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Background: We aimed to construct and validate a nomogram model based on the
combination of radiomic features and satellite sign number for predicting intracerebral
hematoma expansion.

Methods: A total of 129 patients from two institutions were enrolled in this study. The
preprocessed initial CT images were used for radiomic feature extraction. The ANOVA-
Kruskal–Wallis test and least absolute shrinkage and selection operator regression
were applied to identify candidate radiomic features and construct the Radscore.
A nomogram model was developed by integrating the Radscore with a satellite sign
number. The discrimination performance of the proposed model was evaluated by
receiver operating characteristic (ROC) analysis, and the predictive accuracy was
assessed via a calibration curve. Decision curve analysis (DCA) and Kaplan–Meier (KM)
survival analysis were performed to evaluate the clinical value of the model.

Results: Four optimal features were ultimately selected and contributed to the Radscore
construction. A positive correlation was observed between the satellite sign number and
Radscore (Pearson’s r: 0.451). The nomogram model showed the best performance
with high area under the curves in both training cohort (0.881, sensitivity: 0.973;
specificity: 0.787) and external validation cohort (0.857, sensitivity: 0.950; specificity:
0.766). The calibration curve, DCA, and KM analysis indicated the high accuracy and
clinical usefulness of the nomogram model for hematoma expansion prediction.

Conclusion: A nomogram model of integrated radiomic signature and satellite sign
number based on noncontrast CT images could serve as a reliable and convenient
measurement of hematoma expansion prediction.

Keywords: cerebral hemorrhage/diagnostic imaging, disease progression, computed tomography, stroke,
algorithms

INTRODUCTION

Intracerebral hemorrhage (ICH) confers a worse prognosis than ischemic stroke, with an overall
fatality rate approaching 40% and neurological disability among the survivors (van Asch et al.,
2010; Heit et al., 2017). Based on previous findings, the baseline volume and the location of ICH,
intraventricular hemorrhage (IVH), Glasgow coma scale score, and age are strongly associated with
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the outcomes as clinical predictors (Hemphill et al., 2001).
Early hematoma expansion is a greater risk factor for increased
mortality and poor functional outcomes, which is independent
of other defined clinical correlation factors (Delcourt et al.,
2012). A remarkable hemorrhage enlargement by more than 33%
volume increase within 24 h after the onset of symptoms occurred
in 38% of patients with ICH, as has been reported prospectively
(Brott et al., 1997). Therefore, as the only modifiable risk factor,
early identification of patients with a potential risk of hematoma
growth is crucial for targeted therapeutic strategies.

Recently, different imaging characteristics have been
successively reported and paved the way for available prediction
of hematoma expansion in clinical routine. The computed
tomography angiography (CTA) spot sign, as an independent
predictor, has been well established and prospectively validated,
which turned out to be of limited sensitivity (Demchuk et al.,
2012; Dowlatshahi et al., 2016). Besides that, CTA has not
yet been a routine measurement for emergency radiology
in some institutions, following nephrotoxicity and allergy
problems (Caplan, 2016). Rather, several novel markers based
on noncontrast CT (NCCT), including blend sign, black
hole sign, swirl sign, island sign, and satellite sign, recently
gained attention, mainly focused on the heterogeneity and
the irregularity of hematoma (Boulouis et al., 2017; Shimoda
et al., 2017; Morotti et al., 2019). The satellite sign, which was
easy to recognize and clearly defined, was especially proven to
be an independent imaging marker for hematoma expansion
prediction (Shimoda et al., 2017; Yu et al., 2017). However,
these imaging predictors make qualitative or semi-quantitative
analysis studies only and caused inevitable deviation due to
subjectivity. More objective quantitative indicators should be
defined to approach more veracious results. As a promising
quantitative method for heterogeneous studies, radiomic analysis
has become a new “’hot spot” in cancer researches (Davnall
et al., 2012). Radiomic analysis links quantitative imaging
features to clinical findings by using machine learning and
statistics analysis methods. Machine learning methods, such as
logistic regression, support vector machines, random forest, and
Bayesian algorithm, have come into a wider use in the field of
radiomics (Lambin et al., 2012; Bi et al., 2018; Shen et al., 2018;
Khalaf et al., 2019; Zavecz et al., 2020). In oncology, features have
already been carried out to assess intratumor heterogeneity in
various tumor types through the analysis of pixel or voxel gray
level distribution and degree of coarseness for early diagnosis,
preoperative grading, and monitoring responses to therapies
for prognosis prediction (Lubner et al., 2017b; Bi et al., 2019).
However, limited numbers of studies were found focusing on
the nononcologic applications of radiomics (Kotze et al., 2014;
Ginsburg et al., 2016; Lubner et al., 2017a).

In this study, we hypothesized that radiomic analysis
and quantitative satellite sign can identify the associations
between the quantitative imaging features and the hematoma
pathophysiology and thus effectively and precisely predict
intracerebral hematoma expansion in NCCT images. The aim
of this study was to establish a quantitative imaging model
to predict hematoma expansion and improve the functional
outcomes for patients with ICH. We investigated a nomogram

model combined with radiomics and quantitative satellite sign
to improve the diagnostic performance in early hematoma
expansion prediction.

MATERIALS AND METHODS

Patients
This retrospective study was approved by the Medical Ethics
Committee of institution I and II and conducted in accordance
with relevant guidelines. Informed consent was waived.

Patients with spontaneous ICH within 6 h since symptom
onset and CT recheck within 24 h in between January 2017
and December 2018 were included. The exclusion criteria were
the following conditions: (1) patients with ICH secondary to
arteriovenous malformation, trauma, aneurysm, tumor, and
venous sinus embolism, (2) patients who were receiving
anticoagulation treatment, (3) surgery or interventional therapy
before the repeat CT scan, (4) image contained severe artifacts,
and (5) IVH or subarachnoid hemorrhage is involved. Clinical
data were provided by a neurologist, including age, gender,
systolic blood pressure, international normalized ratio, time
to initial CT scan, activated partial thromboplastin time, and
baseline Glasgow Coma Scale score.

CT Examination, ROI Segmentation, and
Imaging Evaluation
The CT scans in the two institutions were carried out on different
CT scanners, including a GE LightSpeed VCT 64-slice and a GE
Optima 540 16-slice. The same CT scanning parameters were
performed with a tube voltage of 120 kV, a tube current of 150–
300 mA, field of view of 25 cm, and 512 × 512 acquired matrix.
The scan ranged from the skull base to the cranium, with a
thickness of 5 mm per layer.

The radiomic workflow is summarized in Figure 1. Patients
with a volume increase of more than 33% in the follow-up image
within 24 h compared to the initial one were automatically
defined as hemorrhage expansion (Connor et al., 2015;
Hemphill et al., 2015). ITK-SNAP (Version 3.6.0, UPenn)
was performed to segment regions of interest (ROI) on CT
images. ROI was delineated manually within the confine of
each main hematoma by two neuroradiologists with 10 and
12 years of experience, respectively, and who were blind
to the data. Before delineation, intensity normalization by
histogram matching was applied to eliminate any difference
in technologies using ITK software. All pixel gray levels
inside the whole ROI objects were extracted for radiomic
analysis. No multiple simultaneous spontaneous ICHs
were included in the study (Chen et al., 2016). The two
neuroradiologists recorded the location of hematoma, the
satellite sign number, and the presence or the absence of
swirl sign, blend sign, and black hole sign independently
during delineation. The definitions of satellite sign, blend
sign, black hole sign, and swirl sign were determined
according to Al-Nakshabandi (2001), Li et al. (2015, 2016),
and Shimoda et al. (2017).
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FIGURE 1 | Workflow.

Feature Extraction and Selection
All the radiomic features from ROIs were extracted from
preprocessed images using the Artificial Intelligence Kit Version
3.0.1.A (Life Sciences, GE Healthcare, United States), with
window width 110 and window level 45. Six main categories
were involved, including histogram, morphology, gray level co-
occurrence matrix, run length matrix, and gray level zone size
matrix. Analysis of variance, Kruskal–Wallis test, and single-
factor logistic regression analysis were successively carried out
for selecting significant features that were highly correlated.
By removing the redundancy with a correlation coefficient of
more than 0.90, the radiomic features were further optimally
elected. In the final step, least absolute shrinkage and selection
operator (LASSO) regression was applied to identify the most
nonredundant and robust features among the 396 radiomic
features from the training cohort in order to improve the
class separability and optimize the representation of lesion
heterogeneity. With an increase of the value of λ, relevant
features with non-zero coefficients were selected and these
contributed to the final LASSO regression. Meanwhile, the best
value of λ found by 10-fold cross-validation with a maximum
area under the curve (AUC) was used for constructing the
regression model. Radscore, which is defined by corresponding
non-zero coefficients of the features selected by LASSO, was
created by a linear combination of selected features weighted by
their coefficients. Respective Radscore was calculated for each
patient. Pearson correlation analysis was performed to identify
the correlation between satellite sign number and Radscore. The
pairwise Pearson correlation coefficients were calculated.

Radiomics Nomogram Building,
Calibration, and External Validation
Both Radscore and the satellite sign number were integrated
by a multivariate logistic regression-based radiomic model in
the training cohort. Furthermore, a nomogram model was
constructed based on a multivariate logistic regression analysis to
visually demonstrate the probability of a hematoma enlargement.
In addition, predictive models based on Radscore or the satellite
sign number alone were also developed. The receiver operating
characteristic (ROC) analysis and the AUC were applied to
evaluate the discrimination performance on the three models.
Along with the Hosmer–Lemeshow test measuring for goodness
of fit of the nomogram model, predictive accuracy was assessed
via a calibration curve in terms of the agreement between the
predicted probability of hematoma expansion and the actual
one. Then, the constructed model from the training cohort was
applied to the external validation cohort. Respective Radscore
was also calculated for each patient and further combined with
the satellite sign number to validate the nomogram model based
on the training cohort. Ultimately, the same process of predictive
capability assessment with the ROC analysis and the calibration
curve was also carried out in the validation cohort.

Decision curve analysis (DCA) was carried out to evaluate
the clinical value of the three models independently on the
basis of calculating the net benefit for patients at each threshold
probability. By comparing to all strategies or none at all, the best
model was elected according to the higher calculated net benefit.

The Kaplan–Meier method was carried out to calculate the
survival probabilities. The survival rates were estimated in
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30 days. The patients from the two institutions were divided
into the expander and the non-expander groups according to the
predictive results using the threshold calculated from the training
dataset through the Youden Index. Survival was defined as the
period from diagnosis to the date of death or the time at which
information was last obtained.

Statistical Analysis
Version 3.3.2 of R software and version 13.0 of SPSS software
were used in the statistical analysis. Quantitative variables are
shown as mean ± SD. Statistical group comparisons of clinical
data were performed by independent-samples t-test or χ2

test where appropriate. Intraclass correlation coefficient (ICC)
was analyzed for estimating the reliability of inter-observer
agreements, which was defined as good consistency if between
0.75 and 1, fair consistency if between 0.4 and 0.75, and poor

consistency if under 0.4. The pairwise comparison of ROC
curves was performed using z statistic in MedCalc for Windows,
version 19.0.7 (MedCalc Software, Ostend, Belgium). Log-rank
test was used to compare survival curves, and the results were
considered as significant when p < 0.05. The test power (1-β
error probability) was calculated by version 3.1.9.7 of G∗Power
software. The level of statistical significance was set at a two-sided
p-value < 0.05 for all analyses.

RESULTS

Patients Characteristics
As demonstrated in the workflow (Figure 1), between January
2017 and December 2018, a final cohort of 129 patients were
selected, and among them, 68 patients from institution I were

TABLE 1 | Baseline demographic information.

Variable Training set (n = 68) Validation set (n = 61)

Expander (n = 21) Non-expander (n = 47) p-value Expander (n = 19) Non-expander (n = 42) p-value

Age (years) 64.2 ± 14.7 61.2 ± 14.2 0.42 56.2 ± 10.6 57.1 ± 13.5 0.86

Male (%)* 13 (19.1) 31 (45.6) 0.75 6 (20.7) 12 (41.4) 0.98

Admission SBP (mmHg) 168.5 ± 8.8 165.0 ± 11.2 0.21 162.3 ± 9.1 166.1 ± 8.2 0.28

Admission INR 1.5 ± 0.2 1.5 ± 0.3 0.25 1.4 ± 0.3 1.5 ± 0.3 0.51

Time to initial CT scan (h) 3.1 ± 0.9 3.5 ± 1.1 0.21 3.9 ± 1.6 3.9 ± 1.8 0.96

APTT (s) 33.3 ± 4.9 32.0 ± 3.9 0.25 28.3 ± 6.5 29.5 ± 5.0 0.62

Baseline GCS score 12.2 ± 3.8 12.0 ± 3.4 0.84 13.7 ± 3.7 12.3 ± 3.8 0.37

SBP, systolic blood pressure; INR, international normalized ratio; APTT, activated partial thromboplastin time; GCS, Glasgow Coma Scale. Data are means ± standard
deviations. ∗Data are the number of patients, with percentages in parentheses.

TABLE 2 | Radiological characteristics.

Variable Training cohort (n = 68) Validation cohort (n = 61)

Expander (n = 21) Non-expander (n = 47) p-value Expander (n = 19) Non-expander (n = 42) p-value

Observer 1

Location*

Basal ganglia 16 (76.2) 35 (74.5) 0.88 11 (57.9) 31 (73.8) 0.21

Lobar 4 (19.1) 9 (19.2) 0.99 5 (26.3) 7 (16.7) 0.38

Thalamus or brainstem 1 (4.8) 3 (6.4) 0.79 3 (15.8) 4 (9.5) 0.67

Satellite sign number 2.4 ± 1.6 1.0 ± 1.5 <0.001 2.4 ± 1.7 0.7 ± 1.0 0.001

Black hole sign* 8 (38.1) 9 (19.1) 0.10 7 (36.8) 7 (16.7) 0.08

Swirl sign* 7 (33.3) 6 (12.8) 0.04 8 (42.1) 9 (21.4) 0.09

Blend sign* 9 (42.9) 10 (21.3) 0.07 7 (36.8) 9 (21.4) 0.21

Observer 2

Location*

Basal ganglia 16 (76.2) 36 (76.6) 0.97 11 (57.9) 31 (73.8) 0.21

Lobar 4 (19.1) 8 (17.0) 0.84 5 (26.3) 6 (14.3) 0.23

Thalamus or brainstem 1 (4.8) 3 (6.4) 0.79 3 (15.8) 5 (11.9) 0.69

Satellite sign number 2.5 ± 1.7 1.1 ± 1.4 0.001 2.2 ± 1.1 0.7 ± 0.6 0.003

Black hole sign* 8 (38.1) 8 (17.0) 0.06 9 (47.4) 10 (23.8) 0.07

Swirl sign* 7 (33.3) 7 (14.9) 0.08 8 (42.1) 10 (23.8) 0.15

Blend sign* 7 (33.3) 8 (17.0) 0.13 7 (36.8) 8 (19.0) 0.14

Data are means ± standard deviations. ∗Data are the number of patients, with percentages in parentheses.
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taken as the training set for the initial prediction model and the
other 61 patients from institution II were taken as a prospective
independent set for validation.

Tables 1, 2 show the demographic, clinical, and imaging
characteristics. No significant difference (p > 0.05) was found
in all baseline clinical features and in most of the imaging
characteristics between expanders and non-expanders in both the
training and the validation cohorts. Moreover, only observer one
found a statistical significance in the presence of a swirl sign in the
training cohort. No other statistically significant difference of the
presence of swirl sign blend sign or black hole sign was observed
between groups in both cohorts. However, the patients with and
without hematoma expansion had an uneven distribution in the
satellite sign number with statistical significance (p < 0.001).

Reproducibility Analysis
Based on the result of the reproducibility analysis by the two
radiologists, 349 out of 396 (88.2%) radiomic features had good
consistency (ICC ≥ 0.75) on contour-focused segmentation. The
number of features with fair consistency (0.75 > ICC ≥ 0.4)
and with poor consistency (ICC < 0.4) was 28 (7.1%) and 19
(4.7%), respectively. Supplementary Table S1 demonstrates in
detail the consistency of the four selected radiomic features. For
identification of the satellite sign, swirl sign, and blend sign,
intraobserver reproducibility analysis was also conducted. The
ICC for the satellite sign number was 0.910 (95% CI: 0.855
to 0.945), indicating satisfactory consistency. By contrast, the
interrater agreement between the two neuroradiologists for swirl
sign, blend sign, and black hole sign was 0.738 (95% CI: 0.575
to 0.838), 0.735 (95% CI: 0.570 to 0.836), and 0.791 (95% CI:
0.700 to 0.854), respectively. Since there is excellent consistency

FIGURE 2 | Univariate analysis of four candidate features for hematoma
expansion prediction in the training cohort. HGLRE, high gray level run
emphasis, SRHGLE, short run high gray level emphasis. *p < 0.01,
**p < 0.001.

between the two segmentation data as well as the satellite sign
number evaluation, data from the neuroradiologist with 12 years
of experience were finally submitted for further analysis.

Radscore and Nomogram Building
Supplementary Figure S1A shows the heat map based on
feature distribution after redundancy removal. The transparent
clustering characteristics between rows implied a high differential
capacity of distinguishing between hematoma expanders and
non-expanders. Indicated between columns is the clustering
identification of the former four features and the latter eight
features, respectively. Four features were finally selected by 10-
fold cross-validation for ensuring robustness and preventing
overfitting (Supplementary Figures S1B,C). The differences
of the four candidate features between expanders and non-
expanders were all remarkably statistically significant (Figure 2).
These features were then constructed by a fitting calculation
formula for Radscore.

Radscore =− 1.41+ (1.29× Sum Average)+ (−0.82×High

gray level run emphasis− all direction− offset

1− SD)+ (−0.08× Short run high gray level

emphasis− angle 0− offset 4)+ (−0.61× Short

run high gray level emphasis− angle 135− offset 7)

From the pairwise Pearson correlative analysis, the satellite
sign number was observed to be positively correlated to the
corresponding Radscore with a correlation coefficient of 0.482
(p < 0.001, 95% CI: 0.272 to 0.649) (Figure 3). The multivariable
logistic regression analysis was generated on the basis of the
Radscore and the satellite sign number. The nomogram model
was conducted to visualize the results of the multivariable logistic

FIGURE 3 | Correlation between satellite sign number and Radscore based
on Pearson correlation analysis. The mean absolute correlation was 0.482
(p < 0.001, 95% CI 0.272 to 0.649).
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FIGURE 4 | Nomogram construction and performance of the combined model in both cohorts. (A) Combined nomogram based on the training cohort. (B) Pairwise
comparison of receiver operating characteristic (ROC) curves for Radscore, satellite sign number and the nomogram model in the training cohort. (C) Corresponding
calibration curve in the training cohort. (D) Pairwise comparison of ROC curves in the external validation cohort. (E) Calibration curve of the nomogram model in the
validation cohort.
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regression analysis (Figure 4A).

Nomogram =− 0.75+ (0.82× Radscore)

+ (0.41× Satellite sign number)

A further validation was carried out through ROC analysis.
Compared to the Radscore (0.812, 95% CI: 0.698 to 0.897,
sensitivity: 0.992, specificity: 0.617) and the satellite sign number
(0.762, 95% CI: 0.643 to 0.858, sensitivity: 0.950, specificity:
0.511) alone, the combination of the two yielded an even better
performance in the prediction of hematoma expansion as well
as an increased AUC of 0.881 (95% CI: 0.779–0.947, sensitivity:
0.973, specificity: 0.787) in the training cohort (Figure 4B). The
nomogram model showed a statistically significant improvement
in the pairwise comparison of ROC curves; however, the
difference between the Radscore and the satellite sign number
has no statistical significance (Figure 4B). Figure 4C illustrates
the corresponding calibration curve and the Hosmer–Lemeshow
test of the nomogram model in the training cohort (p > 0.05).
The nomogram model obviously showed a good agreement
between the predicted risk and the observed one, indicating a
high accuracy of the model in hematoma expansion prediction.
The test power (1-β) was 0.99, which verified the reliability and
the accuracy of the results (Supplementary Figure S2).

Performance on the External Validation
Cohort
According to the ROC analysis, the nomogram model yielded
a higher AUC value (0.857, 95% CI: 0.750–0.931, sensitivity:
0.950, specificity: 0.766) than the Radscore-based model (0.776,
95% CI: 0.657 to 0.868, sensitivity: 0.750, specificity: 0.745)
and the satellite sign number (0.720, 95% CI: 0.597 to 0.823,
sensitivity: 0.950, specificity: 0.426) in the external validation
cohort. Consistent results were shown in the pairwise comparison
of ROC curves (Figure 4D). Figure 4E illustrates the calibration
curve of the proposed nomogram model based on the validation
cohort, which suggested a favorable predictive performance
satisfactorily consistent with the ideal curve.

DCA was conducted to assess the clinical utility of the
nomogram model (Figure 5). According to the decision curve,
the nomogram model (red) demonstrated improved hematoma
expansion prediction with more areas shown in the validation
cohort compared to that derived from the Radscore or the
satellite sign number alone (blue and green).

The Kaplan–Meier survival analysis showed approximate
survival rates between actual subjects and predicted ones.
Furthermore, a significant difference was found not only between
the actual expander and non-expander groups but also between
predicted groups, which suggested the prognostic value of the
combined nomogram model (Figure 6, p < 0.001).

DISCUSSION

In this study, we established and validated a nomogram model
for early ICH expansion prediction, incorporating four robust
radiomic features which were extracted from NCCT and proven

FIGURE 5 | Decision curve analysis for the nomogram model in the external
validation cohort. The gray line stands for the assumption that all patients
developed hematoma expansion, and the black line represents the
assumption that no patient had hematoma expansion. Compared to other
models, the highest curve of the nomogram model with more area is the
optimal decision making for maximal net benefit in hematoma expansion
prediction.

FIGURE 6 | Kaplan–Meier (KM) survival curve for actual and predicted
expander and non-expander groups. The KM analysis shows a significant
difference between both actual and predicted groups (p < 0.001).

to be effective for the classification of expanders and non-
expanders and the satellite sign number which was found to be
a statistically significant imaging marker for the identification of
expanders. The nomogram model achieved a significantly better
performance in both training cohort and external validation
cohort with a larger AUC value than the model of radiomic
signature alone, suggesting the reproducibility and the reliability
of the improved model in hematoma expansion prediction.

In the recent years, several imaging markers for assessing
the greater risk of ICH expansion in NCCT images have been
springing up (Al-Nakshabandi, 2001; Li et al., 2015, 2016;
Boulouis et al., 2017; Shimoda et al., 2017). NCCT turned
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out to be an optimized alternative for patients with ICH.
Including blend sign, black hole sign, swirl sign, island sign,
and satallite sign, different imaging characteristics based on
NCCT have been proposed one after another (Al-Nakshabandi,
2001; Li et al., 2015, 2016; Boulouis et al., 2016b). The imaging
biomarkers based on the heterogeneity of hematoma were prone
to be impacted by photon noise and to be strongly subjective
due to the unclear description and definition, which were
dominant factors in reducing interobserver agreement during
visual assessment (Park et al., 2019). As a strong evidence
for that, the presence of qualitative signs was observed with
relatively inferior consistency between two observers, along with
indistinctive results between expanders and non-expanders, in
our study. Besides that, the evaluation of inter-group statistical
significance for swirl sign in the training cohort appeared to
be inconsistent between observers. In the study of Xie et al.
(2020), no statistical significance was found in the difference
of identification capability between the nomogram model and
the Radscore-based model for predicting ICH growth, indicating
no statistical contribution of qualitative NCCT signs to the
nomogram model construction. Meanwhile, inconsistent results
of association between NCCT imaging markers and functional
outcomes have been found in ICH patients (Boulouis et al., 2016a;
Morotti et al., 2017). In this context, instead of defining new
imaging predictors, more robust and quantitative characteristics
derived from NCCT images were urgently needed to combine
with existing markers to contribute to the predictive model for
hematoma expansion.

The satellite sign and the island sign shared a similar
morphology-based definition, which was less influenced by
photon noise during observation (Li et al., 2017; Shimoda
et al., 2017). However, the island sign contained a subjective
morphological assessment of “islands” that were connected with
the “mainland”, which could contribute to the discrepancy
between observers (Sporns et al., 2018). Besides that, the lower
limit of the island number in the definition made it difficult to
transform into a quantitative index. The satellite sign instead
had a precise size limitation with complete separation in at
least one slice for those “connected satellites,” making the
assessment more straightforward, which could be confirmed
by the excellent intraobserver agreement and the consistent
results between observers found in our study, thus indicating a
high reproducibility. The satellites were explained as multifocal
active bleeding from peripheral arterioles or reperfusion injury
resulting from perihematomal edema, which means the greater
the number of satellite was, the higher the probability of
hematoma enlargement could be (Fisher, 1971; Shimoda et al.,
2017). On top of that, we assumed that satellite sign number
detection, a quantitative transformation of the satellite sign, could
make imperative complementation for isolated small hematoma
that could not be simultaneously included in the radiomic
analysis and provide improved risk stratification.

The LASSO regression method has already been widely
applied in radiomics-based studies (Huang et al., 2016; Allotey
et al., 2019; Wei et al., 2019). The main thrust of LASSO
regression is to avoid overfitting by regression coefficient
restriction, which shows great strengths when multicollinearity

exists. It is suitable for dimension reduction and feature
selection in high-dimensional data, especially when the number
of features is much higher than the sample size, just in
line with the characteristics of radiomic data. Our previous
work concentrated on the predictive performance of filtered
histogram-based parameters for ICH enlargement (Shen et al.,
2018). In this work, we specially focused on amelioration
by employing a matrix-based texture extracting approach to
improve the category and the quantity of radiomic features.
Through an optimized selection from 396 features by the
LASSO method, four features including sum average, high gray
level run emphasis (all directions), short run high gray level
emphasis (angel 0), and short run high gray level emphasis
(angel 35) outstandingly surpassed themselves, suggesting their
vital role in the prediction model. The sum average measures
the relationship between the occurrences of pairs with lower
intensity values and higher intensity values. The high gray
level run emphasis and the short run high gray level emphasis
measure the distribution of high gray level values and the joint
distribution of short run and high gray level, respectively. These
results indicated the diversity between hematoma expanders
and non-expanders on the specific spatial heterogeneity of gray
levels within the region of hematoma. What we found was
consistent with those of previous studies which selected one
or more of these textures as optimum feature for radiomic
model construction (Chen et al., 2018; Romeo et al., 2018; Rui
et al., 2018). As expected, the Radscore-based model yielded
gratifying results in stratifying patients into expanders and non-
expanders, with an AUC of 0.812 in the training cohort. In
order to establish a more robust nomogram for prediction, the
satellite sign number, as described above, was introduced as a
promising imaging biomarker for complement. As the results
showed, the nomogram model proved to be more effective and
reliable than the model of radiomic signature alone in both
cohorts, with a satisfactory AUC of 0.881 and 0.857, respectively,
suggesting a positive effect of the inclusion of satellite sign
number on prediction.

Early hematoma expansion is a critical determinant for
both mortality and dependency after ICH onset. As the only
modifiable factor in the vast majority of patients, it takes the
center stage in therapeutic strategies (Ohwaki et al., 2004;
Broderick et al., 2007). Through our study, two experienced
neuroradiologists turned out to have rather different results
in the observation of swirl sign and blend sign; in spite
of that, they reached a high agreement for both radiomic
features and the satellite sign number detection. From that,
we would say that the nomogram model for ICH expansion
prediction was a fast, easy-to-use, and reliable tool, which could
be highly efficient and convenient for clinical routine. The
model could assess ICH dynamic changes effectively at baseline
and facilitate personalized treatment decisions. Owing to that,
early medication, intervention, or even decompressive surgery,
targeting hematoma growth, could be conducted for those highly
suspected expanders as early as possible in clinical practice to
improve the long-term prognosis.

There were some limitations in the current research that
still need to be further investigated. First of all, it was a
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retrospective study with a relatively small and imbalanced sample
size between expanders and non-expanders in both training and
external validation cohorts. Further prospective researches are
warranted to expand and balance the sample size and to verify
the conclusions. On the other hand, in the process of hematoma
segmentation, when it comes to hematoma located in cortical
or subcortical regions, it was prone to inaccurate delineation
due to partial volume effects. Besides that, the feature extraction
software made the displacement vectors 1, 4, and 7 describe
the relationship between the gray scale of pixels of the texture
as default setting. In light of this, different set points could
possibly influence the quantity and the category of radiomic
feature extraction; thus, a future radiomic analysis based on
various displacement vectors is required. Due to the relatively
short follow-up time, the median overall survival for ICH was
not available. We will continue to follow up with these patients
to secure a more complete prognosis status.

CONCLUSION

We have identified and validated a nomogram model
of integrated radiomic signature with the satellite sign
number based on NCCT images to be a reliable and
precise evaluation measurement for ICH enlargement
prediction at early baseline. The predictive model could
serve as an objective and convenient tool to use for
patients with ICH in individualized prediction and treatment
decision-making, thus suggesting a great potential for
clinical application.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Affiliated Hangzhou First People’s Hospital,
Zhejiang University School of Medicine. Written informed
consent for participation was not required for this study
in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

WX and QS wrote the manuscript and YS and ZD contributed
to the writing process. WX, PP, ZF, and QS analyzed and
interpreted the data and prepared the tables and figures. WC,
YS, and ZD acquired the data. QS additionally contributed to the
conception and the design of the study. All the co-authors read
and revised the article.

FUNDING

This study was supported by grants from the Zhejiang Provincial
Natural Science Foundation of China (LSY19H180009), the
Medical Health Science and Technology Project of Zhejiang
Provincial Health Commission (2019KY123 and 2018KY582),
and the Advance Funding for Clinical Scientific Research by the
Affiliated Hangzhou First People’s Hospital, Zhejiang University
School of Medicine (YYJJ2019Z06).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00491/full#supplementary-material

REFERENCES
Allotey, J., Fernandez-Felix, B. M., Zamora, J., Moss, N., Bagary, M., Kelso, A.,

et al. (2019). Predicting seizures in pregnant women with epilepsy: development
and external validation of a prognostic model. PLoS Med. 16:e1002802. doi:
10.1371/journal.pmed.1002802

Al-Nakshabandi, N. A. (2001). The swirl sign. Radiology 218:433. doi: 10.1148/
radiology.218.2.r01fe09433

Bi, W. L., Hosny, A., Schabath, M. B., Giger, M. L., Birkbak, N. J., Mehrtash, A.,
et al. (2019). Artificial intelligence in cancer imaging: clinical challenges and
applications. Cancer J. Clin. 69, 127–157. doi: 10.3322/caac.21552

Bi, X. A., Wang, Y., Shu, Q., Sun, Q., and Xu, Q. (2018). Classification of autism
spectrum disorder using random support vector machine cluster. Front. Genet.
9:18. doi: 10.3389/fgene.2018.00018

Boulouis, G., Morotti, A., Brouwers, H. B., Charidimou, A., Jessel, M. J.,
Auriel, E., et al. (2016a). Association between hypodensities detected by
computed tomography and hematoma expansion in patients with intracerebral
hemorrhage. JAMA Neurol. 73, 961–968. doi: 10.1001/jamaneurol.2016.
1218

Boulouis, G., Morotti, A., Brouwers, H. B., Charidimou, A., Jessel, M. J., Auriel,
E., et al. (2016b). Noncontrast computed tomography hypodensities predict
poor outcome in intracerebral hemorrhage patients. Stroke 47, 2511–2516. doi:
10.1161/STROKEAHA.116.014425

Boulouis, G., Morotti, A., Charidimou, A., Dowlatshahi, D., and Goldstein,
J. N. (2017). Noncontrast computed tomography markers of intracerebral
hemorrhage expansion. Stroke 48, 1120–1125. doi: 10.1161/STROKEAHA.116.
015062

Broderick, J. P., Diringer, M. N., Hill, M. D., Brun, N. C., Mayer, S. A., Steiner, T.,
et al. (2007). Determinants of intracerebral hemorrhage growth: an exploratory
analysis. Stroke 38, 1072–1075. doi: 10.1161/01.STR.0000258078.35316.30

Brott, T., Broderick, J., Kothari, R., Barsan, W., Tomsick, T., Sauerbeck, L., et al.
(1997). Early hemorrhage growth in patients with intracerebral hemorrhage.
Stroke 28, 1–5. doi: 10.1161/01.str.28.1.1

Caplan, L. R. (2016). Recognizing and preventing intracerebral hematoma
expansion. JAMA Neurol. 73, 914–915. doi: 10.1001/jamaneurol.2016.1899

Chen, S. W., Shen, W. C., Hsieh, T. C., Liang, J. A., Hung, Y. C., Yeh, L. S., et al.
(2018). Textural features of cervical cancers on FDG-PET/CT associate with
survival and local relapse in patients treated with definitive chemoradiotherapy.
Sci. Rep. 8:11859. doi: 10.1038/s41598-018-30336-6

Chen, Y., Hénon, H., Bombois, S., Pasquier, F., and Cordonnier, C. (2016).
Multiple simultaneous spontaneous intracerebral hemorrhages: a rare entity.
Cerebrovasc. Dis. 41, 74–79. doi: 10.1159/000442475

Connor, D., Huynh, T. J., Demchuk, A. M., Dowlatshahi, D., Gladstone, D. J.,
Subramaniapillai, S., et al. (2015). Swirls and spots: relationship between
qualitative and quantitative hematoma heterogeneity, hematoma expansion,
and the spot sign. Neurovasc. Imaging 1:8. doi: 10.1186/s40809-015-0010-1

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 491

https://www.frontiersin.org/articles/10.3389/fnins.2020.00491/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2020.00491/full#supplementary-material
https://doi.org/10.1371/journal.pmed.1002802
https://doi.org/10.1371/journal.pmed.1002802
https://doi.org/10.1148/radiology.218.2.r01fe09433
https://doi.org/10.1148/radiology.218.2.r01fe09433
https://doi.org/10.3322/caac.21552
https://doi.org/10.3389/fgene.2018.00018
https://doi.org/10.1001/jamaneurol.2016.1218
https://doi.org/10.1001/jamaneurol.2016.1218
https://doi.org/10.1161/STROKEAHA.116.014425
https://doi.org/10.1161/STROKEAHA.116.014425
https://doi.org/10.1161/STROKEAHA.116.015062
https://doi.org/10.1161/STROKEAHA.116.015062
https://doi.org/10.1161/01.STR.0000258078.35316.30
https://doi.org/10.1161/01.str.28.1.1
https://doi.org/10.1001/jamaneurol.2016.1899
https://doi.org/10.1038/s41598-018-30336-6
https://doi.org/10.1159/000442475
https://doi.org/10.1186/s40809-015-0010-1
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00491 June 2, 2020 Time: 20:39 # 10

Xu et al. Nomogram Model Predicts Hematoma Expansion

Davnall, F., Yip, C. S., Ljungqvist, G., Selmi, M., Ng, F., Sanghera, B., et al. (2012).
Assessment of tumor heterogeneity: an emerging imaging tool for clinical
practice? Insights Imaging 3, 573–589. doi: 10.1007/s13244-012-0196-6

Delcourt, C., Huang, Y., Arima, H., Chalmers, J., Davis, S. M., Heeley,
E. L., et al. (2012). Hematoma growth and outcomes in intracerebral
hemorrhage: the INTERACT1 study. Neurology 79, 314–319. doi: 10.1212/
WNL.0b013e318260cbba

Demchuk, A. M., Dowlatshahi, D., Rodriguez-Luna, D., Molina, C. A., Blas, Y. S.,
Dzialowski, I., et al. (2012). Prediction of haematoma growth and outcome in
patients with intracerebral haemorrhage using the CT-angiography spot sign
(PREDICT): a prospective observational study. Lancet Neurol. 11, 307–314.
doi: 10.1016/S1474-4422(12)70038-8

Dowlatshahi, D., Brouwers, H. B., Demchuk, A. M., Hill, M. D., Aviv, R. I.,
Ufholz, L. A., et al. (2016). Predicting intracerebral hemorrhage growth with
the spot sign: the effect of onset-to-scan time. Stroke 47, 695–700. doi: 10.1161/
STROKEAHA.115.012012

Fisher, C. M. (1971). Pathological observations in hypertensive cerebral
hemorrhage. J. Neuropathol. Exp. Neurol. 30, 536–550. doi: 10.1097/00005072-
197107000-00015

Ginsburg, S. B., Zhao, J., Humphries, S., Jou, S., Yagihashi, K., Lynch, D. A.,
et al. (2016). Texture-based quantification of centrilobular emphysema
and centrilobular nodularity in longitudinal ct scans of current and
former smokers. Acad. Radiol. 23, 1349–1358. doi: 10.1016/j.acra.2016.
06.002

Heit, J. J., Iv, M., and Wintermark, M. (2017). Imaging of Intracranial Hemorrhage.
J. Stroke 19, 11–27. doi: 10.5853/jos.2016.00563

Hemphill, J. C., Bonovich, D. C., Besmertis, L., Manley, G. T., and Johnston,
S. C. (2001). The ICH score: a simple, reliable grading scale for intracerebral
hemorrhage. Stroke 32, 891–897. doi: 10.1161/01.str.32.4.891

Hemphill, J. C., Greenberg, S. M., Anderson, C. S., Becker, K., Bendok, B. R.,
Cushman, M., et al. (2015). Guidelines for the management of spontaneous
intracerebral hemorrhage: a guideline for healthcare professionals from the
American Heart Association/American stroke association. Stroke 46, 2032–
2060. doi: 10.1161/STR.0000000000000069

Huang, Y. Q., Liang, C. H., He, L., Tian, J., Liang, C. S., Chen, X., et al.
(2016). Development and validation of a radiomics nomogram for preoperative
prediction of lymph node metastasis in colorectal cancer. J. Clin. Oncol. Off. J.
Am. Soc. Clin. Oncol. 34, 2157–2164. doi: 10.1200/jco.2015.65.9128

Khalaf, M. H., Sundaram, V., AbdelRazek Mohammed, M. A., Shah, R., Khosla, A.,
Jackson, K., et al. (2019). A predictive model for postembolization syndrome
after transarterial hepatic chemoembolization of hepatocellular carcinoma.
Radiology 290, 254–261. doi: 10.1148/radiol.2018180257

Kotze, C. W., Rudd, J. H., Ganeshan, B., Menezes, L. J., Brookes, J., Agu, O., et al.
(2014). CT signal heterogeneity of abdominal aortic aneurysm as a possible
predictive biomarker for expansion. Atherosclerosis 233, 510–517. doi: 10.1016/
j.atherosclerosis.2014.01.001

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G.,
Granton, P., et al. (2012). Radiomics: extracting more information from medical
images using advanced feature analysis. Eur. J. Cancer 48, 441–446. doi: 10.
1016/j.ejca.2011.11.036

Li, Q., Liu, Q. J., Yang, W. S., Wang, X. C., Zhao, L. B., Xiong, X., et al. (2017).
Island Sign: an imaging predictor for early hematoma expansion and poor
outcome in patients with intracerebral hemorrhage. Stroke 48, 3019–3025. doi:
10.1161/STROKEAHA.117.017985

Li, Q., Zhang, G., Huang, Y. J., Dong, M. X., Lv, F. J., Wei, X., et al. (2015). Blend
sign on computed tomography: novel and reliable predictor for early hematoma
growth in patients with intracerebral hemorrhage. Stroke 46, 2119–2123. doi:
10.1161/STROKEAHA.115.009185

Li, Q., Zhang, G., Xiong, X., Wang, X. C., Yang, W. S., Li, K. W., et al.
(2016). Black hole sign: novel imaging marker that predicts hematoma
growth in patients with intracerebral hemorrhage. Stroke 47, 1777–1781. doi:
10.1161/STROKEAHA.116.01318

Lubner, M. G., Malecki, K., Kloke, J., Ganeshan, B., and Pickhardt, P. J.
(2017a). Texture analysis of the liver at MDCT for assessing hepatic
fibrosis. Abdom. Radiol. 42, 2069–2078. doi: 10.1007/s00261-017-
1096-5

Lubner, M. G., Smith, A. D., Sandrasegaran, K., Sahani, D. V., and Pickhardt,
P. J. C. T. (2017b). Texture analysis: definitions, applications, biologic
correlates, and challenges. Radiogr. Revi. Publ. Radiol. Soc. North Am. 37,
1483–1503. doi: 10.1148/rg.2017170056

Morotti, A., Boulouis, G., Dowlatshahi, D., Li, Q., Barras, C. D., Delcourt, C.,
et al. (2019). Standards for detecting, interpreting, and reporting noncontrast
computed tomographic markers of intracerebral hemorrhage expansion. Ann.
Neurol. 86, 480–492. doi: 10.1002/ana.25563

Morotti, A., Boulouis, G., Romero, J. M., Brouwers, H. B., Jessel, M. J., Vashkevich,
A., et al. (2017). ATACH-II and NETT investigators. Blood pressure reduction
and noncontrast CT markers of intracerebral hemorrhage expansion. Neurology
89, 548–554. doi: 10.1212/WNL.0000000000004210

Ohwaki, K., Yano, E., Nagashima, H., Hirata, M., Nakagomi, T., and Tamura,
A. (2004). Blood pressure management in acute intracerebral hemorrhage:
relationship between elevated blood pressure and hematoma enlargement.
Stroke 35, 1364–1367. doi: 10.1161/01.STR.0000128795.38283.4b

Park, B. K., Kwak, H. S., Chung, G. H., and Hwang, S. B. (2019). Diagnostic value
of swirl sign on noncontrast computed tomography and spot sign on computed
tomographic angiography to predict intracranial hemorrhage expansion. Clin.
Neurol. Neurosurg. 182, 130–135. doi: 10.1016/j.clineuro.2019.05.013

Romeo, V., Maurea, S., Cuocolo, R., Petretta, M., Mainenti, P. P., Verde, F., et al.
(2018). Characterization of adrenal lesions on unenhanced mri using texture
analysis: a machine-learning approach. J. Mag. Resonance Imaging 48, 198–204.
doi: 10.1002/jmri.25954

Rui, W., Ren, Y., Wang, Y., Gao, X., Xu, X., and Yao, Z. (2018). MR textural
analysis on T2 FLAIR images for the prediction of true oligodendroglioma by
the 2016 WHO genetic classification. J. Mag. Resonance Imaging 48, 74–83.
doi: 10.1002/jmri.25896

Shen, Q., Shan, Y., Hu, Z., Chen, W., Yang, B., Han, J., et al. (2018). Quantitative
parameters of CT texture analysis as potential markersfor early prediction of
spontaneous intracranial hemorrhage enlargement. Eur. Radiol. 28, 4389–4396.
doi: 10.1007/s00330-018-5364-8

Shimoda, Y., Ohtomo, S., Arai, H., Okada, K., and Tominaga, T. (2017). satellite
sign: a poor outcome predictor in intracerebral hemorrhage. Cerebrovasc. Dis.
44, 105–112. doi: 10.1159/000477179

Sporns, P. B., Kemmling, A., Schwake, M., Minnerup, J., Nawabi, J., Broocks,
G., et al. (2018). Triage of 5 noncontrast computed tomography markers and
spot sign for outcome prediction after intracerebral hemorrhage. Stroke 49,
2317–2322. doi: 10.1161/STROKEAHA.118.021625

van Asch, C. J., Luitse, M. J., Rinkel, G. J., van der Tweel, I., Algra, A., and Klijn,
C. J. (2010). Incidence, case fatality, and functional outcome of intracerebral
haemorrhage over time, according to age, sex, and ethnic origin: a systematic
review and meta-analysis. Lancet Neurol. 9, 167–176. doi: 10.1016/S1474-
4422(09)70340-0

Wei, J. H., Feng, Z. H., Cao, Y., Zhang, H. W., Chen, Z. H., Liao, B., et al. (2019).
Predictive value of single-nucleotide polymorphism signature for recurrence
in localised renal cell carcinoma: a retrospective analysis and multicentre
validation study. Lancet Oncol. 20, 591–600. doi: 10.1016/s1470-2045(18)
30932-x

Xie, H., Ma, S., Wang, X., and Zhang, X. (2020). Noncontrast computer
tomography-based radiomics model for predicting intracerebral hemorrhage
expansion: preliminary findings and comparison with conventional radiological
model. Eur. Radiol. 30, 87–98. doi: 10.1007/s00330-019-06378-3

Yu, Z., Zheng, J., Ali, H., Guo, R., Li, M., Wang, X., et al. (2017). Significance of
satellite sign and spot sign in predicting hematoma expansion in spontaneous
intracerebral hemorrhage. Clin. Neurol. Neurosurg. 162, 67–71. doi: 10.1016/j.
clineuro.2017.09.008

Zavecz, Z., Nagy, T., Galkó, A., Nemeth, D., and Janacsek, K. (2020). The
relationship between subjective sleep quality and cognitive performance in
healthy young adults: Evidence from three empirical studies. Sci. Rep. 10:4855.
doi: 10.1038/s41598-020-61627-6

Conflict of Interest: PP was employed by company GE Healthcare (China).

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Xu, Ding, Shan, Chen, Feng, Pang and Shen. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 491

https://doi.org/10.1007/s13244-012-0196-6
https://doi.org/10.1212/WNL.0b013e318260cbba
https://doi.org/10.1212/WNL.0b013e318260cbba
https://doi.org/10.1016/S1474-4422(12)70038-8
https://doi.org/10.1161/STROKEAHA.115.012012
https://doi.org/10.1161/STROKEAHA.115.012012
https://doi.org/10.1097/00005072-197107000-00015
https://doi.org/10.1097/00005072-197107000-00015
https://doi.org/10.1016/j.acra.2016.06.002
https://doi.org/10.1016/j.acra.2016.06.002
https://doi.org/10.5853/jos.2016.00563
https://doi.org/10.1161/01.str.32.4.891
https://doi.org/10.1161/STR.0000000000000069
https://doi.org/10.1200/jco.2015.65.9128
https://doi.org/10.1148/radiol.2018180257
https://doi.org/10.1016/j.atherosclerosis.2014.01.001
https://doi.org/10.1016/j.atherosclerosis.2014.01.001
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1161/STROKEAHA.117.017985
https://doi.org/10.1161/STROKEAHA.117.017985
https://doi.org/10.1161/STROKEAHA.115.009185
https://doi.org/10.1161/STROKEAHA.115.009185
https://doi.org/10.1161/STROKEAHA.116.01318
https://doi.org/10.1161/STROKEAHA.116.01318
https://doi.org/10.1007/s00261-017-1096-5
https://doi.org/10.1007/s00261-017-1096-5
https://doi.org/10.1148/rg.2017170056
https://doi.org/10.1002/ana.25563
https://doi.org/10.1212/WNL.0000000000004210
https://doi.org/10.1161/01.STR.0000128795.38283.4b
https://doi.org/10.1016/j.clineuro.2019.05.013
https://doi.org/10.1002/jmri.25954
https://doi.org/10.1002/jmri.25896
https://doi.org/10.1007/s00330-018-5364-8
https://doi.org/10.1159/000477179
https://doi.org/10.1161/STROKEAHA.118.021625
https://doi.org/10.1016/S1474-4422(09)70340-0
https://doi.org/10.1016/S1474-4422(09)70340-0
https://doi.org/10.1016/s1470-2045(18)30932-x
https://doi.org/10.1016/s1470-2045(18)30932-x
https://doi.org/10.1007/s00330-019-06378-3
https://doi.org/10.1016/j.clineuro.2017.09.008
https://doi.org/10.1016/j.clineuro.2017.09.008
https://doi.org/10.1038/s41598-020-61627-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	A Nomogram Model of Radiomics and Satellite Sign Number as Imaging Predictor for Intracranial Hematoma Expansion
	Introduction
	Materials and Methods
	Patients
	CT Examination, ROI Segmentation, and Imaging Evaluation
	Feature Extraction and Selection
	Radiomics Nomogram Building,*-1pt Calibration, and External Validation*-1pt
	Statistical Analysis

	Results
	Patients Characteristics
	Reproducibility Analysis
	Radscore and Nomogram Building
	Performance on the External Validation Cohort

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


