Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(tetraphenylphosphonium) bis[N-(2,5-dichlorophenylsulfonyl)dithiocarbimato-(2-)- $\kappa^2 S$,S']platinate(II)

S. Guilardi,^a* Wilson P. Flauzino Neto,^a Lucas C. C. Vieira,^a Raquel S. Amin^b and Marcelo R. L. Oliveira^b

^aInstituto de Química – UFU, 38408-100 Uberlândia, MG, Brazil, and ^bDepartamento de Química – UFV, 36571-000 Viçosa, MG, Brazil Correspondence e-mail: sguilardi@yahoo.com.br

Received 21 January 2010; accepted 26 January 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.025; wR factor = 0.068; data-to-parameter ratio = 17.8.

In the title salt, $(C_{24}H_{20}P)_2[Pt(C_7H_3Cl_2NO_2S_3)_2]$, the Pt^{II} ion (site symmetry $\overline{1}$) is coordinated by two *S*,*S'*-bidentate *N*-(2,5dichlorophenylsulfonyl)dithiocarbimate ligands, resulting in a slightly distorted PtS₄ square-planar geometry. In the crystal, a $C-H\cdots O$ interaction is observed, as well as electrostatic attraction between the oppositely charged ions.

Related literature

For other complexes containing a $[Pt(RSO_2N=CS_2)]^{2-}$ unit, see: Amim *et al.* (2008); Oliveira *et al.* (2003, 2004). For general background to dithiocarbimates, see: Hogarth (2005). For reference structural data, see: Allen *et al.* (1987). For further synthetic details, see: Franca *et al.* (2006).

 $\gamma = 86.193 \ (1)^{\circ}$

Z = 1

V = 1463.94 (4) Å³

Mo $K\alpha$ radiation

 $0.34 \times 0.34 \times 0.3~\text{mm}$

 $\mu = 2.90 \text{ mm}^{-1}$

T = 120 K

Experimental

Crystal data

 $\begin{array}{l} (C_{24}H_{20}P)_2[Pt(C_7H_3Cl_2NO_2S_3)_2]\\ M_r = 1474.3\\ Triclinic, P\overline{1}\\ a = 9.6284 (1) Å\\ b = 10.3409 (2) Å\\ c = 15.1278 (2) Å\\ \alpha = 76.951 (1)^{\circ}\\ \beta = 88.353 (1)^{\circ} \end{array}$

Data collection

Nonius KappaCCD diffractometer

Absorption correction: gaussian
(Coppens et al., 1965)6536 independent reflections $T_{\min} = 0.439, T_{\max} = 0.477$ $R_{int} = 0.029$ 11423 measured reflections $R_{int} = 0.029$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	367 parameters
$VR(F^2) = 0.068$	H-atom parameters constrained
= 1.11	$\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^{-3}$
536 reflections	$\Delta \rho_{\rm min} = -2.58 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).				
Pt-S1	2.3128 (6)	Pt-S2	2.3233 (6)	
S1-Pt-S2	74.59 (2)			

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C27-H27\cdots O1^i$	0.95	2.43	3.111 (4)	128
Symmetry code: (i) x	+1, y, z.			

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Professor Dr Javier Ellena of the Instituto de Física de São Carlos, Universidade de São Paulo, Brazil, for the X-ray data collection. This work has been supported by FAPEMIG and CNPq.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5315).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amim, R. S., Oliveira, M. R. L., Perpétuo, G. J., Janczak, J., Miranda, L. D. L. & Rubinger, M. M. M. (2008). *Polyhedron*, 27, 1891–1897.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035– 1038.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, J. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). *Polyhedron*, 25, 2119–2126.
- Hogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71-561.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Oliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, **22**, 1561–1566.
- Oliveira, M. R. L., Rubinger, M. M. M., Guilardi, S., Franca, E. F., Ellena, J. & De Bellis, V. M. (2004). *Polyhedron*, **22**, 1153–1158.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Sheldrick G. M. (2008). Acta Cryst A64, 112–122

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m251 [doi:10.1107/S1600536810003272]

Bis(tetraphenylphosphonium) bis[N-(2,5-dichlorophenylsulfonyl)dithiocarbimato(2-)- $\kappa^2 S$,S']platinate(II)

S. Guilardi, W. P. Flauzino Neto, L. C. C. Vieira, R. S. Amin and M. R. L. Oliveira

Comment

We became interested in the syntheses and characterization of Pt(II) complexes with dithiocarbimates due to their potential application as antitumoral. Some platinum- dithiocarbimato-anionic complexes with general formulae $[Pt(RSO_2N=CS_2)]^2$ -(R = aryl groups) have had their structures determined by X-ray diffraction techniques. All of these compounds have the tetrabutylammonium as counter-ion (Amim *et al.*, 2008; Oliveira *et al.*, 2004). Variations in the counter-ions and in the R group can be important to modulate the activity of these compounds favoring the biological application.

The title compound is quite stable at the ambient conditions. The Pt(II) is located at the inversion centre and the PtS₄ fragment has a distorted square-planar geometry due to the bidentate chelation (Figure 1). The Pt—S bond lengths are almost equal but the angles S1—Pt—S2 and S2ⁱ—Pt—S1 are 74.59 (2)° and 105.41 (2)° respectively (Table 1). In the fragment N= CS₂, the C—S bond lengths are nearly equal and are shorter than C—S single bonds (ca 1.815 Å) (Allen *et al.*, 1987). The C1=N bond distances [1.310 (3) Å] have a double character. This behavior indicates that the electron density is delocalized over the entire NCS₂ moiety. The S1—C1—N angle is significantly greater than S2—C1—N probably due to the repulsive interaction between the (2,5-Cl₂C₂H₃)SO₂ group and the S1 atom, which are in *cis* position in relation to the C1—N bond. Similar behavior is observed in the square-planar platinum(II) and nickel(II) complexes of dithiocarbimates (Amim *et al.*, 2008; Oliveira *et al.*, 2003; France *et al.*, 2006).

The bond lengths and angles of the tetraphenylphosphonium cations are in agreement with the expected values (Allen *et al.*, 1987). The crystal packing is mainly maintained by ionic bond, but there are weak interactions of the type C—H \cdots O (Table 2).

Experimental

Potassium 2,5-dichlorophenylsulfonyldithiocarbimate dihydrate was prepared from the sulfonamide using procedures described in the literature (Franca *et al.*, 2006). The title compound was prepared in 1:1 (10 ml) methanol:water mixture from potassium tetrachloroplatinate(II) (0.40 mmol) potassium 2,5-dichlorophenylsulfonyldithiocarbimate dihydrate (0.80 mmol) and tetraphenylphosphonium bromide (0.80 mmol). The reaction mixture was stirred for 1 h at room temperature. The yellow solid obtained was filtered, washed with distilled water, ethyl alcohol and dried under reduced pressure. The title compound is slightly soluble in chloroform and insoluble in water and in most organic solvents. Yellow prisms of (I) were obtained after slow evaporation of solution of the compound in hot chloroform. M.p. 195.2-195.6°C. IR (most important bands, cm⁻¹): 1409 v(C=N); 1309 $v_{ass}(SO_2)$; 1107 $v_{sym}(SO_2)$; 932 $v_{ass}(CS_2)$ and 312 v(NiS).

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances of 0.95 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms omitted for clarity.

Bis(tetraphenylphosphonium) bis[N-(2,5-dichlorophenylsulfonyl)dithiocarbimato(2-)- $\kappa^2 S$,S']platinate(II)

Crystal data

$(C_{24}H_{20}P)_2[Pt(C_7H_3Cl_2NO_2S_3)_2]$	Z = 1
$M_r = 1474.3$	F(000) = 736
Triclinic, <i>P</i> T	$D_{\rm x} = 1.672 \ {\rm Mg \ m}^{-3}$
a = 9.6284(1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.3409 (2) Å	Cell parameters from 20612 reflections
c = 15.1278 (2) Å	$\theta = 2.9 - 27.1^{\circ}$
$\alpha = 76.951 \ (1)^{\circ}$	$\mu = 2.90 \text{ mm}^{-1}$
$\beta = 88.353 (1)^{\circ}$	T = 120 K
$\gamma = 86.193 \ (1)^{\circ}$	Prism, yellow
$V = 1463.94 (4) \text{ Å}^3$	$0.34\times0.34\times0.3~mm$

Data collection

Nonius KappaCCD diffractometer	6483 reflections with $I > 2\sigma(I)$
CCD rotation images, thick slices scans	$R_{\rm int} = 0.029$
Absorption correction: gaussian (Coppens <i>et al.</i> , 1965)	$\theta_{\text{max}} = 27.3^\circ, \ \theta_{\text{min}} = 2.9^\circ$
$T_{\min} = 0.439, \ T_{\max} = 0.477$	$h = -12 \rightarrow 12$
11423 measured reflections	$k = -13 \rightarrow 13$
6536 independent reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.025$	$w = 1/[\sigma^2(F_0^2) + (0.0373P)^2 + 0.5896P]$ where $P = (F_0^2 + 2F_c^2)/3$

$wR(F^2) = 0.068$	$(\Delta/\sigma)_{max} = 0.001$
<i>S</i> = 1.11	$\Delta\rho_{max} = 0.69 \text{ e} \text{ Å}^{-3}$
6536 reflections	$\Delta \rho_{min} = -2.58 \text{ e} \text{ Å}^{-3}$

367 parameters

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Р	0.48411 (6)	1.00796 (6)	0.28241 (4)	0.01728 (12)
C13	0.5666 (3)	0.7769 (2)	0.40148 (18)	0.0233 (5)
H13	0.5906	0.8339	0.4391	0.028*
C12	0.5927 (3)	0.6407 (3)	0.4298 (2)	0.0271 (5)
H12	0.6346	0.604	0.4868	0.032*
C11	0.5571 (3)	0.5583 (3)	0.3744 (2)	0.0287 (6)
H11	0.5758	0.4649	0.3934	0.034*
C21	0.3060 (3)	1.0340 (3)	0.13883 (19)	0.0267 (5)
H21	0.2428	0.9883	0.1824	0.032*
C10	0.4953 (3)	0.6104 (3)	0.2923 (2)	0.0284 (6)
H10	0.4709	0.5525	0.2554	0.034*
C16	0.1901 (3)	1.0494 (3)	0.47488 (19)	0.0299 (6)
H16	0.144	0.9946	0.5244	0.036*
C18	0.2237 (3)	1.2660 (3)	0.3820 (2)	0.0323 (6)
H18	0.2025	1.3593	0.3688	0.039*
C22	0.2692 (3)	1.0749 (3)	0.0481 (2)	0.0315 (6)
H22	0.1812	1.0557	0.0291	0.038*
C17	0.1609 (3)	1.1857 (3)	0.4552 (2)	0.0337 (7)
H17	0.0971	1.224	0.4925	0.04*
C25	0.5288 (3)	1.1294 (3)	0.10141 (19)	0.0266 (5)
H25	0.618	1.147	0.1196	0.032*
C27	0.7675 (3)	1.0027 (3)	0.2710 (2)	0.0332 (6)
H27	0.7593	0.9226	0.2513	0.04*
C24	0.4903 (3)	1.1720 (3)	0.0114 (2)	0.0329 (6)
H24	0.552	1.2202	-0.0321	0.04*
C29	0.9089 (4)	1.1685 (4)	0.3024 (2)	0.0442 (8)
H29	0.9976	1.2034	0.3029	0.053*
C30	0.7922 (4)	1.2346 (3)	0.3305 (2)	0.0418 (8)
H30	0.8014	1.3137	0.3513	0.05*
C28	0.8976 (3)	1.0525 (4)	0.2736 (2)	0.0434 (8)
H28	0.9785	1.0067	0.2556	0.052*
C26	0.6493 (3)	1.0705 (3)	0.29743 (17)	0.0228 (5)
C20	0.4372 (3)	1.0611 (2)	0.16505 (17)	0.0208 (5)

C14	0.3522 (3)	1.0734 (2)	0.34942 (17)	0.0204 (5)
C15	0.2866 (3)	0.9923 (3)	0.42239 (18)	0.0237 (5)
H15	0.3074	0.8989	0.4363	0.028*
C8	0.5052 (2)	0.8304 (2)	0.31772 (17)	0.0187 (5)
C9	0.4679 (3)	0.7474 (2)	0.26259 (18)	0.0218 (5)
Н9	0.4248	0.7833	0.2059	0.026*
C19	0.3180 (3)	1.2109 (3)	0.3275 (2)	0.0274 (5)
H19	0.3591	1.2659	0.2758	0.033*
C31	0.6623 (3)	1.1861 (3)	0.3286 (2)	0.0321 (6)
H31	0.5823	1.2312	0.3483	0.038*
C23	0.3612 (3)	1.1437 (3)	-0.0145 (2)	0.0332 (6)
H23	0.3351	1.172	-0.0763	0.04*
Pt	0	0.5	0.5	0.01621 (5)
S2	0.17449 (6)	0.63059 (6)	0.42652 (4)	0.02153 (13)
S3	0.04993 (7)	0.73789 (6)	0.15524 (4)	0.02273 (13)
S 1	-0.07133 (6)	0.57316 (7)	0.35140 (4)	0.02520 (13)
Cl1	-0.37103 (7)	0.44428 (8)	0.10640 (5)	0.03624 (16)
Cl2	0.26814 (7)	0.48922 (8)	0.12924 (5)	0.03452 (15)
C3	-0.1452 (3)	0.5687 (2)	0.13550 (17)	0.0218 (5)
Н3	-0.2096	0.6357	0.1487	0.026*
C1	0.0838 (2)	0.6508 (2)	0.32596 (17)	0.0190 (5)
O2	0.1460 (2)	0.7855 (2)	0.08289 (14)	0.0344 (5)
C2	-0.0029 (3)	0.5823 (2)	0.13914 (16)	0.0200 (5)
Ν	0.1355 (2)	0.7139 (2)	0.24836 (15)	0.0231 (4)
01	-0.0771 (2)	0.81846 (19)	0.15895 (14)	0.0320 (4)
C4	-0.1928 (3)	0.4572 (3)	0.11257 (17)	0.0242 (5)
C7	0.0896 (3)	0.4807 (2)	0.12334 (17)	0.0226 (5)
C6	0.0405 (3)	0.3690 (3)	0.10070 (18)	0.0281 (6)
H6	0.1045	0.3001	0.0899	0.034*
C5	-0.1009 (3)	0.3578 (3)	0.09378 (18)	0.0278 (5)
Н5	-0.1345	0.283	0.0764	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Р	0.0190 (3)	0.0156 (3)	0.0170 (3)	-0.0017 (2)	-0.0019 (2)	-0.0028 (2)
C13	0.0228 (12)	0.0221 (12)	0.0251 (13)	-0.0013 (9)	-0.0040 (10)	-0.0052 (10)
C12	0.0237 (13)	0.0235 (12)	0.0300 (14)	0.0033 (10)	-0.0042 (10)	0.0015 (10)
C11	0.0252 (13)	0.0167 (11)	0.0425 (17)	0.0001 (9)	0.0041 (11)	-0.0039 (11)
C21	0.0263 (13)	0.0263 (12)	0.0263 (14)	0.0009 (10)	-0.0058 (10)	-0.0037 (10)
C10	0.0301 (14)	0.0230 (12)	0.0350 (15)	-0.0046 (10)	0.0033 (11)	-0.0123 (11)
C16	0.0266 (14)	0.0403 (15)	0.0214 (13)	0.0049 (11)	-0.0013 (10)	-0.0059 (11)
C18	0.0323 (15)	0.0271 (13)	0.0409 (17)	0.0102 (11)	-0.0124 (13)	-0.0166 (12)
C22	0.0334 (15)	0.0290 (13)	0.0319 (15)	0.0064 (11)	-0.0140 (12)	-0.0074 (12)
C17	0.0296 (14)	0.0446 (16)	0.0313 (15)	0.0132 (12)	-0.0085 (12)	-0.0215 (13)
C25	0.0354 (14)	0.0208 (12)	0.0235 (13)	-0.0068 (10)	-0.0024 (11)	-0.0028 (10)
C27	0.0246 (14)	0.0462 (17)	0.0323 (15)	-0.0081 (12)	0.0029 (11)	-0.0149 (13)
C24	0.0511 (18)	0.0231 (13)	0.0221 (14)	-0.0038 (12)	-0.0017 (12)	0.0009 (10)

C29	0.0392 (17)	0.065 (2)	0.0252 (15)	-0.0321 (16)	-0.0076 (13)	0.0063 (14)
C30	0.057 (2)	0.0319 (15)	0.0364 (17)	-0.0223 (14)	-0.0183 (15)	0.0017 (13)
C28	0.0235 (14)	0.075 (2)	0.0337 (17)	-0.0164 (15)	0.0035 (12)	-0.0135 (16)
C26	0.0240 (12)	0.0259 (12)	0.0180 (12)	-0.0080 (9)	-0.0040 (9)	-0.0014 (9)
C20	0.0266 (12)	0.0166 (10)	0.0188 (12)	-0.0001 (9)	-0.0047 (9)	-0.0032 (9)
C14	0.0217 (12)	0.0182 (11)	0.0215 (12)	0.0018 (9)	-0.0032 (9)	-0.0055 (9)
C15	0.0241 (12)	0.0234 (12)	0.0228 (12)	0.0026 (9)	-0.0023 (10)	-0.0045 (10)
C8	0.0163 (11)	0.0169 (10)	0.0224 (12)	0.0000 (8)	0.0000 (9)	-0.0037 (9)
C9	0.0212 (12)	0.0234 (12)	0.0218 (12)	-0.0026 (9)	-0.0008 (9)	-0.0069 (10)
C19	0.0307 (14)	0.0204 (12)	0.0302 (14)	0.0016 (10)	-0.0061 (11)	-0.0045 (10)
C31	0.0390 (16)	0.0234 (13)	0.0336 (15)	-0.0049 (11)	-0.0122 (12)	-0.0037 (11)
C23	0.0527 (18)	0.0221 (12)	0.0226 (14)	0.0095 (12)	-0.0118 (13)	-0.0028 (10)
Pt	0.01621 (7)	0.01741 (7)	0.01562 (8)	-0.00152 (4)	0.00092 (5)	-0.00498 (5)
S2	0.0196 (3)	0.0272 (3)	0.0181 (3)	-0.0071 (2)	-0.0012 (2)	-0.0041 (2)
S3	0.0290 (3)	0.0199 (3)	0.0184 (3)	-0.0056 (2)	-0.0033 (2)	-0.0008 (2)
S1	0.0198 (3)	0.0374 (3)	0.0174 (3)	-0.0103 (2)	-0.0013 (2)	-0.0013 (3)
Cl1	0.0297 (3)	0.0462 (4)	0.0361 (4)	-0.0153 (3)	0.0007 (3)	-0.0126 (3)
Cl2	0.0233 (3)	0.0450 (4)	0.0312 (4)	0.0054 (3)	-0.0021 (3)	-0.0021 (3)
C3	0.0247 (12)	0.0227 (11)	0.0175 (12)	-0.0010 (9)	-0.0017 (9)	-0.0032 (9)
C1	0.0185 (11)	0.0182 (11)	0.0209 (12)	-0.0019 (8)	0.0003 (9)	-0.0056 (9)
O2	0.0483 (13)	0.0324 (10)	0.0213 (10)	-0.0184 (9)	0.0020 (9)	0.0011 (8)
C2	0.0257 (12)	0.0193 (11)	0.0134 (11)	-0.0018 (9)	-0.0022 (9)	-0.0001 (9)
Ν	0.0225 (11)	0.0266 (11)	0.0201 (11)	-0.0069 (8)	-0.0011 (8)	-0.0035 (8)
01	0.0397 (11)	0.0213 (9)	0.0349 (11)	0.0044 (8)	-0.0116 (9)	-0.0063 (8)
C4	0.0267 (13)	0.0275 (12)	0.0176 (12)	-0.0074 (10)	0.0003 (10)	-0.0016 (10)
C7	0.0235 (12)	0.0250 (12)	0.0161 (11)	0.0012 (9)	-0.0009 (9)	0.0015 (9)
C6	0.0395 (15)	0.0215 (12)	0.0206 (13)	0.0047 (10)	0.0029 (11)	-0.0011 (10)
C5	0.0425 (16)	0.0204 (12)	0.0202 (13)	-0.0068 (10)	0.0014 (11)	-0.0030 (10)

Geometric parameters (Å, °)

Р—С8	1.792 (2)	С29—Н29	0.95
PC14	1.794 (3)	C30—C31	1.382 (4)
PC26	1.795 (3)	С30—Н30	0.95
PC20	1.797 (3)	C28—H28	0.95
C13—C12	1.384 (4)	C26—C31	1.395 (4)
C13—C8	1.394 (4)	C14—C15	1.390 (4)
C13—H13	0.95	C14—C19	1.404 (3)
C12-C11	1.388 (4)	C15—H15	0.95
C12—H12	0.95	C8—C9	1.394 (3)
C11—C10	1.372 (4)	С9—Н9	0.95
C11—H11	0.95	С19—Н19	0.95
C21—C22	1.390 (4)	C31—H31	0.95
C21—C20	1.400 (4)	С23—Н23	0.95
C21—H21	0.95	Pt—S1 ⁱ	2.3128 (6)
C10—C9	1.396 (4)	Pt—S1	2.3128 (6)
C10—H10	0.95	Pt—S2 ⁱ	2.3233 (6)
C16—C17	1.384 (4)	Pt—S2	2.3233 (6)
C16—C15	1.393 (4)	S2—C1	1.740 (3)

C16—H16	0.95	S3—O2	1.434 (2)
C18—C17	1.376 (5)	S3—O1	1.440 (2)
C18—C19	1.389 (4)	S3—N	1.614 (2)
C18—H18	0.95	S3—C2	1.788 (2)
C22—C23	1.385 (5)	S1—C1	1.735 (2)
C22—H22	0.95	Cl1—C4	1.737 (3)
C17—H17	0.95	Cl2—C7	1.733 (3)
C25—C24	1.386 (4)	C3—C4	1.385 (3)
C25—C20	1.389 (4)	C3—C2	1.391 (4)
C25—H25	0.95	С3—Н3	0.95
C27—C28	1.391 (4)	C1—N	1.310 (3)
C27—C26	1.393 (4)	C2—C7	1.390 (3)
C27—H27	0.95	C4—C5	1.385 (4)
C24—C23	1.382 (5)	С7—С6	1.391 (4)
C24—H24	0.95	C6—C5	1.383 (4)
C29—C28	1.377 (5)	С6—Н6	0.95
C29—C30	1.383 (6)	С5—Н5	0.95
C8—P—C14	110.89 (12)	C15—C14—C19	120.1 (2)
C8—P—C26	106.58 (12)	C15—C14—P	121.79 (18)
C14—P—C26	110.24 (12)	C19—C14—P	118.1 (2)
C8—P—C20	111.91 (11)	C14—C15—C16	119.3 (2)
C14—P—C20	108.34 (12)	C14—C15—H15	120.3
C26—P—C20	108.85 (12)	С16—С15—Н15	120.3
C12—C13—C8	120.1 (2)	C9—C8—C13	120.4 (2)
С12—С13—Н13	120	С9—С8—Р	121.96 (19)
C8—C13—H13	120	C13—C8—P	117 59 (18)
C13 - C12 - C11	119 5 (3)	C8 - C9 - C10	118 7 (2)
C13 - C12 - H12	120.3	С8—С9—Н9	120.7
C11 - C12 - H12	120.3	C10—C9—H9	120.7
C10-C11-C12	120.3 120.7(2)	C18 - C19 - C14	119 5 (3)
C10-C11-H11	119.7	C18 - C19 - H19	120.2
C12_C11_H11	119.7	C_{14} C_{19} H_{19}	120.2
$C_{22} = C_{21} = C_{20}$	119.7	C_{30} C_{31} C_{26}	119.6 (3)
$C_{22} = C_{21} = C_{20}$	119.1 (5)	$C_{30} = C_{31} = C_{20}$	119.0 (5)
$C_{22} = C_{21} = H_{21}$	120.4	C26_C31_H31	120.2
$C_{20} = C_{21} = 1121$	120.4 120.7(2)	$C_{20} = C_{31} = 1131$	120.2 121.1(3)
$C_{11} = C_{10} = H_{10}$	110.6	$C_{24} = C_{23} = C_{22}$	110 /
C9—C10—H10	119.6	C22—C23—H23	119.4
C17—C16—C15	120.3 (3)	S1 ⁱ —Pt—S1	180
C17—C16—H16	119.8	$S1^{i}$ —Pt— $S2^{i}$	74.59 (2)
С15—С16—Н16	119.8	S1—Pt—S2 ⁱ	105.41 (2)
C17—C18—C19	120.2 (3)	S1 ⁱ —Pt—S2	105.41 (2)
C17—C18—H18	119.9	S1—Pt—S2	74.59 (2)
C19—C18—H18	119.9	S2 ⁱ —Pt—S2	180.00 (3)
C23—C22—C21	119.9 (3)	C1—S2—Pt	88.44 (8)
C23—C22—H22	120.1	02—S3—O1	116.81 (13)
C21—C22—H22	120.1	O2—S3—N	106.59 (12)
C18—C17—C16	120.5 (3)	O1—S3—N	111.58 (12)
			. ,

С18—С17—Н17	119.7	O2—S3—C2	106.56 (12)
С16—С17—Н17	119.7	O1—S3—C2	105.50 (12)
C24—C25—C20	120.1 (3)	N—S3—C2	109.57 (11)
С24—С25—Н25	119.9	C1—S1—Pt	88.90 (9)
С20—С25—Н25	119.9	C4—C3—C2	119.8 (2)
C28—C27—C26	119.8 (3)	С4—С3—Н3	120.1
С28—С27—Н27	120.1	С2—С3—Н3	120.1
С26—С27—Н27	120.1	N—C1—S1	130.8 (2)
C23—C24—C25	119.4 (3)	N—C1—S2	121.34 (19)
C23—C24—H24	120.3	S1—C1—S2	107.86 (14)
C25—C24—H24	120.3	C7—C2—C3	119.2 (2)
C28—C29—C30	120.6 (3)	C7—C2—S3	123.7 (2)
С28—С29—Н29	119.7	C3—C2—S3	116.91 (18)
С30—С29—Н29	119.7	C1—N—S3	121.76 (18)
C31—C30—C29	120.3 (3)	C5—C4—C3	121.1 (2)
С31—С30—Н30	119.9	C5—C4—Cl1	120.0 (2)
С29—С30—Н30	119.9	C3—C4—Cl1	118.9 (2)
C29—C28—C27	119.8 (3)	C2—C7—C6	120.4 (2)
С29—С28—Н28	120.1	C2—C7—Cl2	121.7 (2)
С27—С28—Н28	120.1	C6—C7—Cl2	117.9 (2)
C27—C26—C31	119.9 (3)	C5—C6—C7	120.4 (2)
C27—C26—P	117.0 (2)	С5—С6—Н6	119.8
C31—C26—P	123.0 (2)	С7—С6—Н6	119.8
C25—C20—C21	120.4 (2)	C6—C5—C4	119.0 (2)
С25—С20—Р	120.7 (2)	С6—С5—Н5	120.5
C21—C20—P	118.9 (2)	С4—С5—Н5	120.5
C8—C13—C12—C11	-0.1 (4)	C20—P—C8—C13	168.17 (19)
C13-C12-C11-C10	-0.6 (4)	C13—C8—C9—C10	-1.0 (4)
C12-C11-C10-C9	0.5 (4)	P-C8-C9-C10	176.1 (2)
C20-C21-C22-C23	-1.2 (4)	С11—С10—С9—С8	0.3 (4)
C19—C18—C17—C16	-0.5 (4)	C17—C18—C19—C14	-2.1 (4)
C15-C16-C17-C18	2.0 (4)	C15-C14-C19-C18	3.3 (4)
C20-C25-C24-C23	-1.2 (4)	P-C14-C19-C18	-175.4 (2)
C28—C29—C30—C31	-1.2 (5)	C29—C30—C31—C26	-0.4 (5)
C30-C29-C28-C27	1.3 (5)	C27—C26—C31—C30	1.8 (4)
C26—C27—C28—C29	0.1 (5)	P-C26-C31-C30	-174.1 (2)
C28-C27-C26-C31	-1.6 (5)	C25—C24—C23—C22	0.7 (4)
C28—C27—C26—P	174.5 (3)	C21—C22—C23—C24	0.5 (4)
C8—P—C26—C27	42.3 (2)	S1 ⁱ —Pt—S2—C1	177.05 (8)
C14—P—C26—C27	162.7 (2)	S1—Pt—S2—C1	-2.95 (8)
C20—P—C26—C27	-78.6 (2)	S2 ⁱ —Pt—S1—C1	-177.05 (8)
C8—P—C26—C31	-141.7 (2)	S2—Pt—S1—C1	2.95 (8)
C14—P—C26—C31	-21.2 (3)	Pt—S1—C1—N	174.9 (2)
C20—P—C26—C31	97.5 (2)	Pt—S1—C1—S2	-4.00 (11)
C24—C25—C20—C21	0.4 (4)	Pt—S2—C1—N	-175.0 (2)
C24—C25—C20—P	-178.8 (2)	Pt—S2—C1—S1	3.98 (11)
C22—C21—C20—C25	0.8 (4)	C4—C3—C2—C7	-2.7 (4)
C22—C21—C20—P	-180.0 (2)	C4—C3—C2—S3	172.41 (19)

C8—P—C20—C25	-112.6 (2)	O2—S3—C2—C7	48.8 (2)
C14—P—C20—C25	124.8 (2)	O1—S3—C2—C7	173.6 (2)
C26—P—C20—C25	4.9 (2)	N—S3—C2—C7	-66.2 (2)
C8—P—C20—C21	68.2 (2)	O2—S3—C2—C3	-126.1 (2)
C14—P—C20—C21	-54.4 (2)	O1—S3—C2—C3	-1.2 (2)
C26—P—C20—C21	-174.3 (2)	N—S3—C2—C3	119.0 (2)
C8—P—C14—C15	4.3 (2)	S1—C1—N—S3	3.5 (3)
C26—P—C14—C15	-113.5 (2)	S2—C1—N—S3	-177.77 (13)
C20—P—C14—C15	127.5 (2)	O2—S3—N—C1	-169.0 (2)
C8—P—C14—C19	-176.98 (19)	O1—S3—N—C1	62.4 (2)
C26—P—C14—C19	65.2 (2)	C2—S3—N—C1	-54.1 (2)
C20-P-C14-C19	-53.8 (2)	C2—C3—C4—C5	0.5 (4)
C19-C14-C15-C16	-1.9 (4)	C2—C3—C4—Cl1	-178.77 (19)
P-C14-C15-C16	176.7 (2)	C3—C2—C7—C6	2.5 (4)
C17-C16-C15-C14	-0.7 (4)	S3—C2—C7—C6	-172.3 (2)
C12—C13—C8—C9	0.9 (4)	C3—C2—C7—Cl2	-178.55 (19)
C12—C13—C8—P	-176.3 (2)	S3—C2—C7—Cl2	6.7 (3)
C14—P—C8—C9	112.1 (2)	C2—C7—C6—C5	-0.1 (4)
C26—P—C8—C9	-127.9 (2)	Cl2—C7—C6—C5	-179.1 (2)
C20—P—C8—C9	-9.0 (2)	C7—C6—C5—C4	-2.1 (4)
C14—P—C8—C13	-70.7 (2)	C3—C4—C5—C6	1.8 (4)
C26—P—C8—C13	49.3 (2)	Cl1—C4—C5—C6	-178.9 (2)
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
C27—H27···O1 ⁱⁱ	0.95	2.43	3.111 (4)	128
Symmetry codes: (ii) $x+1$, y , z .				

Fig. 1