open to the researchers and practitioners to attempt to quantify whether the hassle
and cost associated with wearing an extra sensor can be justified by a significant/practical
improvement in fatigue detection when developing models for detecting/managing fa-
tigue in other settings or their target application. The results and data used in this study
can be accessed through the link provided in the Data Availability Statement Section. These
codes can be used to develop predictive physical fatigue models.

The implementation of our proposed model requires an understanding of the specific
features that were selected in the feature reduction process. Significant features contributing
to the determination of physical fatigue in this model include:

• EMG RMS signals (features 41, 42, 39, 40) represent the square root of the average
power of the EMG signal for a given period. Decrease over time of these signals led to
the detection of muscle fatigue.

• Gait Acceleration Mean (feature 0) reflects the mean duration of each gait cycle. The
fatigued musculoskeletal system is less able to attenuate heel strike-initiated shock
waves, which could be observed as an increase in the amplitude of the acceleration
measured at the foot. If the mean gait cycle time increased significantly with elapsed
walking time indicates that the individual is fatigued.

• Gait Acceleration Median (feature 4) is the median value for each gait cycle acceleration.
• Spine Acceleration Mean (features 19 and 29) represents the torso acceleration over

each gait cycle. These features show that if participants kept consistent torso move-
ment over gait cycles, then it likely corresponds to their walking behavior and the
patient is less likely to report physical fatigue.

• Spine Acceleration Median (features 33 and 23) is a measure of the central tendency of
the torso acceleration distribution. Where the participant maintains a high level of
spine acceleration, they are more likely to feel physically fatigued.

• Gait Maximum Acceleration (features 2 and 12) as the gait cycle time increased
significantly with increasing fatigue, gait acceleration decreases. If the participant
reduces their walking speed, then a decrease in peak gait acceleration is generated,
indicating that the participant is fatigued.

The selected features for the best model for physical fatigue detection were shown
in Figure 5. They are consistent with previous studies that have used IMUs for monitor-
ing physical activity. Common features computed from the acceleration signal are the
mean [68,94,95,98,100], variance or standard deviation [68,95,101,120] and the entropy and
energy of the data [61,68].

Concerning the results using only one IMU located around the center of L5-S1, ac-
cording to the literature review, it was expected to have a better classifier performance
considering that the torso is the body part commonly used for physical fatigue detection
and development models as reported in the following studies [38,71,73–75]. Specifically,
Mamman et al. [38] reported that one IMU located on the torso was enough to detect fatigue
in manual material handling environments. However, our results differ from the results
obtained in previous studies. In this study we found that the mean back rotational position
was selected as a mainly important feature for the classifier, as illustrated in Figure 5 with
features numbers 19, 33, 29, and 23. The results showed that the accuracy and F-score were
reduced to 88% and 66%, respectively, which is not promising. The above may suggest
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that (i) The features extracted from this sensor differ from other related studies; hence, the
feature extraction methods influenced the classification performance, and should be im-
proved. (ii) The use of a single sensor placed at L5-S1 in walking tasks may not be sufficient
and consequently, the performance of the classifier decreases significantly. (iii) The fourth
fatigue diagnoses states may increase the probability of failing in fatigue estimation with
the use of this sensor in relation to only two fatigue diagnostic conditions that have been
presented in the previous studies. Therefore, as future work, it is suggested to revise the
obtained features to improve the performance of the classification model.

Similarly, we ound that the mean back rotational position was selected as the most
important feature, as illustrated in Figure 5 with features numbers 19, 33, 29, and 23.
Moreover, Mamman et al. [38] reported that an IMU located the torso was enough for
detecting fatigue in manual material handling environments. However, the features utilized
differ from the features extracted in this work. The above may suggest three things:
(i) the feature extraction methods influenced the classification performance, and hence
feature extraction with this sensor needs to be improved; (ii) the classifier performance
decrease significantly with the use of only one sensor placed on L5-S1 in the walking tasks;
and (iii) fourth fatigue diagnoses states may increase the probability of failing in fatigue
estimation concerning only two fatigue diagnoses conditions. Therefore, as future work,
it is suggested to review the characteristics obtained to improve the performance of the
classification model.

On the other hand, there are a few limitations that must be acknowledged for this
study. First, the sample size is small due to the confinement caused by the COVID-19
bio-safety protocols and the time required for each participant. However, the sample
size is consistent with other studies that have focused on lab-based modeling of physical
fatigue presented in Table 1. Second, the effect of different demographic variables (i.e.,
age, sex, physical condition) needs to be explored in future models of physical fatigue
due to all volunteers being healthy people, and the features may show different behaviors
and patterns with patients or other groups with various physical conditions. Third, the
evaluation of our framework’s performance was limited to focused lab experiments. Future
studies should evaluate how this framework performs in clinical scenarios.

Finally, a future and great application would be to implement this physical fatigue
detection model in SAR systems. In essence, the system is proposed to be composed of
a single-sensor interface, aiming to measure all features relevant to the RF classifier. The
interface architecture comprises different nodes (e.g., sensor and SAR nodes) to adequately
handle the difference in sampling rates and the amount of information acquired by the
system. In the case of the sensor interface, the output of each node is the data processed,
and for the the corresponding behavior and feedback of the SAR node. The data from the
sensors would be stored in a database to be analyzed online to manage the interaction
of the SAR with the user. Regarding the SAR’s behavior, the node should be designed
considering three situations [81,121] (e.g., motivation, warning, and emergency, which
are triggered depending on the data provided by the interface) while monitoring the
users’ performance, with the aim of positively influencing the constant monitoring of
user’s performance and providing feedback to motivate them while the physical exercise
intensity and the correct exercise execution is controlled. Besides, SARs should be designed
to communicate with the therapists if an emergency event occurs during therapy (e.g.,
physical fatigue above the maximum allowable level, dizziness or any parameter is out
of normal). The aforementioned allows to achieve a successful rehabilitation program
through continuous patient monitoring and providing feedback to clinicians about the
patient’s performance to avoid overtraining, which can affect their rehabilitation and even
induce physical suffering or physiological complications. It should be emphasized that
this proposal is also applicable to other robot-assisted physical exercise scenarios, since
this model allows for a close measurement of users’ physiological events.
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6. Conclusions

Physical fatigue is a significant safety concern in rehabilitation environments and
monitoring physical fatigue is essential to prevent an accident, injury occurrences, and for
a rehabilitation program to be successful. The utilization of predictive models for physical
fatigue modeling can provide a chance to understand the physiology and psychology of
fatigue better. In this paper, an integrated framework was proposed with the main steps for
developing a fatigue classification model using few features. It facilitates the interpretation
model, which is essential in fatigue identification and diagnosis through visual analytical
approaches allowing practitioners to identify risks which should be addressed through an
appropriate intervention strategy.

The classifier models implemented considered four fatigue stages, instead of only
determining whether the user is fatigued or not fatigued, as previous studies have pre-
sented, that allow to improve the fatigue monitoring and enable clinicians to prescribe
an optimal therapeutic dose according to the individual’s needs, avoiding injuries and
affectations to the process. The classifier is able to obtain greater accuracy, despite the fact
that identifying the four fatigue states increases the probability of error. In particular, an
accuracy of 96% and an F-score of 93% were obtained with random forest model, generating
an optimal classifier.

The determination of the four fatigue states was achieved using blood lactate mea-
surement. This parameter was the most used to measure performance and fatigue of
individuals, thus being a direct indicator of fatigue. This in turn makes the method more
accurate and reliable, since the data delivered by the sensors are directly related to what
happens physiologically with the user.

The classifier performance model was also analyzed, checking the number of features
and sensors used in future real-time applications. The dimensionality of data is vital to
optimizing computational costs and running time. In addition, with fewer features, the
total number of sensors required to estimate them could be reduced. The results showed
that the classifier is capable of using a single sensor, maintaining an accuracy and F-score
of 94% and 92%, respectively. Therefore, clinicians will also be more inclined to adopt
the framework if it requires fewer sensors since it will: (i) be much cheaper, for example,
requiring one or two IMUs instead of four, which would reduce the cost; (ii) make the
process less invasive to the patient; and (iii) reduce the time needed for the patient to wear
and strap on all the sensors.
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