
OR I G I NAL ART I C L E

Are active efflux transporters contributing to infant drug
exposure via breastmilk? A longitudinal study

Hilai Ahmadzai1,2 | Lisa B. G. Tee1 | Andrew Crowe1

1Curtin Medical School, Curtin
University, Bentley, Western Australia,
Australia
2Pharmacy Department, Sir Charles
Gairdner Hospital, Nedlands, Western
Australia, Australia

Correspondence
Lisa B. G. Tee, Curtin Medical
School, Curtin University, Building 306;
Bentley Campus, Bentley WA 6102,
Australia.
Email: l.tee@curtin.edu.au

Funding information
Curtin University

Abstract

Although most drugs are considered safe and compatible with breastfeeding,

cases of toxic drug exposure have been reported. Active efflux transporters

have been implicated as a mechanism in the transfer of drugs from mother to

baby via breastmilk. Using breastmilk as a source of human mammary epithe-

lial cells, this novel longitudinal study investigated the expression of four

active transporters, namely, MDR1, MRP1, MRP2 and BCRP in the lactating

human breast. BCRP gene was found to be strongly overexpressed with levels

peaking at 5 months postpartum, potentially indicating a time where a

breastfed infant may be at risk of inadvertent exposure to BCRP substrates.

Serum albumin, a major component of human breastmilk was increasingly

downregulated as lactation progresses. Xanthine oxidase/dehydrogenase, an

enzyme in breastmilk attributed to a reduced risk of gastroenteritis caused by

Escherichia coli and Salmonella enteritides, was downregulated. Lysozyme and

fatty acid synthase are progressively upregulated. This study also shows that

breastmilk-derived epithelial cells, when propagated in culture, exhibit charac-

teristics significantly different to those derived directly from breastmilk. This

serves to warn that in vitro studies are not a true representation of in vivo

processes in the lactating breast; hence, application of in vitro data should be

conducted with caution.
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1 | INTRODUCTION

Breastfeeding mothers and health professionals often
hold concerns about inadvertently exposing breastfed
infants to xenobiotics through breastmilk. Although most
drugs are considered safe and compatible with breast-
feeding, cases of toxic drug exposure have been
reported.1–5 More importantly, there is often a lack of
clear and conclusive information about the safety of

medicines in lactation resulting in the unnecessary dis-
continuation of breastfeeding or suboptimal treatment of
maternal medical conditions with less effective alterna-
tives.2 Drug properties and pharmacokinetic parameters
such as drug lipophilicity, protein binding and pKa are
used to determine milk to plasma ratio (M: P), a mea-
surement of ratios of the areas under the curves of milk
and plasma drug concentrations.6 As most drugs enter
breastmilk via passive diffusion, M:P ratio provides a
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reliable indication of drug transferability into breastmilk.
However, there are substances such as lead, amisulpride,
nitrofurantoin, aciclovir and cimetidine where observed
M:P has been significantly higher than the predicted M:P
based on standard pharmacokinetic calculations.7–17 This
has been attributed to active transport mechanisms
whereby transport proteins such as the ATP binding cas-
sette (ABC) transporters on the membrane of mammary
epithelial cells as demonstrated in Figure 1, actively
pump these drugs into breastmilk.8,18,19

Transporters are cell surface proteins that allow
endogenous molecules and xenobiotics to enter and exit
cells via carrier mediated mechanisms.20 Active trans-
porters utilize the energy generated from ATP hydrolysis
to move molecules across a cell membrane.21 The expres-
sion of transport proteins such as those belonging to the
ABC and SLC (Solute Carrier) superfamilies of trans-
porters has been shown to vary greatly between lactating
and non-lactating tissues in humans.22 Animal studies
have also shown and confirmed the distinct variation in
the expression of these transporters between the lactating
and non-lactating mammary gland of animals. The
influence of lactation stage leading to an increase in their
expression with the increasing duration of lactation
and consequently influencing the amount of the drug
or toxin that is excreted in the milk has also been
demonstrated.23–25

Due to the potential negative human health impact
that accumulation of veterinary drugs in milk, a human
food source, efflux transporters have been widely studied
in the dairy industry.11,26,27 However, little is known
about their expression pattern in the lactating human
mammary gland where vulnerable breastfed infants can
be inadvertently exposed to potentially toxic levels of

medicines taken by the mother. A greater understanding
of the expression pattern of these transporters can pro-
vide a useful insight into periods where the substrates of
these transporters would have the greatest risk of being
excreted into milk, accidentally putting a breastfed infant
at risk of toxicity.

This longitudinal study sought to investigate the
expression profile of four active transporters in the
human mammary gland that are implicated in drug dis-
position to ascertain if these could impact the transfer of
their xenobiotic, drug and toxin substrates into breast-
milk. The studied transporters were MDR1 (ABCB1),
MRP1 (ABCC1), MRP2 (ABCC2) and BCRP (ABCG2).
Breastmilk was used as a source of epithelial cells which
are sloughed as milk is removed from the breast by the
suckling infant or a breast pump. Breastmilk-derived
cells were also propagated in culture medium to investi-
gate if they retained their expression characteristics when
cultured. This was done to determine if human breast-
milk can be used as a non-invasive, reliable, personalized
and cost-effective model to predict the transferability of
actively transported drugs into breastmilk.

2 | MATERIALS AND METHODS

This study was approved by the Human Research Ethics
Committee of Curtin University (HR110/2012). The study
was conducted in accordance with the Basic & Clinical
Pharmacology & Toxicology policy for experimental and
clinical studies.28 Healthy breastfeeding women not on
any prescribed medicines (other than prenatal vitamins
and supplements) who intended to breastfeed for
12 months were recruited during pregnancy or early

F I GURE 1 Schematic representation of

active efflux transporters in the lactating

mammary gland. In the lactating mammary

gland active transporters are located in the

basolateral and apical membranes of alveolar

epithelial cells. These transporters influence the

composition of breastmilk by concentrating

vitamins, nutrients, xenobiotics, drugs and

pesticides into milk by pushing these substances

against their concentration gradient.

(Figure created with Biorender.com)
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postpartum through word of mouth and advertising
through lactation consultants at two private maternity
hospitals in Western Australia (St John of God Hospital
Subiaco and St John of God Hospital Murdoch).
Participants were excluded from the study if they or their
newborn had developed medical conditions requiring
long-term pharmacological treatment or if they had inad-
equate milk supply. Through this recruitment process,
22 healthy pregnant women were successfully enrolled in
the study. All participants provided written informed
consent and breastfed their infant for a minimum of
6 months. Participants with fewer than three donated
samples were excluded from the longitudinal study.

2.1 | Breastmilk sample collection

Participants expressed breastmilk samples using a steril-
ized electric breast pump (Pigeon®). Samples were pro-
tected from light and transported to the laboratory at
room temperature immediately after being expressed.
Breastmilk samples were collected at five timepoints
(T1–T5) representing increasing months post-partum at
1 (T1), 3 (T2), 5 (T3), 9 (T4) and 12 (T5) months. When
participants were recruited, they indicated an intention
to breastfeed for 12 months. However, many participants
did not breastfeed for the entire year. Therefore, all five
timepoints are available for only 10 participants. Factors
that may influence gene expression and/or breastmilk
composition which include fore versus hind milk,
maternal drug/alcohol use, maternal and infant infection,
differences in pumps used (or manual expression), mater-
nal diet and maternal general health were controlled.29

All participants were healthy and were not taking any
prescribed medications during the study period. At the
time of sample collection, the breastfeeding dyads were
required to be healthy with no signs of local or systemic
infections as infections are known to affect the cellular
composition of breastmilk.30,31 Participants were pro-
vided with a Pigeon® electric breast pump to use the
pump when expressing breastmilk for this study. Mothers
were instructed to express milk after feeding the baby
and at approximately the same time of the day for each
collection. Mothers were asked to inform the investigator
if they or their baby were unwell with any minor ill-
nesses, in which case collection dates were postponed
until the dyad had fully recovered.

2.2 | Breastmilk cell isolation

Breastmilk was diluted with equal amounts of sterile phos-
phate buffered saline (PBS pH 7.4, Gibco, Grand Island

NY) and centrifuged at 800g for 20 min at 20�C. After the
removal of the skim milk and the fat layer, the cell pellet
was washed with PBS twice, centrifuged at 400g for 5 min
and resuspended in PBS. Cell numbers and viability were
determined using a Neubauer® haemocytometer by
Trypan Blue (0.4%) exclusion. The cell pellet was stored at
�80�C until RNA extraction. Blood derived cells were not
isolated from lactocytes and the myoepithelial cells,
primarily because the immunological cells were expected
to be largely washed off during the isolation and washing
process as they are lighter than epithelial cells. Therefore,
the blood derived cells were not expected to have a
significant impact on dilution of the samples.31–33

2.3 | Quantitative real-time polymerase
chain reaction (qRT-PCR)

Total RNA was extracted with the mini-RNeasy extraction
kit (Cat No. 74104; Qiagen, Valencia, CA, USA) following
manufacturer’s directions. Total RNA was reverse tran-
scribed using the high-capacity cDNA kit (Applied Biosys-
tems, Carlsbad, CA, USA) following manufacturer’s
directions. Gene transcription was measured by qRT-PCR
using hydrolytic probes (Taqman®, Applied Biosystems)
with the 7500 Fast RT-PCR system (Applied Biosystems).
[Taqman® probes used include: Hs00324085_m1 (MDR1);
Hs00910358_s1 (MRP1); Hs01385685_m1 (MRP2);
HS03929097_g1 (GAPDH).] (Taqman®; Applied Biosys-
tems) with the 7500 FAST RT-PCR system (supporting
information Appendix A). Each sample was measured in
triplicate or in a few cases in duplicate when the extracted
RNA was inadequate. Genes were standardized to
MCF10A (a normal human mammary epithelial cell
[HMEC] line), and each sample was controlled with the
housekeeping gene glyceraldehyde 3-phosphate dehydro-
genase (GAPDH). GAPDH expression was monitored for
stability during the different timepoints. Fold change in
gene expression for each sample and experimental condi-
tion was calculated as 2Ct(control)-Ct(sample) � SD and relative
quantitation was determined for each replicate. Repeated
measures of the samples were averaged, and the standard
deviations were calculated. Standard deviations were used
for quality control of the data and means were used for
statistical analysis.

2.4 | Protein quantitation by iTRAQ
(isobaric tags for relative and absolute
quantitation)

Breastmilk cells were isolated as described above and
were stored at �80�C until processing. Samples from
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eight donors, each of whom had provided milk samples
for all five timepoints (1, 3, 5, 9 and 12 months post-par-
tum), were pooled per timepoint for this assay. As this
assay was being carried out with 4-plex reagents, we were
restricted to the use of only four of the five available
timepoints. Timepoint 2 (T2) (third month post-partum)
was deemed to be the most appropriate timepoint for
exclusion from this analysis due to being close to two
other timepoints (1 month post-partum and 5 months
post-partum).

iTRAQ analysis was undertaken as described by
Casey.34 The sample with the least amount of protein
(19.5 μg) was used as the standard mass for the eight sam-
ples at each timepoint. The eight samples were combined
for each of the four timepoints, and the resultant four pro-
tein samples were analysed for protein concentration using
the Direct Detect infrared method [Merck Millipore].
About 100 μg of each of the four samples was desalted,
reduced, alkylated and trypsin digested according to the
iTRAQ protocol (Sciex). The four samples were then
labelled using the iTRAQ reagents. All labelled samples
were combined to make a pooled sample. Peptides were
desalted on a Strata-X 33 μm polymeric reversed phase col-
umn (Phenomenex) and dissolved in a buffer containing
2% acetonitrile and 0.1% formic acid. The sample was ana-
lysed by electrospray ionization mass spectrometry using
the Shimadzu Prominence Nano HPLC system [Shimadzu]
coupled to a 5600 TripleTOF mass spectrometer (Sciex®).
Peptides were loaded onto an Agilent Zorbax® 300SB-C18,
3.5 μm column (Agilent Technologies) and separated with
a linear gradient of water/acetonitrile/0.1% formic acid
(v/v). About 4 μg of the pooled sample was loaded on the
mass spectrometer. Spectral data were analysed against
Homo sapiens peptide database using the SwissProt®

database, facilitated by ProteinPilot™ 5.0 software.

2.5 | Cell culture

Breastmilk isolates were obtained from a total of seven
participants (n = 7) who were at various stages of breast-
feeding ranging from 1 week postpartum to 97 weeks. All
milk samples were mature milk and contained both fore
and hind milk. Breastmilk cells were isolated as
described above in a sterile environment using RPMI
medium instead of PBS for washing. Cells were divided
into two parts, with one part stored at �80�C for RNA
extraction and the remaining half were seeded in culture
using modified HuMEC® Ready Medium (ThermoFisher
Scientific). HuMEC® Ready Medium (ThermoFisher Sci-
entific) is marketed by the manufacturing company as an
optimized medium specifically for the growth of HMEC
lines. To suit primary culture of HMEC, modification of

this medium involved the addition of heat inactivated
foetal bovine serum (15%) and antimicrobials (penicillin/
streptomycin and amphotericin B) to prevent microbial
contamination. In optimization studies with this
medium, it was found that milk-derived primary HMEC
were cultured successfully irrespective of the stage of lac-
tation, reaching confluence at around day 22 (median
22.8 days: range 21–26 days). This was not only much
quicker than the 35 days that traditional milk cell
medium previously achieved in our laboratory but also
more uniform between samples and compared with liter-
ature reports of between 7 and 50 days.35

The cells were prepared for harvest when the well/
flask appeared confluent. The medium was aspirated.
Cells were detached using TrypLE express®, an animal-
origin free recombinant enzyme (Life Technologies® Cat.
No. 12604013). The cells were visually checked every
5 min until they became rounded and lifted off the plate
surface. Equal amounts of HuMEC Ready Medium® were
added to deactivate the TrypLE express®. The solution
was centrifuged at 394 x g for 5 min in a swinging bucket
(Beckman Coulter Allegra X-12R) centrifuge at room
temperature. The cells were washed again with PBS,
counted and stored at �80�C for RT-PCR analysis.

3 | RESULTS

A total of 88 breastmilk samples from 22 participants
were used for this study. The demographic characteristics
of the study participants (n = 22) and the breastmilk
sample characteristics (N = 88) are shown in Table 1.

3.1 | qRT-PCR

Gene expression was determined by relative quantitation
(Relative Quotient, RQ) compared with the control

TABL E 1 Demographic and breastmilk sample (N = 88)

characteristics of the study participants (n = 22)

Median Range

Maternal characteristics

Age (years) 31 21–36

Parity 1 1–2

Breastmilk samples

Cell viability (%) 99 93–100

Volume of breastmilk provided (ml) 64 10–190

Total breastmilk cell count (�106) 17.7 0.028–585

Breastmilk cell content
(cell/ml milk, � 105)

3.49 0.06–35.5
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MCF10A. PCR showed that the gene expression for BCRP
was higher compared with the other three transporters as
shown in Figure 2. The data for MRP1 and MRP2 showed
a great degree of variation and consequently comprised a
significant number of outliers.

BCRP was the most abundantly expressed transporter
and thought to have the largest significance in transfer of
xenobiotics from maternal plasma to breastmilk.8 BCRP
showed a statistically significant difference in expression
over the five timepoints with peak levels occurring at T3
as demonstrated in Figure 3. As expected, interindividual
differences were also significant.

3.2 | Breastmilk proteome

iTRAQ proteomic analysis detected 143 proteins (≥2 pep-
tides with >95% CI), 17 of which were differentially
expressed (Figures 4 and 5). The proteins that were

differentially expressed vary in function with majority
being enzymes and transport proteins (Table 2). Active
transporter proteins were not detected by the iTRAQ
analysis.

3.3 | Cell culture

The gene expression of BCRP, MDR1, MRP1 and MRP2
varied greatly between the fresh and cultured cells with
the cultured cells expressing relatively small amount of
transporter mRNA. This shows that the HMEC when cul-
tured in vitro lose their characteristics and genetic integ-
rity. As shown in Figure 6A, the RQ data were logged
due to magnitude changes that existed between samples.
Using a mixed model analysis, only BCRP and MDR1
were found to have statistically significant differences
(p < 0.05) between the fresh and cultured cells as
depicted in Figure 6B.

F I GURE 2 Distribution of

gene expression of BCRP,

MDR1, MRP2 and MRP1 by

human breastmilk cells in

88 milk samples from

22 participants. Box plots

represent gene expression

distribution where tails show the

minimum and maximum values

(excluding outliers) and upper

and lower interquartile ranges;

middle line represents the

median. (● = T1 outlier,

■ = T2 outlier, ▲ = T3 outlier,

▼ = T4 outlier, ♦ = T5 outlier).

Individual PCR reactions were

normalised against internal

control (GAPDH) and relative to

the expression level of MCF10A.

Bars represent the mean � SEM.
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4 | STATISTICAL ANALYSIS

All data were tested for normality. While data for BCRP
and MDR1 largely passed normality tests using Shapiro–

Wilk and Kolmogorov–Smirnov tests, MRP1 and MRP2
did not pass normality tests due to the significant sample
variation. Data were analysed by fitting a mixed model.
The mixed effects analysis showed that the expression of

F I GURE 3 Longitudinal

expression of BCRP over

12 months (Timepoints 1 to 5)

of lactation in 22 participants

(■ = T2 outlier; = P value

<0.005)

F I GURE 4 Upregulated proteins in lactation normalised to 1 month post-partum (Timepoint 1) set to a protein ratio of 1 as depicted by

dashed line. (ANXA2, Annexin A2; LYZ = lysozyme; FASN, fatty acid synthase; PGD, 6-phosphogluconate dehydrogenase; PLIN3, perilipin;

SCP2, non-specific lipid-transfer protein; SELENBP1, selenium-binding protein 1)
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BCRP was statistically significant between the different
timepoints (p = 0.0063). Post hoc analysis was performed
using Tukey’s multiple comparison test which confirmed

that a significant difference in the expression of BCRP
over the five timepoints as shown in BCRP was the most
abundantly expressed transporter and thought to have

F I GURE 5 Downregulated proteins in lactation normalised to 1 month post-partum (Timepoint 1) set to a protein ratio of 1 as depicted

by dashed line. (ALB, serum albumin; CNDP2, cytosolic non-specific dipeptidase; ENO1, alpha-enolase; GSN, gelsolin; HBB, haemoglobin

subunit beta; MDH1, malate dehydrogenase; UGP2, UTP--glucose-1-phosphate uridylyl transferase; XDH, xanthine dehydrogenase/oxidase)

TAB L E 2 List of differentially expressed proteins in cells isolated from human breastmilk

Downregulated proteins Upregulated proteins

Gene Function Gene Function

XDH Enzyme ANXA2 Immune protein

UGP2 Enzyme LYZ Immune protein

ALB Transport FASN Enzyme

CNDP2 Enzyme SELENBP1 Transport

ENO1 Enzyme PGD Enzyme (glycotic)

HBB Transport PLIN3 Transport

GSN Other SCP2 Transport

MDH1 Enzyme (glycotic)

LDHB Enzyme (glycotic)

ANXA5 Membrane Protein

Note: Protein expression was compared with Timepoint 1 (1 month post-partum) as the baseline.
Abbreviations: ALB, serum albumin; ANXA2, annexin A2; ANXA5, annexin A5; CNDP2, cytosolic non-specific dipeptidase; ENO1, alpha-enolase; FASN, fatty

acid synthase; GSN, gelsolin; HBB, haemoglobin subunit beta; LDHB, L-lactate dehydrogenase B chain; LYZ, lysozyme; MDH1, malate dehydrogenase; PGD,
6-phosphogluconate dehydrogenase; PLIN3, perilipin; SCP2, non-specific lipid-transfer protein; SELENBP1, selenium-binding protein 1; UGP2, UTP--glucose-
1-phosphate uridylyl transferase; XDH, xanthine dehydrogenase/oxidase.
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the largest significance in transfer of xenobiotics from
maternal plasma to breastmilk.8 BCRP showed a statisti-
cally significant difference in expression over the five

timepoints with peak levels occurring at T3 as
demonstrated in Figure 3. Interindividual differences
and changes in the expression of BCRP in each

F I GURE 6 (A) Log mRNA (RQ, relative quotient) expression of BCRP, MDR1, MRP1 and MRP2 relative to MCF10A normalised to

GAPDH in seven breastmilk-derived mammary epithelial cell samples. (B) Comparison of means of mRNA expression of BCRP (p, 0.0017),

MDR1 (p, 0.0016), MRP1 (p, 0.0537) and MRP2 (p, 0.1094) in breastmilk derived cells (Fresh) with those grown in culture medium (Cultured)

494 AHMADZAI ET AL.



woman over time was also significant (supporting
information Appendix B). In 18 of the 22 participants,
variations in BCRP expression over time were found to
be statistically significant (p < 0.05) with peak levels
most often occurring at T3.

5 | DISCUSSION

RNA extracted from breastmilk cells is considered repre-
sentative of gene expression in the mammary gland and
provides an insight at a molecular level.36 Using PCR, the
presence of BCRP was confirmed. It was also shown that
BCRP is strongly induced during lactation and its mRNA
expression peaks at around 5 months post-partum (T3).
While the presence of other efflux transporters was also
confirmed, their expression remained at much lower
levels compared with BCRP and there was interindivi-
dual variability making it difficult to derive statistically
significant conclusions. The role of BCRP in drug disposi-
tion in breastmilk was anticipated to be more prominent
compared with the other three transporters (MDR1,
MRP1 and MRP2) due to its relative mRNA overexpres-
sion in the lactating mammary gland. Furthermore,
many studies have identified BCRP to be involved in reg-
ulating the composition of breastmilk.8,37,38

Isobaric tags for relative and absolute quantitation
(iTRAQ) have been previously used to study active trans-
porters such as MDR1, biological samples and the milk
proteome across species.39–41 While iTRAQ has been suc-
cessfully used in identification of many biological
markers, the method has some limitations and has also
been shown to produce less reliable quantification in
complex biological samples such as breastmilk.42 For
instance, iTRAQ labelling has been linked to a reduction
in the number of identifiable proteins due to the intro-
duction of undesirable charge enhancements.43 iTRAQ
analysis of these breastmilk samples did not detect any
proteins of interest. MDR1, MRP1 and MRP2 were
expected to be present at low levels, certainly compared
with BCRP. However, not even BCRP was able to be
detected. This could possibly be due to the previously
mentioned limitations of this technique. Although the
active transporter proteins were not detected by the iso-
baric labelling method, this technology allowed us to
obtain a picture of the changing composition of the
breastmilk at a molecular level.

In this study strict identification criteria with a false
discovery rate (FDR) of 0.1% were used, whereas other
studies have used FDR of up to 5% resulting in the identi-
fication of a larger number of proteins albeit with a lower
precision level.44 For this study, due to resource limita-
tions, only four timepoints could be added to a 4-plex

assay. A total of 32 samples from eight participants were
pooled for the four timepoints for iTRAQ analysis. Simi-
lar to PCR assay findings, there was a great degree of
inter-individual variability between samples. This vari-
ability was possibly due to maternal and environmental
factors that influence milk composition.45 iTRAQ analy-
sis of the breastmilk samples showed a total of 17 proteins
to be differentially expressed at the four timepoints
spread from 1 to 12 months post-partum (p < 0.005).
While 10 proteins were upregulated, seven were downre-
gulated over time as demonstrated in Table 2.

Serum albumin, a major component of human breast-
milk, was found to be increasingly downregulated over
time. Most milk proteins are synthesized within the
mammary gland but a few such as serum albumin may
be transferred from maternal blood.46 The overall protein
content of human milk is known to gradually reduce over
time as infants weight gain slows after the initial months,
reducing the need for protein. These findings were in
alignment with currently available literature which show
a linear decline in the albumin content of milk as the
consumption of other foods is increased by the breastfed
infant over the first year of lactation.47–49 However, one
study showed an increase in the serum albumin content
over a 6 months period which is in contradiction to these
findings.45

Similarly, xanthine oxidase/dehydrogenase (XDH), an
enzyme in breastmilk attributed to a reduced risk of gas-
troenteritis caused by Escherichia coli and Salmonella
enteritides, was also downregulated over time. Xanthine
dehydrogenase generates radical nitric oxide which
inhibits the growth of these bacteria. Breastfed infants
have a lower risk of gastroenteritis due to the antibiotic
effects of the naturally occurring xanthine oxidase in
breastmilk.50,51 The gradual reduction seen in the longi-
tudinal study is in alignment with available literature
showing a higher level of XDH in the first month of lacta-
tion. Although the results for T4 (9 months post-partum)
show a non-significant relative increase, it is thought to
be due to a variation in the sample at that timepoint as
the level in T5 (12 months post-partum) is very similar to
the level at T3 (5 months post-partum). Gao and col-
leagues also showed that XDH is downregulated in lacta-
tion.52 We have now demonstrated that the overall
downregulation in XDH manifests as a gradual decrease
as lactation progresses.

This study shows that lysozyme is progressively upre-
gulated as lactation progresses as shown in Figure 4. This
is in alignment with previous research showing consis-
tent upregulation of lysozyme over the duration of lacta-
tion of up to 26 months.53,54 Lysozyme has a bacteriolytic
function and enhances the activity of immuno-agents in
body tissues and fluids. The progressive upregulation can
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be explained as a protective mechanism for a growing
infant with increased mobility, who may be increasingly
exposed to pathogens. Another enzyme that is also upre-
gulated is fatty acid synthase (FASN), a crucial enzyme
in cellular de novo fatty acid synthesis in the mammary
gland which is the main source of short and medium-
chain fatty acids of breastmilk. Animal studies have
shown that FASN is upregulated during lactation55 and
this observation is now confirmed in humans.

As the first longitudinal human study of the expres-
sion of efflux transporters in the mammary gland, this
study confirms a great degree of inter-individual variabil-
ity in the expression of efflux transporters in the studied
population. Infections, including mastitis, due to the
body’s response to infection have been associated with
acute and transient regulatory mechanisms that are capa-
ble of inducing a change in the expression of efflux trans-
porters as the body’s response to infection influences
expression of these transporters.56,57 We ensured that all
our breastfeeding dyads were healthy and free from infec-
tion at the time of sample collection. However, the possi-
bility of subclinical infection impacting the results cannot
be discounted. Other factors with potential to introduce
variability were strictly controlled. These included breast-
milk collection techniques, transfer of samples and cell
storage. Personal electric breast pumps were provided by
the researcher to each participant for sample collection.
Consideration was given to the uniformity of sample col-
lection process including the apparatus, processing times
and transfer to the laboratory ensuring these were kept
uniform between samples. These factors were closely
monitored and verified at each sample collection. All cell
pellets were stored under the same conditions at �80�C
prior to RNA extraction. Mothers were instructed to
notify the researcher if they felt unwell or their baby was
unwell with any symptoms of infection including mild
illnesses such as colds. Sample collection was delayed
until both mother and baby had fully recovered. Due to
the rigorous control of external factors, the sample vari-
ability shown in this study is thought to be due to known
intersubjective and intrasubjective factors.

Lactogenic hormones such as prolactin, insulin and
hydrocortisone have an important role in modulating
expression of transporters.58,59 Prolactin, being the key
hormone affecting the induction and maintenance of lac-
tation, has been shown to enhance the expression of
PEPT2 transporter through signalling pathways that
involve the activation of JAK2/STAT5 transcription fac-
tors.57,58 Although little is known about the factors
influencing expression of the efflux transporters in the
mammary gland, data are emerging that associates this
variability to epigenetic factors.57,60 Epigenetic mecha-
nisms biochemically alter the DNA such that the DNA

sequence is unaltered, but gene expression is affected via
changes in their accessibility to replicating mechanisms
in response to various environmental factors.29,61 Some
common and best-known epigenetic mechanisms in
humans include DNA methylation, post-translational
modifications of histone proteins and modulation of gene
expression by noncoding RNAs.62 Genetic polymorphism
related to the ABCG2 gene is attributed to the differences
in response to chemotherapy in breast cancer.63 These
changes can alter tissue-specific expression of genes in
various cell types including transporter proteins.
Although currently there is no evidence of epigenetic
mechanisms in expression of efflux transporters during
lactation, it is interesting to note that many malignancies
exhibit drug resistance primarily due to the presence of
active efflux transporter proteins,64–68 suggesting a possi-
ble link between epigenetics and the expression of efflux
transporter proteins, which may also be applicable to the
lactating mammary gland. This is an emerging field that
requires further investigation.

This study being the first longitudinal study of efflux
transporters in humans has demonstrated that from its
mRNA levels, BCRP is a relatively highly expressed efflux
transporter in the lactating mammary gland that could
potentially be involved in the disposition of drugs and
facilitating their excretion in breastmilk. Other active
transporters such as P-gp (MDR1), MRP2 and MRP1 are
also expressed to a relatively lower level. Given the mag-
nitude of expression of BCRP in the lactating mammary
gland and available data that shows its contribution to
the composition of breastmilk, substrates of BCRP can
potentially be transferred into breastmilk. It is possible
that a nursing infant may be at risk of inadvertent
exposure to BCRP substrates, particularly around the 5 to
6 months post-partum period owing to the upregulation
of BCRP mRNA at this time. However, the lack of
relevant conclusive protein expression data and interindi-
vidual variability prevents the potential role of BCRP
in breastfed infant ADRs from being categorically
confirmed.

The cell culture study highlighted the magnitude of
the difference between fresh and cultured cells which
ranged from 10- to 1000-fold in some cases, and in all
cases the cultured cells had lower mRNA expression. It is
known that in vitro cell cultures do not represent essen-
tial cellular functions of living tissues and may limit their
potential to predict the in vivo cellular responses.69 It is
suggested that three-dimensional (3D) in vitro cultures
are a better cellular model that mimic the functions of
living tissues and is closer to the in vivo environment.70

This highlights that culturing the primary cells would not
represent the patient’s clinical situation given their vastly
lower expression of the main transporters present in the
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breast tissue. Therefore, in vitro data should be used with
great caution especially with respect to breastmilk-
derived epithelial cells. At this point, it cannot be con-
cluded that cultured breastmilk-derived cells are a viable
model to study or predict drug transfer for actively trans-
ported substances from mother’s plasma to breastmilk.

6 | CONCLUSION

This study is the first longitudinal study of efflux trans-
porters in the lactating human mammary gland using
breastmilk as a source of epithelial cells. BCRP, an active
transporter implicated in drug disposition and conse-
quently drug resistance, was found to be highly expressed
during lactation with its peak expression occurring at
5 to 6 months post-partum. While the lack of relevant
protein expression data and the observed interindividual
variability prevent conclusive inferences, the high mRNA
expression warrants further investigation to elucidate the
extent of BCRP’s involvement in the excretion of its sub-
strates into breastmilk.
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