
Article

Pilot Sleep Behavior across Time during
Ultra-Long-Range Flights

Jaime K. Devine 1,* , Jake Choynowski 1, Caio R. Garcia 2, Audrey S. Simoes 2, Marina R. Guelere 2,
Bruno de Godoy 2, Diego S. Silva 2, Philipe Pacheco 2 and Steven R. Hursh 1,3

����������
�������

Citation: Devine, J.K.; Choynowski,

J.; Garcia, C.R.; Simoes, A.S.; Guelere,

M.R.; Godoy, B.d.; Silva, D.S.;

Pacheco, P.; Hursh, S.R. Pilot Sleep

Behavior across Time during

Ultra-Long-Range Flights.

Clocks&Sleep 2021, 3, 515–527.

https://doi.org/10.3390/

clockssleep3040036

Received: 25 August 2021

Accepted: 18 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institutes for Behavior Resources, Inc., Baltimore, MD 21218, USA; jchoynowski@ibrinc.org (J.C.);
shursh@ibrinc.org (S.R.H.)

2 Azul Linhas Aéreas Brasileiras, 06460-040 Sao Paulo, Brazil; caio.garcia@voeazul.com.br (C.R.G.);
audrey.simoes@voeazul.com.br (A.S.S.); marina.guelere@voeazul.com.br (M.R.G.);
bruno.godoy@voeazul.com.br (B.d.G.); silva.diego@voeazul.com.br (D.S.S.);
philipe.pacheco@voeazul.com.br (P.P.)

3 Institutes for Behavior Resources, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
* Correspondence: jdevine@ibrinc.org; Tel.: +1-410-752-6080 (ext. 132)

Abstract: Fatigue risk to the pilot has been a deterrent for conducting direct flights longer than
12 h under normal conditions, but such flights were a necessity during the COVID-19 pandemic.
Twenty (N = 20) pilots flying across five humanitarian missions between Brazil and China wore a
sleep-tracking device (the Zulu watch), which has been validated for the estimation of sleep timing
(sleep onset and offset), duration, efficiency, and sleep score (wake, interrupted, light, or deep Sleep)
throughout the mission period. Pilots also reported sleep timing, duration, and subjective quality of
their in-flight rest periods using a sleep diary. To our knowledge, this is the first report of commercial
pilot sleep behavior during ultra-long-range operations under COVID-19 pandemic conditions.
Moreover, these analyses provide an estimate of sleep score during in-flight sleep, which has not
been reported previously in the literature.
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1. Introduction

Pilots operating routes that are long-haul (LH), defined as flight duty periods (FDPs)
longer than 6 h, or ultra-long-range (ULR), defined as FDPs longer than 12 h, routinely
suffer from fatigue due to sleep disruption [1–3]. Schedule mitigation and in-flight napping
are fatigue countermeasures used to reduce sleep pressure during LH/ULR flights and
aviation is one of the most regulated industries with regards to fatigue [4–9]. Maintaining
a home base time zone schedule during ULR rosters may help pilots avoid fatigue related
to circadian misalignment or jet lag [2]. However, local environmental and social time
cues strongly influence even pilots who have been instructed to retain a home base time
schedule [2].

Several studies have also shown that pilot sleep quality is diminished during lay-
overs and in-flight rest periods [3,5,10]. Diminished sleep quality not only reduces total
sleep duration, but is less restorative than sleep of equal duration in a bedroom envi-
ronment [3]. The restorative value of sleep, as estimated through subjective fatigue and
objective performance, is related to sleep architecture—namely, slow wave sleep (SWS)
and rapid eye movement (REM) sleep stages [11,12]. Polysomnography (PSG) is the gold
standard to assess sleep stages, but is considered an impractical method for collecting sleep
information in operational environments [13]. Consumer sleep trackers cannot measure
sleep architecture, but many offer a non-equivalent sleep score under the assumption
that sleep stages N1 and N2 are comparable to light sleep, SWS is comparable to deep
sleep, and REM is its own category [14–17]. It should be noted that while sleep score
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refers to sleep as being light or deep, CSTs do not measure the brain waves necessary to
determine sleep depth [18,19]. Reliable estimation of sleep architecture during LH/ULR
rosters, particularly during in-flight sleep, is important toward understanding the quality
of sleep across aviation operations. Estimation of sleep scoring is a preliminary step toward
that goal.

Pilot fatigue constitutes a well-anticipated threat to aviation safety, but the estimation
of fatigue risk and sleep behavior for specific flight rosters has been informed by scientific
examination of fatigue factors during actual or simulated aviation operations. Data cannot
be collected during operations which never occur, but the COVID-19 pandemic resulted in
unprecedented commercial aviation operations, including ULR direct round-trip flights
between Brazil and China.

Operators adapted to the unique operating conditions imposed by global lockdowns
as best as possible given the limited information and tools available to predict fatigue.
Brazil-based Azul Airlines, for example, estimated pilot fatigue using a biomathematical
model prior to conducting five separate humanitarian missions to China between May
and July of 2020 [20]. During missions, pilots wore a validated wrist actigraph (the Zulu
watch, Institutes for Behavior Resources Inc., Baltimore, MD, USA [21]) and reported the
sleep duration and quality of their in-flight rest periods using a sleep diary. Each mission
consisted of four flight legs between 11–15 h long each going from: (1) Brazil to a layover
destination in Europe, (2) the layover destination to a destination in China to pick up
COVID-19 relief supplies, (3) China to a return layover destination, and finally, (4) the
return layover destination to the home airport in Brazil. Pilots were each provided a 9 h
rest opportunity per FDP, and were instructed to remain on a home base schedule, i.e.,
west Brazilian local time (UTC-5).

The Zulu watch is a commercial sleep tracker designed for use in operational environ-
ments which has been validated against PSG and actigraphy for sleep-wake determination
and against PSG for the estimation of sleep score [21]. Two-min epochs within sleep events
which are recorded by the Zulu watch are categorized as either interrupted sleep, light
sleep, or deep sleep. It should be noted that the Zulu watch estimates sleep score based on
wrist movement using a tri-axial accelerometer and on-wrist detection using a galvanic
sensor. Specific differences between NREM–REM sleep stages cannot be estimated by
accelerometry alone, but wrist movement can identify bouts of immobility which are
known to correspond to periods of restful sleep that could include NREM and REM [22,23].
Previous studies have compared sleep scoring in commercial wearables or mobile apps
against PSG under the assumption that sleep stages N1 and N2 are comparable to light
sleep, SWS is comparable to deep sleep, and REM is its own category [14–17]. The Zulu
watch does not include a category for REM sleep.

The data analyzed in this manuscript was collected by Azul Airlines’ human factors
team; secondary use of the data was granted to the science team at the Institutes for
Behavior Resources (IBR). The goals of the current analyses are three-fold. The first goal
is to describe observed sleep behavior during pandemic-specific ULR flight conditions
and thus, establish an expectation of rest patterns in the hopefully unlikely event of future
global public health emergencies. The second goal is to describe patterns of sleep behavior
and sleep score across ULR in-flight and layover sleep events with respect to pilots’ flight
schedules and local night as a precedence for future investigations. The third goal is to
evaluate the accuracy of Zulu watch measures of sleep duration and sleep timing estimation
in operations compared against sleep diary. The Zulu watch has been validated in the
laboratory, but the true test of its utility is (a) the ability to accurately measure sleep timing
and duration compared to self-report in real-world operations and (b) the ability of Zulu
watch measurements to inform assumptions about sleep behavior in real-world situations
such as ULR flight rosters. Agreement between Zulu watch measures of sleep timing (i.e.,
sleep onset time and offset time) and sleep duration, compared to sleep diary report of
sleep timing and duration during FDP in-flight sleep, was examined using Pearson’s r
correlation, paired samples t-tests, and Bland–Altman plots. Taking these three study goals
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together, this paper constitutes the first report of sleep behavior and estimation of sleep
score during in-flight sleep for commercial pilots flying ULR missions across multiple time
zones under global pandemic conditions.

2. Results
2.1. Pilot Participation

In total, 40 pilots flew the Brazil-China routes between May and July 2020 for Azul’s
humanitarian missions. Missions ranged from 96 h to 132 h in length. Missions 1, 2, and 5
departed in the afternoon (between 14:00 and 16:00 UTC-5) while Missions 3 and 4 departed
in the early morning (between 01:30 and 03:00 UTC-5). Each mission consisted of 4 FDPs
which ranged in length from 11 to 14 h each, 1 turnaround period in China, which lasted
between 3 to 6 h without deplaning, and 2 layover periods in Europe which lasted between
20 to 41 h. Thirty-two (32) out of 40 (80%) pilots crewing a COVID-19 humanitarian mission
completed the sleep diary and 22 out of 40 (55%) wore a Zulu watch continuously during
the mission period. Twenty (20; 50%) pilots completed both the sleep diary and wore the
Zulu watch. Only pilots who both completed the sleep diary and provided Zulu watch
data (N = 20) have been included in these analyses. Fifteen (N = 15) participants provided
Zulu and diary data for all 4 flight legs; N =3 participants provided Zulu and sleep diary
data for 3 out of the 4 flight legs; N =1 participant provided Zulu watch data for all FDPs,
but only completed the sleep diary for 3 out of 4 FDPs and N = 1 participant completed the
sleep diary for all 4 FDPs, but only wore the Zulu watch for 3 out of the 4 flight legs.

2.2. Sleep Timing and Sleep Duration across Mission Hours

Pilots reported between 0 to 3 separate sleep events per FDP by diary. In comparison,
Zulu watches recorded between 0 to 6 sleep events for the same FDP. FDPs include time
allocated for commuting and preparation. Sleep duration was not reported during layover
or turnaround. There was only one instance in which a pilot did not report any sleep
and no sleep event was recorded by the Zulu watch during a flight leg. For FDPs during
which sleep occurred, sleep duration ranged between 30–520 min as reported by diary
and 20–518 min for Zulu watch. Sleep occurred across 24 h of the day. On average, pilots
reported sleeping for 237 ± 43 min and sleeping once within a 24–h period. Average sleep
duration per 24 h as measured by the Zulu watch was 368 ± 55 min; average TST per 24 h
was 321 ± 56 min as measured by the Zulu watch, with pilots sleeping between 2 to 3 times
within a 24-h period in contrast to sleep diary report of 1 sleep episode. Figure 1 depicts
each pilot participants’ sleep behavior with respect to mission FDPs and local night across
all hours of the missions. Time is reported in hours elapsed since mission start rather than in
base, local, or GMT time to avoid confusion about sleep behavior as pilots circumnavigated
the globe.

Pilot sleep opportunities during FDPs were determined in-flight by the crew. Sleep
opportunities were decided ad libitum by pilots during layovers, and pilots were instructed
not to sleep during the turnaround periods in China. Pilots were confined to the aircraft
during turnaround in China, but their activities were not restricted during layover periods.
The timing of pilot sleep with respect to the end of the previous FDP or the start of the
subsequent FDP ranged from 0 min to 2527 min (approximately 42 h). In contrast, pilot
sleep began, on average, 50 ± 70 min after the onset of local night. There were no differences
between sleep onset with regard to local night depending on whether pilots were sleeping
in-flight or during a layover period (t = 0.19, p = 0.85).



Clocks&Sleep 2021, 3 518

Figure 1. Pilot Participant Sleep During COVID-19 Humanitarian Missions. Sleep timing and sleep
duration across COVID-19 humanitarian missions as measured by Zulu watch and sleep diary.
(a) Pilots’ sleep episodes occurring across each mission hour as measured by Zulu watch compared
to sleep diary reports of sleep during FDPs are depicted by color-matched thin (Zulu watch) and
thick (diary) lines. FDPs are indicated by light blue boxes; local night is indicated by gray boxes.
(b) Comparison of sleep duration as measured by Zulu watch and Zulu watch TST compared to
diary sleep duration across all mission FDPs, layovers, and turnaround. * represents significance at
p ≤ 0.05.
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2.3. Sleep Quality and Sleep Score across Missions

Distribution of sleep quality across categories (Excellent, Good, Fair, and Poor) is
depicted in Figure 2a. Pilots reported “Good” sleep quality for the majority of in-flight
sleep. There were 81 diary reports of sleep quality in total. Percentages of interrupted,
light, deep sleep, and overall sleep efficiency (SE) as measured by Zulu watch are depicted
in Figure 2b. Average SE during in-flight sleep was 85% ± 8%. Pilots’ sleep was classified
as deep sleep for 70% ± 12%, light sleep for 15% ± 7%, and interrupted sleep for 15%±8%
of TST. Differences in sleep quality ratings and Zulu watch sleep score percentages were
statistically non-significant across all FDPs and missions (all p > 0.05).

Figure 2. Subjective Sleep Quality, Sleep Efficiency, and Sleep Score Across Mission Flight Legs.
(a) Diary reports of sleep quality during in-flight sleep across all missions FDPs. Pilots only reported
sleep quality during in-flight sleep. The graph depicts “Excellent” sleep in green, “Good” sleep in
orange, “Fair” sleep in yellow, and “Poor” sleep in red. The breakdown of sleep quality ratings by
percentage are reported for each flight leg. (b) Sleep efficiency and sleep score categories as measured
by Zulu watch.
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2.4. Agreement between Zulu Watch and Diary Measurements of Sleep

Average sleep duration per sleep event was 281 ± 126 min by sleep diary compared
to 204 ± 134 min for Zulu watches. Diary sleep duration was positively correlated with
Zulu sleep duration (r = 0.75, p ≤ 0.001) and TST (r = 0.75, p ≤ 0.001), but paired samples
t-tests showed that diary reports of sleep duration were significantly higher than Zulu
watch sleep duration (t = 5.24, p ≤0.001) or TST (t = 6.49, p ≤ 0.001). Sleep onset times were
positively correlated between Zulu watch and diary (r = 0.74, p ≤ 0.001), as was time of final
awakening (r = 0.62, p ≤ 0.001). Between 40%–56% of the variance in Zulu sleep duration
(R2 = 58%) or TST (R2 = 41%) could be explained by sleep diary measurements. Diary-
reported sleep onset explained 55% of variance in Zulu watch sleep onset (R2 = 58%) and
diary-reported final awakening explained 38% of Zulu watch final awakening (R2 = 45%).
Sleep onset time and time of final awakening were not significantly different between Zulu
watch and diary (all p > 0.05). Figure 3 summarizes the Bland–Altman plots of the mean
difference, bias, and limits of agreement for Zulu watch and sleep diary measures of sleep
duration, diary sleep duration compared to Zulu TST, time of sleep onset, and time of final
awakening.

Figure 3. Cont.
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Figure 3. Agreement between Zulu Watch and Diary Measures of Sleep Timing and Duration. (a) Bland-
Altman plots of the differences (y-axis) between the Zulu watch and diary measures of sleep versus the
mean of the two measurements (x-axis). Bias is represented by the solid line (—). Upper and lower limits
of agreement (LOAs) are represented by the dashed lines (- -). Narrower LOAs indicate relatively less
variability between measures. Agreement is shown for (a) Zulu watch and diary measures of sleep
duration (•); (b) Zulu watch TST and diary sleep duration (◦) (c) time of sleep onset (N); (d) time of
final awakening (∆).

3. Discussion

It must first be mentioned that the circumstances of the 5 ULR flights profiled in
this manuscript are exceptional. The purpose of Azul’s humanitarian missions was to
bring respirators, COVID rapid tests, and medical supplies from mainland China back to
Brazil. The humanitarian goal of these missions served as a uniquely motivating factor for
each pilot who participated in the missions. Azul Airlines had not previously conducted
flights to China, and the pilots were unfamiliar with the destination airports within China.
While the missions were conducted by commercial airline pilots on a commercial aircraft,
there were no passengers or cabin crew aboard. Pilots were permitted to sleep in either
crew rest facilities or in the business class section, per their preference. Moreover, pilots
were restricted from leaving the aircraft while in China, and while they were permitted
to move freely during layovers in Europe, shutdowns related to COVID-19 most likely
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limited the availability of social activities. Because these ULR flights were conducted under
unprecedented global pandemic conditions, pilot behavior may not generalize to all ULR
operations.

Pilots slept between 5 to 6 h per 24-h period despite being afforded 9 h of sleep
opportunity per FDP and between 20 to 40 h of free time during layovers. Using sleep
diary data, sleep duration was less than 4 h per 24-h period. It must be noted that sleep
diary did not include reports of sleep during layover periods and should not be considered
an accurate total of 24-h sleep. Estimations of daily sleep duration were further limited due
to the fact that flights departed Brazil at variable hours of the day and crossed multiple
time zones continuously throughout the mission. Parameters for “daily” estimations of
sleep are normally defined with hourly cutoffs, such as noon to noon [24]. These cutoffs
could have been retained using Brazil time (UTC-5) except that 3 of the 5 missions departed
in the afternoon while 2 departed shortly after midnight. To avoid complications when
comparing between all flights, “daily” estimates of sleep were defined as sleep intervals
ending within a 24-h period starting with mission hour 0. Sleep duration per 24-h period
were not significantly different depending on whether flights departed during the afternoon
versus the early morning. While preliminary, these data suggest that pilots during ULR
travel may experience shortened sleep (~5–6 h per day) even when provided sufficient
opportunities for sleep and under conditions of limited social distractions. Insufficient
pilot sleep during ULR flights could have implications for fatigue risk management or pilot
well-being.

Despite being instructed to remain on home base time, the logistical necessity of
coordinating in-flight sleep opportunities with co-pilots and severe limitations to social
time cues, pilots tended to initiate sleep within an hour of the onset of local night. The
clustering of pilot sleep around local night can most clearly be seen in Figure 1a. The
timing of pilot sleep with respect to FDPs was vastly more variable, occurring anywhere
from 0 to 42 h apart. These findings indicate that environmental light cues may influence
sleep behavior over the course of ULR transmeridian travel over and above logistical
considerations such as the timing of work or adherence to a home schedule.

Understanding the quality of pilot sleep during ULR operations is important for the
mitigation of fatigue. There is a lack of previous data examining sleep quality in the context
of aviation or in-flight sleep. In this study, neither subjective nor objective sleep quality
changed significantly over the course of the mission. Sleep efficiency remained in a normal
range (above 80%) throughout all FDPs and layovers, and pilots largely rated their sleep as
“good” or “fair”. Estimation of sleep score remained consistent as well, with the majority
of TST being spent in “deep sleep”. However, actigraphy devices have a problem with
low specificity [25–27], meaning that they are not very good at picking up awakenings
during sleep intervals. The specificity of the Zulu watch to identify awakenings during a
sleep interval compared to PSG under laboratory conditions is 26% [21]. Moreover, while
sleep score estimation by the Zulu watch has been tested against gold-standard PSG under
laboratory conditions, no investigations of sleep score or sleep architecture have ever been
conducted during in-flight sleep. While these data represent a step towards understanding
the impact of ULR travel on sleep quality, the limitations of the technology must be
acknowledged. Extensive future research and advancements in device specificity will be
required in order to determine whether sleep quality is truly resilient to transmeridian
travel or not.

Another aim of the current analyses was to evaluate agreement between sleep diary
and Zulu watch measures of sleep timing and duration. Zulu watch measures of sleep
were moderately, though not strongly, correlated with diary measures. Time of sleep
onset and final awakening were similar between diary and Zulu watches. However, pilots
consistently reported longer sleep duration than was recorded by the Zulu watch. This
finding is consistent with previous findings that sleep duration measured by actigraphy is
shorter than sleep diary report [28–30]. Pilots only reported in-flight sleep, so we could
not test agreement between diary and the Zulu watch before or after the mission or during
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layover periods. It is possible that turbulence or background movement of the airplane in
flight could falsely register an awakening on the Zulu watch. However, considering the
low specificity of the Zulu watch and actigraphy devices in general, this possibility is not
highly likely.

In some ways, the testing of Zulu watch measures of sleep against a diary was akin
to comparing apples and oranges. The Zulu watch considered periods of awakening as
the termination of a sleep episode, while pilots may have reported the total amount of
time during which they attempted sleep, regardless of whether any sleep occurred. For
this reason, multiple Zulu watch sleep intervals occurred over the course of one diary
entry. Despite our best efforts to objectively compare the two measures, researcher bias
may have influenced the results. An additional limitation is that the data were collected for
operational purposes rather than for scientific study. Since the available data was restricted
to the mission period, this precluded the examination of the role of pilot demographics,
sleep or medical history, or other potential intervening variables on rest patterns during
the missions. The Human Factors team at Azul did an exceptional job of collecting quality
data which could be evaluated for scientific purposes post hoc, but this was not a controlled
experimental study.

Validation testing methodology has been established for a laboratory environment [31],
but there is little guidance for what constitutes proper validation of sleep measurement
in a real-world environment. Validity testing against sleep diary is one method that
is feasible in an operational environment, but relies on the assumption that diaries are
accurate measures of sleep. Diary report of sleep can differ from gold-standard PSG or
actigraphy measurements [28,29,32,33]. This constitutes a limitation to sleep research in
general, and closing the validation gap is a goal for future research [34]. Previous studies
have compared self-report to actigraphy but these comparisons have been made either
under controlled conditions or in specialty populations that are not directly comparable to
airline pilots [24,28–30,32,35]. Explained variance between measures of sleep duration or
timing have been reported in these previous studies. In this study, explained variance for
comparisons of sleep timing and duration was below or slightly above 50%. It is difficult
to interpret this finding without context from the literature, which constitutes a study
limitation. Understanding sleep patterns during duty periods is an important step forward
toward mitigating fatigue in operational environments, but the distraction caused by data
collection during a mission is itself a safety risk. While it is impossible to say whether
the subjective assessment of sleep or the objective measurement is more representative of
actual sleep under the circumstances of testing in the field, it is worthwhile to note that
pilots were able to passively provide data through the Zulu watch more consistently over
the mission than they were able to provide sleep diary report.

4. Materials and Methods
4.1. Participants

Participants were recruited through Azul Airlines’ Human Factors Safety Department.
Participants provided written informed consent for their participation. All missions were
considered eligible for participation regardless of gender, ethnicity, age (over 18), sleep
habits, or health status. Secondary use of de-identified data for research purposes was
approved by Salus Institutional Review Board and these analyses were conducted in
accordance with the Declaration of Helsinki.

4.2. Procedures

Mission flights were designed to be carried out with 2 relay crews consisting of 8 pilots.
There were 4 flight legs to each mission: (1) Brazil to a European layover destination;
(2) layover to China; (3) China to a return layover destination; and (4) layover to Brazil.
Each flight leg was approximately 12 h and the planned available rest time for each crew
member per stage was approximately 9 h. The crews were organized so that all pilots
would be available to work during any flight leg and that no one pilot would need to fly



Clocks&Sleep 2021, 3 524

extra time. In-flight rest periods were freely chosen by the crew during the mission. Each
flight leg was approximately 12 h and the available rest time for each crew member per
stage was approximately 9 h. Aircrew were instructed to remain on home base Brazilian
time throughout the mission.

Pilots were assigned the Zulu watch (Institutes for Behavior Resources, Inc., Baltimore,
MD, USA [21]) in May 2020 prior to COVID-19 support missions and wore the watches
continuously until the completion of their mission (between May and July, 2020). Crews
returned the watch to airline researchers directly upon returning to Brazil from their
mission. Data were downloaded by airline researchers using the Zulu Data Extraction
application (Institutes for Behavior Resources, Inc., Baltimore, MD, USA, Version 2.0).
Pilots completed a sleep diary during FDPs.

4.3. Sleep Measures
4.3.1. Zulu Watch

The Zulu watch hardware device collects activity data in 2-min epochs and automati-
cally scores sleep duration and sleep efficiency on-wrist based on a proprietary algorithm
for sleep–wake determination. Devices were programmed to detect multiple sleep intervals
per day and can detect sleep intervals which are as short as 20 min in duration. Data were
then exported as one summary file of all scored sleep interval information and as multiple
2-min epoch-by-epoch (EBE) data files for each day during the mission study period. Zulu
watch scored sleep interval summary files included sleep onset time and sleep offset time
reported as mm/dd/yyyy hh:mm, sleep duration in minutes, and SE as a percentage for
any events determined to be a sleep interval by the Zulu watch.

Epoch data are scored as on-wrist “On” or off-wrist “Off”. Epochs are scored in a
separate data column as 0 for periods of wake, 1 for restless or interrupted sleep, 2 for
light sleep, and 3 for deep sleep. The Zulu watch uses a proprietary algorithm to estimate
sleep score using only motion and on-wrist detection and cannot differentiate between
sleep stages. Zulu watch sleep scoring should be considered an estimation of locomotor
inactivity rather than an estimate of neurophysiological sleep architecture.

4.3.2. Sleep Diary

The pilots reported the start time and end time (as mm/dd/yyyy hh:mm), sleep
duration in hours and minutes, and categorical subjective quality of any sleep intervals
occurring during FDPs. Subjective sleep quality was rated on a 4-point scale as either Poor,
Fair, Good, or Excellent by pilots. Pilots were not asked to complete the sleep diary during
layovers or ground time in China. All times were reported in Brazilian time.

4.4. Reformatting Data for Consistency between Zulu Watch and Diary Measurements

The Zulu watch automatically determines sleep onset and sleep offset regardless of
whether the wearer is still attempting sleep. For this reason, while the Zulu watch can
provide a measure of sleep duration similar to total sleep time (TST), it does not provide
an estimate of time in bed (TIB). Conversely, pilots reported the amount of time that they
dedicated to sleep, which more closely resembles a measurement of TIB. However, the term
“time in bed; TIB” cannot be considered an accurate description of sleep opportunities in
the current analyses since none of the sleep events reported in this manuscript occurred in
a bed or bedroom environment. Because of the constitutional difference in data reporting,
multiple Zulu watch sleep events occurred over the course of a single diary-reported event.
In order to most accurately compare Zulu watch measurements against diary, all minutes
of sleep duration recorded by Zulu watch within proximity to 1 diary-reported sleep event
were summed. Sleep onset time and sleep offset time were selected from the earliest
occurring Zulu watch sleep interval and last occurring Zulu watch sleep interval data,
respectively. An estimate of time dedicated to sleep as measured by the Zulu watch was
computed as the minutes occurring between the earliest-occurring Zulu watch sleep onset
time and the last-occurring sleep offset time for comparison against diary sleep duration.
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For the purposes of these analyses, sleep duration will refer to time dedicated to sleep
(a proxy for TIB), and TST will refer to the time recorded as sleep by the Zulu watch in
minutes.

4.5. Data Analysis

All statistics were computed using Excel 2013, STATA version 15, and RStudio version
1.3.959. Sleep duration is defined as time (in minutes) dedicated to sleeping based on
Zulu watch or diary. Total sleep duration per flight leg was computed by summing all
minutes of sleep recorded or reported occurring during each flight leg. Total sleep duration
across 24 h were computed by summing all minutes of sleep recorded or reported in which
the wake-up time occurred within a 24-h period starting at mission hour 0. The number
of daily sleep intervals (DSI) was determined by counting the number of sleep events
recorded or reported for each 24-h period starting at mission hour 0. All date/time data
were converted to west Brazilian home base time zone (UTC-5) for consistency. Sleep
onset and offset times as reported by Zulu and sleep diary were converted from UTC-5
date time format to numeric values for statistical analysis. Distance between sleep onset
and FDPs or local night were computed by subtracting the sleep start time from the end
time of previous FDP or start time of subsequent FDPs or by subtracting sleep start time
from the start time of local night. Local night start times were extracted from the Sleep,
Activity, Fatigue, and Task Effectiveness Fatigue Avoidance Scheduling Tool (SAFTE-FAST)
biomathematical modeling software. Differences between sleep distance from night by FDP
versus layover were examined using Student’s t-test. Differences in sleep quality ratings
and Zulu watch sleep score percentages across flight legs and between missions were
compared using repeated measures mixed model analysis. Percent explained variance was
evaluated using adjusted R2 values. Paired samples t-tests were run to compare differences
between Zulu watch and diary-reported measures of in-flight sleep. Mean difference scores
were additionally computed between sleep onset time, sleep offset time and sleep duration.
Bland–Altman plots examined the mean difference between measures of sleep and single
sample t-tests were conducted to determine if a statistically significant difference existed
between mean difference scores. Limits of agreement were computed (mean difference ±
1.96 SD) to indicate the range in which the differences between the two measures would
occur with 95% probability [36]. The strength of the association between Zulu watch and
diary report for measures of sleep onset, offset, and duration was calculated using Pearson
correlation coefficients.

5. Conclusions

This is the first report of sleep behavior and sleep score estimation in pilots operating
ULR flights during global pandemic conditions to our knowledge. Pilots tended to sleep
during local night despite being instructed to adhere to home base time schedule and
having to coordinate sleep opportunities with their co-pilots. Subjective sleep quality,
SE, and percentage of interrupted, light, and deep sleep remained consistent across the
missions, and were not indicative of diminished sleep quality. Zulu watch and diary
measures of sleep were similar, but pilots reported longer sleep duration than was measured
by the Zulu watch. These analyses can help inform the management of fatigue risk in the
planning or future ULR flights or pandemic flight conditions.
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