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Abstract

Ciliogenesis describes the assembly of cilia in interphase cells. Several hundred proteins have been linked to ciliogenesis, which 
proceeds through a highly coordinated multistage process at the distal end of centrioles requiring membranes. In this short review, 
we focus on recently reported insights into the biogenesis of the primary cilium membrane and its association with other ciliogenic 
processes in the intracellular ciliogenesis pathway.
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Introduction
Human cells typically have a single immotile primary cilium 
or one or more motile cilia. The primary cilium functions in  
multiple signal transduction pathways needed for normal  
development and tissue homeostasis1,2. Defects in the function  
of this organelle cause genetic disease, referred to as ciliopathy.

The primary cilium develops from the mother centriole (MC)  
and is structurally comprised of a microtubule-based axoneme 
surrounded by a ciliary membrane, which serves as the chief  
signaling hub for the organelle. A transition zone (TZ) at 
the cilium base acts as a molecular gate to regulate entrance 
and exit of proteins and lipids3,4. Notably, the majority of  
ciliopathy-linked proteins localize to the TZ2,5. Intraflagellar  
transport (IFT) proteins were the first proteins shown to func-
tion in ciliogenesis, and both IFT-A and IFT-B complexes 
regulate anterograde and retrograde transport along the  
axoneme6–10. Although many other proteins have been shown 

to be important for ciliogenesis, we still have only a very basic  
understanding of the mechanisms involved in this process.

Ciliogenesis mechanisms
The assembly of the cilium is thought to occur by two mecha-
nisms: an extracellular pathway and an intracellular pathway.  
Polarized epithelial cells use the extracellular pathway, whereas 
fibroblasts and mesenchymal cells follow the intracellular 
scheme11,12. In both pathways, docking of cellular membranes 
to the distal appendages (DAs) on the MC (Figure 1) triggers  
the removal of proteins from the MC, referred to as MC uncap-
ping, needed for axoneme assembly13. This centriole cap 
controls the elongation of these microtubule triplet-based  
structures14. In the extracellular ciliogenesis pathway, the MC 
docks directly to the plasma membrane (PM) through distal  
appendage proteins (DAPs) on the DAs15, although there are 
many outstanding questions about the initiation mechanisms  
involved in this process. Most recently, it was suggested that 

Figure 1. Membrane trafficking regulation of primary cilium assembly in intracellular pathway. Membrane trafficking regulation of 
ciliogenesis stages illustrated in two dimensions (2D) (top) and three dimensions (3D) (bottom). Ciliogenic factors linked to membrane 
trafficking are shown for ciliogenesis stages associated with (1) mitogen signaling regulation of preciliary vesicle (PCV) trafficking to the 
mother centriole (MC), (2) docking of PCVs to the MC mediated by subdistal appendage (SDA) and distal appendage (DA) proteins (inset), 
(3) assembly of the ciliary vesicle (CV) from PCVs and associations with the ubiquitin degradation of the MC cap, and (4) coordination of 
ciliary sheath membrane growth and transition zone (TZ) and axoneme assembly. The developing intracellular cilium can emerge from the 
cell surface via the formation of an extracellular membrane channel (EMC) which develops from the ciliary membrane to plasma membrane 
(gray line). Pink membranes show the developing ciliary membrane and ciliary pocket, and + and – curvature indicates membrane surface 
shape. IFT, intraflagellar transport; MT, microtubule.
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the cytokinesis midbody remnant directs MC docking to the  
PM16. In contrast, in the intracellular ciliogenesis pathway, 
the cilium is assembled at least partially in the cytoplasm and  
involves the trafficking of membrane vesicles from the endo-
cytic recycling compartment (ERC) and the Golgi to the  
MC15,17–19 (Figure 1). Preciliary vesicles (PCVs) dock to DAPs, 
where they have been referred to as distal appendage vesi-
cles (DAVs), and subsequently fuse to form a larger ciliary  
vesicle (CV) covering the distal end of the MC15,18,20,21. This  
process triggers MC uncapping followed by the growth of 
the axoneme surrounded by a double-membrane sheath that  
develops from the CV.

Ciliogenesis initiation and the Rab11–Rab8 cascade
The earliest mechanistic evidence showing membrane traf-
ficking regulator associations with the intracellular pathway  
came from the observation that a Rab11–Rab8 cascade  
functions in ciliogenesis18,22–24. Rabs are members of the Ras 
superfamily of small GTPases and are master regulators of  
membrane trafficking important in the biogenesis, transport, 
tethering, and fusion of membranous structures in the cell25.  
Rab11 organizes the trafficking of PCVs from the ERC and 
transports Rabin8, a Rab8 guanine nucleotide exchange factor  
(GEF), to the MC in order to activate Rab8 to grow the cili-
ary membrane at the CV stage18,20. This preciliary trafficking  
process occurs within minutes of cues for cells to ciliate,  
suggesting that this is a key step in ciliogenesis initiation18. 
Recently, we showed that Rabin8 PCV-dependent traffick-
ing and ciliogenesis initiation are negatively regulated by lyso-
phosphatidic acid (LPA)/LPA receptor 1 (LPAR1)-dependent  
activation of the PI3K-Akt signaling pathway in cultured  
cells26. Akt phosphorylates the Rab11 effector WDR44 and  
stabilizes its binding to Rab11, thus preventing the formation  
of an effector complex between Rab11 and FIP3 needed to  
traffic Rabin8-containing PCVs to the MC.

Docking preciliary vesicles to the mother centriole
How PCVs are trafficked by the cytoskeleton to the MC 
DAs remains unclear, although the Golgi-associated motors  
dynein-2, Myosin Va, and kinesin-14 (KIFC1) have been 
linked to ciliogenesis19,21,27–29. Preciliary trafficking of  
Rabin8-containing PCVs requires microtubules18, yet microtu-
bules are likely not anchored to DAs but are observed on more 
proximal subdistal appendages (SDAs) on the MC30 (Figure 1).  
This raises the possibility that PCVs are first trafficked to the  
SDAs and then shuttled to the DAs. Indeed, the SDA protein 
CEP128 has been shown to mediate Rab11 association with 
the MC31 while Rabin8 can interact with the DAP CEP16432.  
PCV transport from SDAs to DAs could be assisted by  
large-molecular-weight membrane trafficking regulator com-
plexes, including TRAPPII and the exocyst, both of which are 
required for ciliogenesis and interact with Rabin8 through their 
respective components TRAPPC14 and Sec1518,33,34. This idea 
is supported by the observation that TRAPPC14 interacts with 
the DAPs CEP83 and FBF133. The more proximal DA posi-
tion of CEP83, closer to the SDA, could enable a “hand-off”  
of PCVs to the distally localized DAP CEP164, a presumed  
anchor point for the ciliary membrane35.

Pericentriolar PCV transport to the MC has also been recently 
reported to be regulated by the motor protein Myosin Va21. This 
mechanism is independent of Rabin8 preciliary trafficking, 
suggesting that more than one type of PCV may be involved 
in cilium assembly33. Consistent with this idea, several other  
Rabs have been linked to ciliogenesis (Rab10, -23, -29,  
-34, and -35), although their precise functions are poorly  
understood24,36–41. Interestingly, in contrast to Rab8, its clos-
est homolog Rab10 was recently shown to block ciliogenesis 
through a phosphorylation-dependent process involving the  
shared effector RILPL1, which localizes to the MC and  
prevents ciliogenesis42. These findings differ from an earlier study 
showing that Rab8 and Rab10 have overlapping ciliogenesis  
functions41. Interestingly, both Rabs are activated by Rabin843,44, 
suggesting that regulation of its GEF function could be important 
for Rab8 and Rab10 opposing ciliogenesis roles.

Ciliary vesicle assembly
Following docking of PCVs to the MC, the Rab11- and  
Rab8-associated endosomal membrane trafficking regulators  
EHD1 and EHD3, along with their binding partners MICAL-L1  
and the F-BAR membrane-shaping protein PACSIN1 and -2,  
function in the assembly of the CV20,45–47. F-BAR–containing  
proteins are involved in sensing or establishing membrane  
curvature or both48. EHD proteins may also influence membrane 
shape directly or indirectly by recruiting PACSINS to mem-
branes and assist with membrane fusion47,49. EHD1 recruits both 
PACSINs and SNAP29, a SNARE membrane fusion regulator20, 
to DAVs, while Rab34 was recently reported to mediate EHD1  
association with MC-associated ciliogenic membranes36. 
Together, these observations support a model wherein DAVs 
fuse to form the CV, a process that appears to require membrane  
shaping.

Membrane trafficking regulator links to mother 
centriole uncapping
Ciliogenic EHD and PACSIN proteins and MICAL-L1 are required 
for MC uncapping, suggesting that this process is dependent  
on CV assembly20,45–47, although inexplicitly Rab34 is dis-
pensable for MC cap removal36. The MC cap is comprised of 
three proteins: CP110, CEP97, and M-phase phosphoprotein 9  
(MPP9)14,50. MC uncapping involves several proteasomal deg-
radation regulators and the tau tubulin kinase 2 (TTBK2)14,51,52.  
Whereas some of these factors localize to the MC, others are 
recruited upon initiation of ciliogenesis, suggestive of directed 
transport mechanisms. TTBK2 recruitment to the MC depends 
on the motor KIFC119 and changes in PtdIns(4)P levels53,  
a lipid enriched in the ERC and Golgi-derived vesicles54,55. 
New insights into the initiation of MC uncapping have recently 
emerged from characterizations of MPP950. The motor KIF24  
maintains MPP9 at the MC under non-ciliating conditions, and 
following ciliogenesis initiation, TTBK2 is recruited to the 
MC where it phosphorylates MPP9 at Ser629, resulting in its  
removal by an unknown mechanism. MPP9 loss from the 
MC cap could trigger a cascade whereby CEP97 and CP110 
are degraded. The E3 ligase complex CUL3-RBX1-KCTD10  
degrades CEP9752, and CP110 degradation has been linked to 
the ubiquitin ligases HERC2 and SCFcyclinF14,56,57. Interestingly, 
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the HERC2 cofactor Neurl-4 translocates from the daughter  
centriole to MC during ciliogenesis58. Thus, it seems plausi-
ble that PCVs could be involved in trafficking this and other  
factors needed for MC uncapping.

Transition zone and ciliary membrane assembly
TZ protein recruitment to the MC also coincides with the  
DAV-to-CV assembly stage, suggesting a role for PCVs in trans-
porting TZ factors20,45. Interestingly, the TZ protein Chibby  
(CBY) stabilizes Rabin8 and CEP164 associations59, suggest-
ing that this TZ protein could affect PCV docking to DAPs or 
regulate downstream Rab8 activation or both. Similarly, the  
TZ protein CEP290 is important for recruiting Rab8 to the  
developing cilium60. Importantly, mutation or ablation of CBY 
and CEP290 as well as other TZ proteins (TMEM67, Ahi1, and  
DZIP1/DZIPL1) disrupts ciliogenesis progression at the CV 
stage59–66. Based on these findings, it seems likely that a fully  
functional TZ is established as the CV develops into the  
ciliary sheath membrane. Structurally, the TZ has a Y-shape con-
necting the ciliary membrane to the microtubule doublets of the  
axoneme67,68. Thus, predicted transmembrane domain-containing 
TZ proteins such as TMEM67, TMEM216, TMEM231, and 
TMEM237 could link the ciliary membrane to the Y-shaped  
structures3,69–73. Moreover, given TMEM67 requirements at the 
CV stage, it, along with other TZ proteins, may be important  
for coordinating TZ and ciliary membrane assembly.

Establishing a functional TZ early in ciliogenesis could also be 
important for reorganizing the CV, from a spherical-like structure 
with a positive-curved cytoplasmic outward-facing membrane,  
into the ciliary sheath, with both positive and negative  
membrane curvature (Figure 1). The membrane opposed to the 
axoneme in the ciliary sheath and mature cilium also has negative  
curvature. Given the molecular gating function of the TZ, it 
could therefore help partition proteins and lipids in order to  
reorganize the membrane of the CV into the ciliary sheath. For 
example, the positive curvature–associated membrane-shaping 
factors PACSIN and EHD proteins would be predicted to inter-
fere with establishing negative-membrane curvature at post-CV  
stages. Consistent with this idea, PACSIN1 and -2 and EHD1 
and -3 are not detected in the mature cilium but are observed 
on the positively curved cytoplasmic surface of the ciliary  
pocket membrane20,45. Interestingly, the TZ protein FAM92 
has an undefined BAR domain which could be important for 
establishing membrane curvature during ciliogenesis74. Further 
investigation of membrane-shaping mechanisms involved in  
CV-to-ciliary sheath transition is needed to better understand 
these processes. Clues to how membrane-shaping regulators  
affect primary cilium assembly may be found in studies of 
worm sensory cilia which can undergo dramatic membrane  
remodelling75,76.

Coordinating growth of the ciliary membrane and the 
axoneme
The growth of the ciliary membrane and the axoneme micro-
tubule doublets appears to be tightly coupled. Disruption of  
regulators of membrane trafficking and microtubule assembly  

blocks ciliogenesis at the CV stage or causes shortened  
cilia5,20,77,78. IFT proteins play a critical role in coordinating  
cilium axoneme growth via interactions with molecular motors 
and ciliary cargos79,80. IFT20 localizes to the Golgi17 and is  
recruited to the MC between the DAV and CV stages20 via the 
motor KIFC119, suggesting that PCVs could be involved in the  
delivery of IFT20 to the MC. Interestingly, in Chlamydomonas, 
IFT-associated membrane vesicles were discovered near the 
base of the flagella and also contain axonemal components,  
suggesting that ciliogenic associations between ciliary  
membranes and axoneme occur outside of the cilium81. 
Finally, a more direct function of IFT on membrane trafficking  
was proposed for IFT172, which was shown to shape lipid  
membranes in vitro82.

Live cell imaging studies demonstrated that Rab8 accumu-
lates in the growing cilium, supporting a role in the extension of  
the ciliary membrane18,20. Consistent with this idea, reduced 
PCV trafficking of Rabin8, regulated by the kinase NDR2, and  
ciliary accumulation of Rab8 are observed following the 
growth of the primary cilium18,34. Rab8- and IFT-coordinated  
functioning in cilium growth could be coupled by ELIPSA, 
which interacts with IFT20 and the membrane trafficking and 
ciliogenesis regulator Rabaptin5, which in turn interacts with  
Rab883. Interestingly, IFT20 and Rab8 membrane trafficking  
regulation associations are further supported by studies in  
T cells, which despite lacking cilia require both proteins to regu-
late vesicular receptor recycling important for immune synapse  
function84,85.

Several other membrane trafficking regulators have also been  
linked to IFT and the extension of the cilium. Like Rab8, the exo-
cyst regulator Sec10 accumulates in the cilium and associates  
with IFT proteins86,87. Another Ras superfamily member, 
Arl13b, functions in ciliogenesis and interacts with the IFT-B  
complex and mediates IFT-A retrograde transport on the  
axoneme88. Notably, Arl13b localizes to the ciliary membrane 
after the CV stage and has also been linked to exocyst ciliogenic  
function89,90, although the precise role of these proteins in cilium  
growth remains elusive. Rab35 was also recently reported  
to regulate cilium length by affecting Arl13b and lipid levels  
in the cilium37. Thus, Arl13b may serve as a bridge between  
IFT and membrane trafficking regulators in coordinating  
growth of the axoneme and the ciliary membrane. Rab23 has 
also been linked to IFT and ciliary growth91. Evidence for 
Rab23 requirements in ciliogenesis and cilium maintenance 
has also come from studies using Rab23 dominant-negative  
expression39 and investigation of its GTPase regulation by the  
GTPase-activating protein (GAP) Evi5L24 and the GEF complex  
Inturned (INTU) and Fuzzy, components of the CPLANE  
complex important for establishing planar cell polarity91. Inter-
estingly, INTU and Fuzzy activate Rab23 for post-CV cilio-
genic stages91 and INTU is known to modulate IFT ciliary  
trafficking78,92. Moreover, INTU interacts with another GTPase, 
RSG1, which is needed for assembly of the axoneme78. 
Together these observations point to multiple mechanisms 
whereby IFT couples axoneme and ciliary membrane growth in  
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coordination with Rabs and other membrane trafficking reg-
ulators. These mechanisms are also likely important for  
IFT-dependent regulation of membrane cargo transport needed  
for ciliary signaling79,80.

Interestingly, very few reports have described the uncoupling 
of the growth of the primary cilium membrane and axoneme66.  
Ultrastructure analysis of fibroblasts from Joubert syndrome 
ciliopathy patients with CEP290 mutations displayed intracel-
lular axonemes lacking ciliary membranes, yet DAVs appeared 
to be docked to the MC66. In contrast, depletion of the putative  
Rab-GAP Broad-minded (BROMI) showed detached and 
expanded ciliary membranes on one side of a seemingly normal  
axoneme in the zebrafish pronephros, although the target Rab  
has not been identified93.

Fusion of the intracellular cilium with the cell surface
How the intracellular developing cilium emerges from the 
cell is another question that was recently investigated45. We  
discovered that the cilium can emerge from the cytoplasm via 
the formation of tubulovesicles organized from the positively 
curved surfaces of the CV and ciliary sheath membranes. These  
tubulovesicle structures are guided to the PM on microtubules,  
and upon fusion of these discrete membranes, an extracellular 
membrane channel (EMC) that exposes the ciliary membrane  
to the extracellular environment is formed. EHD and PACSIN  
proteins help reorganize these tubulovesicles20,45, and pre-
sumably Rabs, SNAREs, and molecular motors also function  
in this process as well. This study also showed Rab8 on  
these tubulovesicles, suggesting that factors needed for cilio-
genesis could be delivered to the developing cilium from these  
structures, possibly originating from the PM. Thus, the intra-
cellular and extracellular ciliogenesis pathways could use a 
similar mechanism for delivering ciliogenic cargo to the MC  
following docking to the PM.

Conclusions
In this review, we examined new insights and models for  
membrane trafficking function in mediating discrete steps 
important for cilium assembly. Other membrane trafficking 

regulators have also recently been linked to ciliogenesis and 
ciliary trafficking, including the HOPS, ESCRT, and BLOC-1  
complexes94–96. Thus, future studies examining these and other 
trafficking factors are important to address outstanding questions  
posed in this review, in particular relating to how PCVs  
specifically traffic and dock to the MC and how they organize 
to become the unique ciliary membrane in close coordination  
with the assembly of the ciliary TZ and axoneme. Although 
we did not focus on disease associations with membrane traf-
ficking regulators, it is important to note that mutations in the 
membrane trafficking regulators are associated with ciliopathy:  
Arl13b (Joubert syndrome)97, Rab23 (Carpenter syndrome)98, 
and the exocyst subunits Exo84 (Joubert syndrome)99 and 
Sec8 (Meckel–Gruber syndrome)100. Thus, the investigation of  
fundamental ciliogenesis membrane trafficking process will 
undoubtedly enhance our understanding of cilia-related human  
disease.
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