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The adaptation of the lungs to air breathing at birth requires the fine orchestration of different processes to con-
trol lungmorphogenesis and progenitor cell differentiation. However, there is little understanding of the role that
epigeneticmodifiers play in the control of lung development.We found that the histonemethyl transferase Ezh2
plays a critical role in lung lineage specification and survival at birth. We performed a genome-wide tran-
scriptome study combined with a genome-wide analysis of the distribution of H3K27 tri-methylation marks to
interrogate the role of Ezh2 in lung epithelial cells. Lung cells isolated from Ezh2-deficient and control mice at
embryonic day E16.5 were sorted into epithelial and mesenchymal populations based on EpCAM expression.
This enabled us to dissect the transcriptional and epigenetic changes induced by the loss of Ezh2 specifically in
the lung epithelium. Here we provide a detailed description of the analysis of the RNA-seq and ChIP-seq data, in-
cluding quality control, readmapping, differential expression and differential binding analyses, as well as visual-
isation methods used to present the data. These data can be accessed from the Gene Expression Omnibus
database (super-series accession number GSE57393).

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Specifications
rganism/cell line/tissue
 Mus musculus, C57BL/6J strain carrying transgenic Ezh2
and Shh alleles
ex
 Mixed gender

equencer or array type
C

RNA-seq: Libraries were prepared with the Illumina
TruSeq Total Stranded RNA kit with Ribo-Zero and
sequenced on HiSeq 2000 with TruSeq SBS Kit v3 — HS
reagents (Illumina) as 100 bp single end reads.
ChIP-seq: Libraries were prepared with the Illumina
TruSeq Nano kit and sequenced on HiSeq 2500 with
TruSeq Rapid SBS Kit — HS reagents as 100 bp single
end reads.
ata format
 Raw (fastq) and analysed

xperimental factors
 RNA-seq: RNA was obtained from epithelial and

mesenchymal cell populations from control and Ezh2
deficient lungs.
ChIP-seq: H3K27me3 ChIP was performed on
epithelial cells from control and Ezh2-deficient lungs.
xperimental features
 Epithelial and mesenchymal cell populations
were derived from the lungs of Ezh2-deficient and
r Division, TheWalter and Eliza
, Australia.
), labat@wehi.edu.au

. This is an open access article under th
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Specifications
e CC BY-NC-ND license (ht
control mouse embryos at day E16.5. Both cell
populations were profiled for gene expression
(Total RNA-seq). Epithelial cells were additionally
subjected to genome-wide analysis of H3K27
tri-methylation (ChIP-seq).
onsent
 All animal experiments were carried out in accordance
with the Walter and Eliza Hall Institute of Medical
Research Animal Ethics Committee guidelines
(AEC 2010.017).
mple source location
 Melbourne, Australia
Sa
1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57393.

2. Experimental design, materials and methods

2.1. Mouse strains

Shh-cremice expressing cre recombinase under the control of Sonic
Hedgehog (Shh) promoter [1] were purchased from the Jackson Labora-
tory. Mice bearing a loxP-targeted Ezh2 allele (Ezh2fl) were obtained
tp://creativecommons.org/licenses/by-nc-nd/4.0/).
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from Prof Tarakhovsky at Rockfeller University, NY [2]. Animals were
genotyped as described in the respective publications. All animal exper-
imentswere carried out in accordancewith theWalter and ElizaHall In-
stitute of Medical Research Animal Ethics Committee guidelines (AEC
2010.017).

We generated Shh-cre;Ezh2fl/fl mice, in which the catalytic SET do-
main of Ezh2 is excised from day E9.5 in the epithelium of the lung
primordia. Since the cre transgene is knocked into the Shh locus, effec-
tively rendering Shh-cre animals heterozygous for the Shh allele, we
used Shh-cre;Ezh2fl/+ animals as controls.

2.2. RNA-seq: sample preparation and sequencing

Lungs from Shh-cre;Ezh2fl/fl and control embryos were harvested at
day E16.5 and separated into epithelial (EpCAM+) and mesenchymal
(EpCAM−) cell populations as described previously [3]. If necessary,
EpCAM+ cells were pooled from several embryos of the same genotype
to obtain a minimum of 105 cells. Each genotype/cell type combination
had 3 biological replicates. Total RNAwas extracted with the Total RNA
Purification Kit (Norgen) according to manufacturer instructions. RNA
integrity was assayed on the Tapestation machine (Agilent) using R6K
screentape.

RNA-seq libraries were prepared from 150 ng of total RNA using the
TruSeq Stranded Total RNA kit with Ribo-Zero (Illumina) according to
the kit guidelines. Libraries were quantified using Tapestation (Agilent)
to estimate the average fragment size and Broad Range Qubit reagent
(Life Technologies) to accurately estimate library concentration.Quanti-
fied libraries were pooled at equimolar concentrations and sequenced
as 100 bp single-end reads on a HiSeq 2000 machine with TruSeq SBS
Kit v3 — HS reagents (Illumina) at the Australian Genome Research Fa-
cility (AGRF).

2.3. ChIP-seq: sample preparation and sequencing

EpCAM+ lung cells from Shh-cre;Ezh2fl/fl and control embryos were
collected as described above for the RNA-seq experiment. Chromatin
immunoprecipitation using the H3K27me3 antibody (Millipore #07-
449) was carried out, as described previously (see Supplementary ma-
terials in Galvis et al. [3] for a detailed description of the procedure).
DNA concentration was quantified using Broad Range Qubit reagent
(Life Technologies). 20–30 ng of immunoprecipitated DNA from each
of the samples (two biological replicates for each genotype) was sub-
jected to NGS library preparation using the TruSeq Nano DNA Sample
Preparation Kit (Illumina) according to the kitmanual.Wemade the fol-
lowing amendments to the library preparation protocol: fragmentation
and size selection steps were omitted, such that we started the protocol
from the end-repair step, proceeding directly to the 3′-adenylation step.
Additionally, 2 extra amplification cycles were included during the frag-
ment enrichment step (10 amplification cycles in total) to compensate
RNA-seq quality scoresA B

position in read (bp)

Fig. 1. Distribution of base-calling Phred scores at different base positions across all the reads in
sents 25% and 75% quantiles of the scores with median score marked by the red line. Whiskers
for reduced input amount of immunoprecipitated samples (~1/4 of
the recommended amount). Resulting libraries were size selected
using the Pippin Prep DNA Size Selection System (1.5% cassette, Sage
Science) to ensure that fragment sizes were below 900 bp. Libraries
were quantified as described above for RNA-seq, pooled at equimolar
concentrations and sequenced as 100 bp single end reads on a HiSeq
2500 machine using TruSeq Rapid SBS Kit — HS reagents (Illumina)
at the AGRF.

2.4. Sequencing quality

Quality control of sequencing output was carried out using the
FastQC software [4]. Fig. 1 displays the distribution of sequencing
quality (Phred) scores at each base position across all reads in a
representative RNA-seq (Fig. 1A) and ChIP-seq (Fig. 1B) library.
Although the median sequencing quality is reduced towards the 3′-
end of the read, the majority of sequencing scores are above 30
across the length of the read, corresponding to a probability of an in-
correct base call below 0.001. A similar pattern of sequencing quality
scores was observed across all libraries, in both the RNA-seq and
ChIP-seq experiments.

2.5. Read mapping and summarisation

Reads from both experiments (RNA-seq and ChIP-seq) were
mapped to the mm10 build of the mouse reference genome using
the Rsubread aligner (version 1.13.25) [5] with default settings. No-
tably, only unique reads were retained and the Hamming distance
was used to break the ties for the reads with more than one best
mapping location. Resulting BAM files were sorted and indexed
using the SAMtools software suite [6].

Mapped RNA-seq reads were summarised at the gene level accord-
ing to the NCBI RefSeq annotation (mm10 genome assembly) in a
strand-specific manner. Read summarisation was performed using
featureCounts [7] function in the Rsubread package with default set-
tings, except with the strandSpecific option set to 2 (reversely stranded).

In the RNA-seq experiment, the number of reads per sample ranged
from 26 to 35 million. On average, 84% of all reads mapped to the ref-
erence genome (range 80–89%) and 58% of all reads mapped to
known genomic features (range 56–61%). For the ChIP-seq experi-
ment, the number of reads per sample ranged from 21 to 27 million,
with an average mapping rate of 84%. The mapping rate was slightly
lower for Ezh2-deficient samples compared to control samples (82%
and 86% respectively).

2.6. RNA-seq analysis

In order to avoid excessive variability associatedwith lowly expressed
genes,we removed genes that failed to achieve a count permillion (CPM)
ChIP-seq quality scores

position in read (bp)

representative libraries from RNA-seq (A) and ChIP-seq (B) experiments. The box repre-
demarcate 10% and 90% quantiles. Blue line represents mean quality score.
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above 0.5 in at least 3 libraries. To further limit the analysis space, we also
removed predicted and pseudo-genes, genes without annotation and
genes that mapped to the Y or mitochondrial chromosomes, leaving
14,831 genes available for the differential expression analysis. Normalisa-
tion factors for library sizes were calculated using the trimmed mean of
M-values (TMM) method [8] from the edgeR package (version 3.10.2)
[9]. A multi-dimensional scaling plot of normalised samples revealed
strong clustering according to genotype and tissue of origin, as well as
good reproducibility among biological replicates (Fig. 2A).

We used the voommethod [10] to transform the count data and de-
rive observational-level weights. These were used to fit gene-wise line-
ar models, followed by differential expression tests using empirical
Bayesmoderated t-statistics [11]. Fig. 2B illustrates the general relation-
ship between gene expression levels and their variability. The plot
shows a characteristic trend of decrease in variancewith increase in av-
erage expression. Notably, there is no drop in variance at the low end of
the mean expression values suggesting that we have successfully fil-
tered out lowly expressed genes.

A conventional approach in differential expression analyses is to test
for any differential expression (i.e. the null hypothesis tested is that
there is no change in gene expression) and combine the resulting false
discovery rate (FDR) with an arbitrary fold-change cut-off in order to
limit the findings to a ‘biologically relevant’ subset of genes. This ap-
proach, however, fails to properly control the type I error rate [12]. In
order to avoid this problem, we used the TREAT function [12] from the
limma package [13] to formally test if the expression changewas great-
er than a biologically relevant threshold (in this case, 1.2-fold).We con-
trolled the false discovery rate (FDR) at 5% by applying the Benjamini–
Hochberg method [14] across the TREAT p-values.

Comparison between the epithelial cells from Ezh2-deficient and
control epithelium yielded 1623 differentially expressed genes, 1150
dimension 1
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Fig. 2. RNA-seq analysis. A. Unsupervised clustering of filtered and normalised libraries bymult
cell type. Distances on the plot correspond to the mean log2 fold-change for the top 500 genes t
ship in the count data estimated from biological replicates. C–D. Volcano plot representation o
blue points mark the genes with significantly increased and reduced expression respectively in
expression and the y axis gives log odds of significance p values.
of which were up-regulated and 473 down-regulated (Fig. 2C). Al-
though Ezh2 deletion in Shh-cre;Ezh2fl/fl lungs is confined to epithelial
cells, we also detected a small number of differentially expressed
genes in the mesenchymal cell population with 5 genes increasing and
6 genes decreasing in expression (Fig. 2D). That number increased to
43 and 93 up- and down-regulated genes respectively, if we tested for
any changes in expression (i.e. the gene expression fold change is signif-
icantly different from 1).

2.7. ChIP-seq analysis

To perform a differential binding analysis of H3K27 tri-methylation
between control and Ezh2-deficient lung epithelium we used the csaw
package [15]. We counted reads from each immunoprecipitated sample
into adjoining 2 kb bins spanning the entire genome. Reads mapped to
genomic regions marked as repeat sequences by RepeatMasker [16]
from the UCSC server (http://hgdownload.cse.ucsc.edu/goldenPath/
mm10/bigZips/chromOut.tar.gz) were excluded. To remove low-
abundance bins corresponding to putative regions of non-specific bind-
ing, we calculated the average log-count per million (logCPM) for each
bin across all samples using the aveLogCPM function in the edgeR pack-
age. We excluded low-abundance bins with an average logCPM below
0.5, yielding 157,664 bins for further analysis.

In order to correct for potential composition bias, we counted the
reads into contiguous 10 kb bins for each library and used these counts
to compute normalisation factors with the TMMmethod [8]. These fac-
tors, in turn, were used to calculate effective library sizes for the subse-
quent analysis with the 2 kb bins. Fig. 3A contains log2 fold-change
(logFC) versus average abundance plots between one of the control li-
braries and every other library prior to normalisation, as well as the
log-ratio of normalisation factors between each pair of libraries (red
B

0 5 10 15

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

−2 0 2 4

−
5

0
5

10

Up−regulated genes
Down−regulated genes

D

sq
rt

 (
st

an
da

rd
 d

ev
ia

tio
n)

log2 (count size + 0.5)

log fold change

lo
g2

 o
dd

s

i-dimensional scaling revealed a strong segregation of samples according to genotype and
hat discriminate each pair of samples. B. Scatterplot representing mean-variance relation-
f differential expression analysis of epithelial (C) and mesenchymal (D) samples. Red and
Ezh2-deficient lungs compared to control samples. The x axis shows log2 fold-change in
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line). A multidimensional scaling plot using filtered and normalised bin
counts revealed a strong separation between the genotypes, as well as
good clustering of the control libraries, while the Ezh2-deficient librar-
ies were less consistent (Fig. 3B).

To detect the 2 kb bins thatwere differentiallymarked between con-
trol and Ezh2-deficient epithelium, we used the quasi-likelihood (QL)
negative binomial framework [17] in the edgeR package [9]. Briefly,
we first estimated an abundance-dependent trend in the negative bino-
mial (NB) dispersions across all bins [18]. Using the trended NB disper-
sion, we fitted a generalised linear model (GLM) to the counts for each
bin. The log-effective library sizes were used as offsets during GLM
fitting. We estimated the QL dispersion for each bin from the GLMdevi-
ance, and fit an abundance-dependent trend to these estimates across
all bins [17].We then shrunk the QL dispersion estimate for each bin to-
wards the trend, using a robust empirical Bayes strategy. Finally, a p-
value was computed for each bin using the QL F-test.

To summarise the bins at the promoter level, we identified sets of
bins overlapping NCBI RefSeq gene promoters, defined as the 6 kb re-
gion centred around each transcription start site (TSS). We limited the
promoters to those genes that were present in our filtered RNA-seq
dataset, resulting in 14,847 promoters. We then computed a combined
p-value for each promoter from the p-values of all overlapping bins
using Simes' method [19]. We applied the Benjamini–Hochberg correc-
tion method [14] to control the FDR across promoters at 5%. The logFC
for each promoter was defined as the logFC of the bin with the lowest
p-value. We then defined differentially marked promoters as those
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that had FDR b 0.05 and a positive logFC. Using this definition, we iden-
tified 1214 genes with promoters that were significantly enriched for
H3K27 tri-methylation in control epithelium compared to the Ezh2-
deficient samples (Fig. 3C). We obtained similar results when aggregat-
ing the bins over the gene bodies (defined as a region including 3 kb up-
stream of TSS and the rest of the gene).

In order to assess how the loss of Ezh2 affected the expression of
genes marked with H3K27me3, we performed a gene set test using
the ROAST method [20] from the limma package with genes differen-
tially marked by H3K27me3 as the target gene set. Consistent with the
repressive role of H3K27 tri-methylation, these geneswere significantly
over-represented among the genes up-regulated in the Ezh2-deficient
epithelium (p value — 0.003).

2.8. ChIP-seq visualisation

Reads from a genomic locus of interest were extracted from indi-
vidual BAM files and read coverage at each position was calculated
using the GenomicAlignments package [21]. To account for differ-
ences in library sizes, we divided the coverage in each library by
the corresponding effective library sizes converting the coverage
into counts per 10 million reads. Mean group coverage was then cal-
culated by averaging coverage from the samples of the same geno-
type. Normalised read coverage for control and Ezh2-deficient
samples was visualised using the Gviz package (version 1.12.1)
[22]. Given the broad nature of peaks from the H3K27me3 mark,
read coverage was plotted with a 1 kb smoothing window. Fig. 3D
displays mean read coverage for the known Ezh2 target gene, Cdx2,
as well as a Col1a2 gene constitutively expressed in lung epithelium.
For Cdx2 the strong H3K27 tri-methylation signal seen in the control
epithelium is largely lost in the Ezh2-deficient sample. At the same
time, there was no change in signal over the promoter of Col1a2, con-
sistent with its active expression.

3. Discussion

In this report we provide a detailed description of the bioinformatics
analysis that we carried out on the original transcriptome and H3K27
tri-methylation data from Ezh2-deficient lung epithelium [3]. One of
the notable features of that study is separation of the embryonic lung
tissue into cell populations enriched for either epithelial or mesenchy-
mal cells, based on the expression of the epithelial surface marker
EpCAM. The use of purified cell populations for RNA-seq profiling en-
abled us to detect gene expression changes specific to the tissue
targeted for Ezh2 deletion (epithelium). It also improved our ability to
detect expression changes that would have been otherwise obscured
by the expression patterns in the mesenchymal cell population. For ex-
ample, one of themost interestingfindings of the original reportwas in-
creased expression of Igf1 in the epithelium of Ezh2-deficient lung, a
gene highly expressed in the wild-type lung mesenchyme. This expres-
sion pattern is a likely reason why the increase in Igf1 expression was
overlooked in a similar study using RNA extracted from the whole
lung of Ezh2-deficient embryos [23].

We extended the use of purified cell populations to our ChIP-seq
analysis, providing a map of H3K27 tri-methylation specific to lung ep-
ithelium.We employed a relatively little-used approach in our ChIP-seq
experimental design, by comparing immunoprecipitated DNA from
wild type cells and cells derived from a sample where H3K27me3
marks have been depleted through genetic targeting of Ezh2, the his-
tone methyl-transferase largely responsible for the deposition of tri-
methylation marks on H3K27. We feel that this is an improvement on
amore conventional design,where immunoprecipitated sample is com-
pared to either a sample immunoprecipitated with a non-specific anti-
body (IgG control) or to a whole cell extract (input) sample. The
“input” approach does not capture the potentially crucial biases intro-
duced by the immunoprecipitation step. While these technical biases
are addressed by the “IgG control” approach, it presents a substantial
challenge for library preparation and sequencing due to the limited
amount of material that can be immunoprecipitated. The additional
benefit of the differential binding approach we employed is that it al-
lows for the detection of more relevant genomic regions, where the
level of epigenetic mark changes upon the loss of an epigenetic media-
tor. In this case, the use of immunoprecipitated sample from Ezh2-
deficient lung epithelium enabled us to distinguish the genes that lost
H3K27 tri-methylation from the loci where the mark remained unaf-
fected by the loss of Ezh2, leading to a more biologically relevant inter-
pretation of the gene expression data.

We also used a novel, window-basedmethod to analyse the ChIP-
seq data, which enabled us to detect differentially bound regions
without relying on peak calling or limiting the analysis to pre-
defined genomic regions, such as promoters or gene bodies. For inte-
gration with gene expression analysis, we summarised the windows
(or bins) at the promoter level. This approach is superior to simply
counting the reads across the entire promoter region, which
may fail to detect differential marking if it only occurs in a fraction
of the promoter. This is especially important for H3K27 tri-
methylation, which is less confined to the promoter regions com-
pared, for example, to H3K4me3 or H3K9ac marks.

While repeating some of our analyses during preparation of this
manuscript, we noted some differences with the results in the original
publication due to minor changes in the latest versions of the underlying
software. In particular, in this report we detected two extra differentially
expressed genes in the RNA-seq analysis of Ezh2-deficient epithelium. To
ensure reproducibility of this analysis, we provide the script used to
perform all steps described in this report. The script is provided within
an R project with version control enabled by packrat [24], a dependency
management system for R to ensure that appropriate versions of software
packages are available to anybodywishing to reproduce our analysis. The
scripts and versions of R packages used in the analysis are available
from http://bioinf.wehi.edu.au/folders/ezh2lung/. The most up-to-date
versions of R (3.2.1) [25] and Bioconductor (version 3.1) [26] available
at the time of writing were used for the analysis. The only exception to
that rule is read alignment and summarisation, which were carried out
using an earlier version of Rsubread (1.13.25).
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