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A B S T R A C T   

Coronaviruses, including the recent pandemic strain SARS-Cov-2, use a multifunctional 2′-O-methyltransferase 
(2′-O-MTase) to restrict the host defense mechanism and to methylate RNA. The nonstructural protein 16 2′-O- 
MTase (nsp16) becomes active when nonstructural protein 10 (nsp10) and nsp16 interact. Novel peptide drugs 
have shown promise in the treatment of numerous diseases and new research has established that nsp10 derived 
peptides can disrupt viral methyltransferase activity via interaction of nsp16. This study had the goal of opti-
mizing new analogous nsp10 peptides that have the ability to bind nsp16 with equal to or higher affinity than 
those naturally occurring. The following research demonstrates that in silico molecular simulations can shed 
light on peptide structures and predict the potential of new peptides to interrupt methyltransferase activity via 
the nsp10/nsp16 interface. The simulations suggest that misalignments at residues F68, H80, I81, D94, and Y96 
or rotation at H80 abrogate MTase function. We develop a new set of peptides based on conserved regions of the 
nsp10 protein in the Coronaviridae species and test these to known MTase variant values. This results in the 
prediction that the H80R variant is a solid new candidate for potential new testing. We envision that this new 
lead is the beginning of a reputable foundation of a new computational method that combats coronaviruses and 
that is beneficial for new peptide drug development.   

1. Introduction 

Coronaviruses and other RNA viruses have developed a methyl-
transferase that promotes viral replication via two main approaches. The 
first, a self-methylation of the viral RNA is required for viral replication 
as it disguises the viral RNA to appear as the eukaryotic host RNA [1]. 
Second, the viral methyltransferases stifle the host-resistance reaction 
by restraining host interferon creation [2]. SARS (SARS-CoV), Covid-19 
(SARS-CoV-2), and other coronavirus analogs have developed two 
methyltransferases, nsp14 and nsp16, which both require an association 
with nsp10 to activate [3]. Previous studies have shown that there is 
similarity of the structures of nsp10/nsp14 and nsp10/nsp16 complexes 
and in their binding interface [4,5]. 

There have been numerous efforts to find ways to disrupt SARS-CoV- 
2 MT activity using small molecules [6–9]. Other SARS-CoV studies have 
shown that synthetic peptides can interfere in the binding of nsp10 to 
nsp14 or to nsp16 and can diminish or modulate viral replication 

[10–14]. In these studies, the investigators uncovered several amino 
acid sequences of small peptides that bind the methyltransferase and 
upset the oligomerization of nsp10 to nsp14 or to nsp16. Past muta-
genesis studies have shown that there is a commonality in some of the 
amino acids of nsp10 that associate with nsp14 and nsp16 [15,16]. 
Moreover, recent findings have shown that some compounds are able to 
interact with the viral nsp10/nsp16 methyltransferase without affecting 
human methyltransferases [17]. While these investigations used 
SARS-CoV, they ought to be similarly appropriate for SARS-CoV-2 as 
nsp10, nsp14, and nsp16 all have a prominent level of homology be-
tween the two viruses. The idea of utilizing a medication to obstruct the 
connection of two viral proteins in SARS-CoV-2 has been demonstrated 
successfully by the antiviral Remdesivir, which inhibits the relationship 
of nsp7 and nsp12 [3]. 

Peptide drugs have demonstrated effectiveness in many diseases, 
with more than 60 affirmed and more than 150 in active progress [18, 
19]. Peptide drugs offer advantages over small molecule drugs and 
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biologics. Small molecule drugs can have many complications and 
adverse events as their small size permits them to react with many un-
specified targets [20]. Biologics can be massive particles, and while 
more specific than small molecules, these proteins have issues like low 
bioavailability, penetrability issues, and metabolic unpredictability. 
Peptide drugs fall between these two limits and can circumvent these 
difficulties [20]. 

Antimicrobial peptides (AMP) are one of the first pathways that are 
upregulated when a host is invaded by microbes. There are numerous 
AMP classes found in nature that show antimicrobial effects and they 
have been widely studied, defensins and the human cathelicidin LL-37 
have been some of the most studied [21]. AMPs are usually cationic 
and amphiphilic α-helical peptide molecules, and the mechanism of 
action for protection is generally thought to be that the cationic prop-
erties of AMPs attract and interact with negatively charged microbial 
cells [22]. Recently it has been found that AMPs can be used for antiviral 
applications and research and that AMPs with antiviral activity are 
called antiviral peptides (AVPs) [23]. Initial development for AVP 
mining research began by using insects because they are rich in AMPs 
and exist almost everywhere terrestrial [23]. 

Natural products that already occur in bacteria, viruses, plants and 
animals have already been successful in the development of new peptide 
discoveries for disease treatments [24]. Nature has implemented most of 
the engineering that elucidates a foundational molecule to serve as a 
design template. These underpinning compounds are consequently 
modified to attempt to development a different product with higher 
selectivity, potency, or stability, to be used for therapeutic advance-
ments [25]. More often than not, it is difficult for drug developers to 
distinguish which modifications will lead to the desired end result, 
leading to unproductive and costly in vitro or in vivo animal work [26]. 
However, with the advent of novel, highly accurate computational 
simulations, many proposed new molecules can be assessed using 
physics-based methods much more easily. 

Machine learning has been applied to features from molecular sim-
ulations previously with different goals and relative success [27]. 
Experimental quantities such as binding affinities are predicted using 

structural and thermodynamics features. For example, Agrihari and 
co-workers have PCA to a feature set including phenotype prediction 
software and other measures from molecular simulations coupled to 
PCA to make qualitative predictions on severity of phenotype [28]. 
Sinha and Wang created a feature set including RMSD (Root-mean-s-
quare-deviation), RMSF (Root-mean-square-fluctuations), Rg (Radius of 
gyration), SASA (Solvent accessible surface area), NH bond (hydrogen 
bond) and Covariance analysis calculated from molecular dynamics 
simulations for machine learning prediction on whether unclassified 
variants of the BRCA 1 gene were cancerous or non-cancerous [29]. 
Gebhard and co-workers predicted solvation energies using machine 
learning applied to a feature set consisting of intermolecular and 
intramolecular energies, Lenard-Jones potentials, SASA and Rg [30]. In 
another study, Kumar and Purohit showed that the RMSD, RMSF, radius 
of gyration, docking energy, total energy, and protein-solvent in-
teractions were altered in the mutant predicted to be cancer causing 
[31]. Others have predicted ligand binding efficiency using molecular 
simulation and machine learning [32,33]. 

The Molecular Dynamics Phenotype Prediction Model (MDPPM) has 
proven to be accurate in predicting variant phenotypes and the severity 
of a disease through structural analysis of a protein over time [34,35]. 

The model begins by taking trusted three-dimensional protein structures 
from databanks, simulates the entire structure or portions of it by using 
molecular dynamics software, then utilizes machine learning to predict 
what the variant classification or disease-state phenotype will be. The 
following research utilizes the MDPPM, while developing further an 
investigational study of natural variants of a nsp10-derived peptide and 
its relationships to methyltransferase activity. 

2. Methods 

2.1. Reference protein data bank (PDB) structure and structural variant 
selection 

The reference file used to derive peptide sequences was located at the 
protein databank (https://www.rcsb.org/retrieved on 12/18/2021), 
PDBID 6ZPE for SARS CoV-2 nsp10. The molecule was removed of all 
residues except for the peptide F68 to Y96 used for simulations. Variants 
were introduced into the new peptide via VMD mutator tool and initial 
mutations were chosen from the literature where they were shown to 
cause changes in methyltransferase activity of whole protein in-
teractions of nsp10 and nsp16 [15,36]. These variants were G70A, 
G94A, G94D, H80A, K93A, K95A, R78A, R78G, S72A, Y96A, Y96F, 
Y96I, Y96V. New variant sequences were selected due to their occur-
rence in semi-conserved residues at the sites within the region from F68 
to Y96 in the Coronaviridae subfamily based upon the multiple sequence 
alignment of a subsequence of nsp10 from Bouvet et al. [15]. The 
foundation of the hypothesis that peptides may have an effect on viral 
replication was that the Y96F variant displayed increased methyl-
transferase activity in the literature and had occurred in other virus 
sequences in the subfamily [16]. The new peptide variants chosen were 
C73I, C73V, C79A, F68Y, H80R, K93R, L92F, L92Y, Y96C, Y96W. The 
125 residues shown in the PDB file 6ZPE used are shown below with the 
residues from F68 to Y96 shown in bold with the substituted residues 
shown in red.   

2.2. Molecular dynamics simulation methods 

Molecular dynamics simulations were deployed by using Nanoscale 
Molecular Dynamics (NAMD) using the CHARMM36 forcefield [36–38]. 
Three REMD simulations were carried out for each peptide variant at 
308K–312K due to the instability of a few of the variant peptides. We 
found that at higher temperatures the stabilities varied greatly, and 
some structures fell apart (data not shown). Replica exchange molecular 
dynamics (REMD) simulations were employed to sample the confor-
mational ensembles of the nsp10 variants and wild-type proteins at the 
temperature range corresponding to normal human body temperatures. 
To verify that replicas performed a random walk across the temperature 
range, albeit small, we computed the acceptance rate of the fraction of 
successful replica exchanges and found it to be greater than 95% when 
averaged over all REMD temperatures. We decided to use this temper-
ature range because we did not need to facilitate any higher tempera-
tures. This was due to the fact that the protein was already folded and 
because we chiefly wanted to test the peptide variant stabilities and 
smaller shifts in structure that occur close to body temperature. All 
simulations were carried out for more than 20 ns as the peptide was 
taken from the larger protein and therefore folding assessments with 
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longer simulation times were not necessary. The General Born Implicit 
Solvent GBIS model was used for all simulations with a 2 fs timestep. 
ShakeH algorithm was set to “on,” salt concentrations were set at 0.3 M, 
and the surface tension was set to 0.006 kcal/mol/Ǻ, with Langevin 
dynamics used for temperature control. Scripts and starting PDB struc-
tures for the molecular dynamics simulations are archived in the George 
Mason University Dataverse at https://doi.org/10.13021/orc2020 
/OW4T3K (retrieved on 1/26/2022). 

2.3. Feature extraction 

Utilizing VMD, the phi and psi dihedral angles of the protein were 
extracted for the desired timepoints to be used as the initial feature set 
matrix for the analytical calculations. A set of raw data consisting of the 
dihedral angle for each variant was copied into a matrix and utilized for 
all MDPPM computations. For at least two of the simulations, at least 
500 of the last PDB file frames were placed into the matrix and used for 
machine learning or PCA analysis. Using the last 500 frames allows for 
two measures to strengthen the analysis: 1) the root mean square de-
viation smooths out in the trajectory, which indicate that the peptide has 
stabilized, and 2) the number of frames is enough for vigorous statistical 
analyses. The average peptide structures of the simulation trajectories 
were found by averaging the frames by using a small TCL code. Average 
structures were viewed qualitatively for fit and structure changes and 
atomic distance measurements were viewed or taken via PyMol 
(Schrodinger, LLC, New York, NY). The TCL code for extracting the phi 
and psi can be found at the George Mason University Dataverse at 
https://doi.org/10.13021/orc2020/OW4T3K (retrieved on 1/26/ 
2022). 

As the feature set is large, the data dimensionality was reduced using 
a principal component analysis (PCA) using RStudio (RStudio Team, 
2021). The PCA applies a linear transformation (change of coordinate 
systems) to rank the new axes or principal components (PCs) in order of 
PCs representing most of the spread of the data to the least spread of the 
data. The PCs were used to find the Euclidean distance measurements on 
the resulting data. Euclidean distances were calculated by measuring 
from centroid to centroid from the wild type to the variants. 

In order to fit the peptide variant data to methyltransferase activity, 
we gathered nsp10/nsp16 interaction and methyltransferase data. The 
empirical data was taken from Bouvet et al. (2014) and is gathered by 
measuring energy transfer as % BRET in in vitro interaction assays, 
which is used as a proximity-based assay to monitor protein–protein 
interactions and conformational rearrangements in live cells, as well as 
2′-O-MTase activity [39]. The Euclidean distances were used to predict 
the experimental values by fitting a non-linear curve, y = a(1-e-bx)+c, 
where x is the distance and y is the measured value according to the 
MDPPM method [34,35]. The predicted and experimental methyl-
transferase data were correlated by using a Pearson’s statistical test. This 
involves calculating the Pearson Correlation Coefficient and then using a 
two-sided p-value for the t-distribution with n-2 degrees of freedom to 
test for significance t = r

̅̅̅̅̅̅̅̅̅̅̅̅
n − 2

√
/

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2

√
. The predicted values calcu-

lated from the simulations were correlated to these data for comparisons 
to methyltransferase activity and the structure of the peptide. We 
correlated our predictions measurements to % BRET, % Interaction be-
tween nsp10 and nsp16 and & 2′-O-MTase Activity (referred hereafter in 
this study as MTase for methyltransferase). 

To predict if a new variant would have the same, or possibly 
increased, MTase activity, we used the random forest algorithm. For 
theses predictive analyses, the data matrix is processed further by a 
subsequent PCA analysis on the PCs themselves, which serves to reduce 
the dimensions even further. This matrix is used for the predictive 
models where we use random forest to train and predict. For each 
variant tested, we remove its data before training, train on all remaining 
data points or specific columns of PCs, then add in the variant to be 
tested and the results of the random forest are either an H or a L, as per 

Table 2. Accuracy of the PCs for prediction can be assessed beforehand 
with a random forest which results in graphs similar to Fig. 6. 

Initial tests used only the variants that had in vivo or in vitro data to 
qualify and verify method success, which was a strong correlation to 
previous data from the PCA analysis. In order to reduce bias in the 
training data and to mimic clinical settings for unknown variants, we 
pulled the variant to be tested out, trained on the remaining variants, 
and the new variant was added to the already trained data to assess 
predicted classification Based upon the available MTase data, we clas-
sified any variants with lower than <90% as having “low” activity and 
>90% as “high.” When we were satisfied with the prediction model on 
the variants with data, we began by adding in the newly derived peptide 
variants from the natural product research. Only those new variants 
classified as “high” were categorized as potential new candidates for 
future research. The model was developed to take a false positive 
approach, where the variant was deemed more likely to cause a decrease 
in MTase activity, so that we errored on the side of caution when 
screening new variants. The initial code for the MDPPM used in previous 
studies can be found at https://github.com/MDPPM/initialCode 
(retrieved on 12/18/2021). The codes used for our analysis are avail-
able at https://doi.org/10.13021/orc2020/OW4T3K (retrieved on 1/ 
26/2022). 

3. Results 

The first step in predictive modeling and assessment using the 
MDPPM is an all-atom simulation of the protein followed by a PCA 
analysis on the phi and psi dihedral angles to reduce the dimensionality 
of the data [34,35]. Euclidean distances between the variants and the 
wild type are then calculated using the PCs. Table 1 shows the distances 
calculated from the phi an psi dihedral angles and correlates those to the 
Bouvet et al. (2014) data. The Euclidian distances were then mapped to 
the experimental data using non-linear regression to the formula y = a 
(1-e-bx)+c, where x is the distance and y is the measured value in ac-
cording with the MDPPM method (Table 1 and Fig. 1). These data show 
that our model results strongly correlate to all three endpoints with 
statistically significant P-values using Pearson correlations. Fig. 1(a) 
shows the predicted values (red) and the experimental values (blue) for 
% BRET. Fig. 1(b) shows the correlations between the experimental and 
observed which are fit with a linear regression line with slope 1 passing 
through the origin. The plots for the % Interaction and % MTase activity 
are shown in Fig. 1(c–f). The correlation coefficient for these fits were 
0.88, 0.77, and 0.80. The Pearson correlations we 0.82, 0.73, and 0.81 
for % BRET, % Interaction and for % MTase activity, respectively These 
Pearson correlations coefficients were statistically significant with 
P-value of 0.000357, 0.002173, and 0.000249 for % BRET, % Interac-
tion and for % MTase activity, respectively using two-sided p-value for 
the t-distribution with n-2◦ of freedom where n is the number of 
variants. 

Next, we examined the average structures of each peptide 
throughout the simulation. When comparing with the current literature, 
there are conserved regions in the region of nsp10 where we extracted 
the peptides and designed the experiment to first compare the conserved 
regions of the wild-type peptide to the variants [16]. Initially, we per-
formed a comparative analysis of the peptides using a general alignment 
in PyMol. We began by qualitatively examining the structural differ-
ences of the peptide variants as compared to the wild-type peptide so as 
to gauge structural dissimilarities and similarities. Notably, variants 
G94D and Y96F modulated the MTase activity to be very low and very 
high, respectively. G94D is one of only two variant peptides from the 
literature that resulted in zero methyltransferase. Fig. 2 shows that the 
G94D average structure did not fit well onto the wild-type protein. Most 
notably we see that there are misalignments at residues F68, H80, I81, 
D94, and Y96. However, the Y96F variant has an almost identical 
structural alignment. 

We assessed each variant to compare what the overlays revealed as 
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compared to methyltransferase activity. We began by viewing the 
overlays of G94D and K93E, both having complete zero methyl-
transferase activity, and used a space filling model to identify any resi-
dues that changed in both peptide simulations. It was discovered that the 
H80 residue in both G94D and K93E shifted clockwise approximately 
90◦ to an almost identical position in each variant (Fig. 3). Next, we 
looked at the other H80 residues in each variant. In all cases except for 
the Y96”X” variants, the H80 residues displayed the same rotation of 
H80 into a similar position as the G94D and K93E variants. Finally, for 
the H80A variant, because it replaced the histidine with an alanine, we 
explored the alanine positioning. The alanine residue also moved but 
only rotated approximately 45◦ as opposed to the other H80 rotamers. 
This H80 rotation was detected to also causes a knock-on effect that 
moves the, H80, I81, and D82 residues further to the left as compared to 
the wild type (Fig. 4). We calculated this effect to produce ~2.5 Å 

alteration of these residues in the variants R78A and R78G. As compared 
to histidine, alanine does not have a positive charge and it is hydro-
phobic, but it too caused the knock-on shift. Therefore, we reasoned, 
that because the variants that caused this shift had middle to low MTase 
values, we ruled out any peptide containing this phenotype as con-
tenders for future testing as they would possibly affect methyltransferase 
activity. 

In the variants containing a Y96”X” change, Y96V, Y96I, Y96A, 
T96F, the H80 residue did not shift. Consequently, we sought out other 
structural changes that may have negatively affected the methyl-
transferase activity in these variants. In Fig. 5 we compare the Y96”X” 
variants to the interaction regions of nsp10 to nsp14, and to nsp16. We 
observed that all Y96”X” variants displayed an S72 residue that pro-
trudes further than wild type, including Y96F. For the Y96F variant, that 
was the only notable change except for the F96 residue itself. In the 
other variants, Y96V, Y96I, and Y96A, the A71 residue changed, also 
protruding out further. But again, the most notable change, is the change 
in Y96 to V, I or A, itself. In all cases, the R group of the Y96 molecule 
loses a great deal of mass. For Y96F, it should be noted that this variant is 
also found in many other coronavirus sequences and was the only 
variant with increased MTase activity [15]. 

Structurally, for the new variants, they are all mostly unremarkable. 
We found that none had the H80 rotation, and none appeared to shift the 
I81 residue. For the Y96”X” variants, Y96C and Y96W, again unre-
markable, other than the Y96 residue. Y96C is quite a bit smaller than 
Y96, and Y96W, as per the R group is larger than Y96. 

The random forest algorithm performed on the phi and psi dihedral 
angles revealed that the top 20 primary torsion predictors of accuracy 
for classification were residues located in the 70’s and 90’s portion of 
the peptide, with psi89 being the exception, situated adjacent to the 
highly conserved C90 residue (Fig. 6). The C90 amino acid is also 
involved in zinc chelation and the psi90 angle is the third most accurate 
from the algorithm. Two other residues involved in zinc chelation were 
also in the top 15 angles for accuracy, psi74 and psi77. Phi82, located 
next to the fourth chelating residue H83, was found on the Gini index. 

When using random forest for the prediction of MTase activity using 
the MDPPM, it predicted with 80% accuracy using the leave-one-out 
strategy and designating three separate classes as “low,” “middle,” or 
“high,” according to MTase activity (Table 2). When using binomial 
“high” or “low” classification predictions, the sensitivity was 100%, the 

Table 1 
Comparison of predicted values to experimental data.  

Variant Experimental Predicted 

% BRET % Interaction % 2′-0- MTase Activity Euclidean Distance % BRET % Interaction % 2′-0- MTase Activity 

WT 100 100 100 0 112.40 111.90 132.70 
G70A 31 ± 7.4 50 32 ± 0.8 5.17 24.43 25.50 11.61 
S72A 60 ± 8.6 6 22 ± 1.1 4.61 28.170 30.42 16.90 
R78A 9 ± 4.5 10 2 ± 0.1 3.3 40.39 44.99 34.18 
R78G 35 ± 1.8 6 9 ± 0.3 3.64 36.66 40.74 28.95 
H80A ND 78 60 ± 3.1 3.51 38.03 42.32 30.88 
K93A 35 ± 2.2 54 9 ± 1.2 3.58 37.29 41.47 29.83 
K93E 7 ± 5.8 16 0 ± 9 4.38 29.93 32.64 19.45 
G94A 59 ± 2.4 80 85 ± 1.2 3.19 41.69 46.45 36.00 
G94D 16 ± 4.9 7 0 ± 0.1 5.76 21.21 21.02 6.97 
K95A 80 ± 3.9 83 71 ± 2.5 3.35 39.81 44.35 33.37 
Y96A 30 ± 6,2 6 15 ± 0.6 3.84 34.67 38.40 26.15 
Y96F 123 ± 18 124 163 ± 10 0.1 108.79 108.96 127.84 
Y961 12 ± 2.3 3 4 ± 0.4 6.47 18.11 16.43 2.49 
Y96V 20 ± 3.4 0 5 ± 0.1 2.97 44.45 49.48 39.86   

% BRET % Interaction % 2′-0- MTase Activity 

Pearson Correlation 0.82 0.73 0.81 
R2 0.88 0.77 0.80 
Root Mean Squared Error (RMSE) 394.98 640.51 655.64 

Table 1. Correlation of the predicted values from the PCA analysis as compared to experimental nsp10/nsp16 data. The Pearson correlations were statistically sig-
nificant with P-value of 0.000357, 0.002173, and 0.000249 for % BRET, % Interaction and for % MTase activity, respectively using two-sided p-value for the t- 
distribution with n-2◦ of freedom where n is the number of variants. 

Table 2 
Prediction of MTase activity of test variants.  

Variant Predicted Actual  Test Variant Prediction 

WT H H  F68Y L 
G70A L L  C73I L 
S72A L L  C73V L 
K78A L L  C79A L 
K78G L L  H80R H 
H80A L L  L92F L 
K93A L L  L92Y L 
K93E L L  K93R L 
G94A L L  Y96C L 
G94D L L  Y96W L 
K95A L L    
Y96A L L    
Y96F H H    
Y96I L L    
Y96V L L    

Table 2. Left, prediction using random forest of variants with known MTase 
activity in whole protein data designated as having L (low) or H (high) MTase 
activity. Sensitivity, specificity, accuracy for positive (H) versus negative (L) 
were all 100%. The right portion of the table shows the new variants derived 
from other coronavirus sequences and their prediction of a future candidate for 
testing “H” or not at candidate “L.” A value of H predicts the MTase value to be 
more than 90%. 
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specificity 67%, and the accuracy 93%. In this case, the variant was 
classified as “low” if the variant decreases the MTase activity lower than 
80%. 

In the PCA analysis, on the variants with empirical data, we were 
able to visualize the 3D components of the system and their distances 
from each other (Fig. 7). The WT, Y96F, and G94A were designated as 
having “high” MTase activity and we classified all other variants as 
“low.” For the newly proposed variants, we performed an additional 
PCA analysis, one that included all variants and was plotted for visual 
analysis. We again used the random forest algorithm to find that PC1 
and PC5 clustered the most accurately, and that the new variants were 
typically clustered away from the other variants in their own PC space 
(Fig. 8). 

4. Discussion 

The emergence of new computational methods for drug development 
have begun to generate potential therapeutic compound structures at an 
unprecedented rate. One of the largest remaining challenges in peptide 
development is finding worthwhile new candidates amongst the sheer 
number of molecular possibilities. Currently, there are a few canonical 

approaches into how new drugs are designed and sifted through using 
computation methods and software. Molecular modeling, structure- 
based drug design, structure-based virtual screening, ligand-based 
modeling, and molecular dynamics are all used to help determine the 
relationship between the ligand and the target [40]. Here, we have taken 
a multi-faceted approach by combining the molecular modeling method 
with structure-based drug design, while using molecular dynamics to 
assess the structure in solvent. These all lead to machine learning data 
analytics for predictive measures. 

Antimicrobial peptides have been identified to be widespread in 
nature as part of the innate immunity in many organisms [41]. Many 
have been found in nature, however, their use as therapeutic agents 
raised challenges that include issues with stability, bioavailability, and 
toxicity. This has resulted in the desire to design or engineer antimi-
crobial peptides. The methods for designing antimicrobial peptides in-
cludes de novo synthesis, chemical modification, site direct mutation, 
template based design and computer-based design [41]. The 
computer-based design methods include the use of molecular modeling 
and machine learning approaches. There have been several studies that 
have used machine learning via neural networks to design antimicrobial 
peptides [42–44]. Other efforts have used a variational autoencoder 

Fig. 1. (a) Experimental (blue) and predicted (red) % BRET values as a function of distance in the PCA space. The predicted values follow the equation (% BRET) =
-105.3*(1-e(− 0.349*(Distance))+112.4. (b) Experimental vs predicted % BRET values show a high degree of correlation R2 = 0.8779. (c) Experimental (blue) and 
predicted (red) % Interaction values as a function of distance in the PCA space. The predicted values follow the equation (% Interaction) = -142*(1- 
e(− 0.214*(Distance))+112.8. (d) Experimental vs predicted % Interaction values show a high degree of correlation R2 = 0.8779. (e) Experimental (blue) and predicted 
(red) % MTase Activity values as a function of distance in the PCA space. The predicted values follow the equation (% MTase Activity) = -146.8*(1- 
e(− 0.337*(Distance))+132.7. (f) Experimental vs predicted % MTase Activity values show a high degree of correlation R2 = 0.8779. Predicted values were obtained using 
non-linear curve fitting for the experimental values as a function of distance using the web site https://www.colby.edu/chemistry/PChem/scripts/lsfitpl.html 
(retrieved on 12/7/2021). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

J.R. Hamre III and M.S. Jafri                                                                                                                                                                                                                

https://www.colby.edu/chemistry/PChem/scripts/lsfitpl.html


Informatics in Medicine Unlocked 29 (2022) 100886

6

framework to generate and predict the activity of antimicrobial peptides 
[45]. These studies relied on large databases of antimicrobial peptides to 
generate the training and test sets [45]. The method presented here 
differs from these previous studies by focusing on the optimization of 
antimicrobial peptides by amino acid substitutions. 

The MDPPM method is developed to predict the severity of change 
with missense mutations (changes in single amino acids) [34,35]. While 
the method is quite powerful there are some issues that need to be 
addressed in the future. The peptides being compared need to have a 
large degree of similarity to allow for comparison. The method has not 

yet been applied to other types of mutations such as deletions, in-
sertions, truncations, and frame shift mutations. Also, due to the reliance 
on molecular dynamics simulation, the method is computationally 
expensive. These simulations have been using the implicit solvent model 
to increase efficiency. In the future we plan to address ways of improving 
computational efficiency by trying newly developed algorithms for 
molecular simulation. 

The main advantage the proposed method has over existing methods 
is the high degree of accuracy and the ability to succeed with small data 
sets. It is geared for refining peptide candidates. Dean and co-workers 
recently developed a computational framework called PepVAE for the 
prediction of the activity of antimicrobial peptides [45]. It consists of a 
variational autoencoder to design the peptide and antimicrobial activity 
prediction models that use a convolutional neural network that yield 
prediction with a correlation coefficient of 0.67–0.73. Mulligan has 
presented a review discussion on the role of computational design in 
peptide drug discovery [46]. These computational approaches are used 
to predict drug specificity, solubility and aggregation propensity, 
permeability, and toxicity [47–54]. These approaches use QSAR 
method, machine learning, and multiscale modeling. The existing QSAR 
and machine learning methods train on large databases. Molecular dy-
namics simulation methods have been used to study smaller lists by 

Fig. 2. (a) Wild type (green) and G94D (magenta) overlay displaying large 
differences in several positions, most notably F68, H80, I81. (b) Wild type and 
Y96F (cyan) overlay exhibiting nearly complete structure homogeneity with a 
few subtle differences. (c) enlarged view with notable positions F68, H80, I81, 
G94D, and Y96 shown. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. (a) Histidine rotamer in G94D.(b) K93E, and (c) H80A turning approximately 90◦.  

Fig. 4. In the variants R78A (blue) and R78G (tv red) we observe that the 3 
residues H80, I81 and D82 are shifted, with the furthest distance being 2.5 Å. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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simulating the candidate molecule and its surroundings to calculate 
physical properties from first principles. These quantities are then used 
in another model to predict the best candidate peptides. The MDPPM 
method presented here avoids this additional step by directly using 
properties of the structural ensemble to predict the peptide efficacy, in 
this case the effect on MTase activity. Molecular docking simulations of 
peptide protein binding such as ZDOCK 3.0.2, FRODOCK 2.0, Hex 8.0.0, 
PatchDock 1.0, ATTRACT and pepATTRACT have also been used in 
peptide drug development. However in a recent test of accuracy 

compared to the observed experimental peptide-protein docking the 
best was only 1.5–63.90% accurate [55]. Docking simulations face the 
challenges of finding the correct binding site and then orienting the 
peptide so that it binds correctly to its target. The MDPPM method 
proposed here avoids these complications by simulating the peptide 
alone in solution and using the structural ensemble which captures the 
structural dynamics to predict efficacy. Other approaches include 
phenotype prediction software where a sequence and variants are sub-
mitted to a web server and predictions of whether the variant is benign 

Fig. 5. (a) WT peptide showing residues that interact with nsp14 in red (b) WT residues that interact with nsp16 shown in red. (c.) Y96V white, Y96I magenta, Y96A 
orange, Y95F cyan, and WT green overlay showing the differences in the variants. Notable qualitative changes include the A71 residue protruding out further than 
the wild type in all variants, including Y96F. For the Y96F variant, this was the only notable change except for the F96 residue itself. In the other variants Y96V, Y96I, 
and Y96A, the A71 residue did change, protruding out further. (d–g) Most notable is the change in Y96 to V, I or A, itself. In all cases the molecule loses a great deal of 
mass, and the protrusion that is seen in the wild type contracts drastically. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 6. Random forest output of the top dihedral angles in the peptides. Of note, most of the amino acid residues listed are in the 90’s and 70’s, with, C74, C77, and 
C90 involved in the chelation of zinc. 
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but offer much lower accuracy than the MDPPM method upon which the 
method in this paper is based [34,35]. 

Other computational studies relating to peptide development for 
SARS-Cov-2 have been performed, but they differ greatly in their scope 
and success. Can et al. only go so far as to say that nsp10 epitopes will be 
good candidates for vaccines [56]. Sk et al. investigated the 
nsp10/nsp16 interface, but only recommend residues that might be 
investigated in the future such as G69, A71, G70, R78, Y96, three of 
those were used in this research [57]. Others have done this as well, only 
venturing to propose hot spots [58]. Ling and Sitthiyotha developed 
peptide models for SARS-Cov-2, but only were able to suggest new 
molecules based on molecular docking models [59,60]. Furthermore, 
these models were not qualified or evaluated against wet lab data. It is 
well known that docking programs are notoriously inaccurate, with the 
best scoring at 50.0–60.0% accuracies for pose predictions, and with 
relatively weak correlations between docking scores and observed 
binding affinities [61]. This study’s advantage was that the peptide was 
already in the proper pose and that the binding energies in our model are 
predicted to be close to wild-type energies because they already exist in 
nature. 

Two of the main challenges currently in the development of antiviral 
and antimicrobial drugs include the emergence of multidrug resistance 
and the transmission of drug-resistant strains from patient to patient that 

limit the clinical efficacy of current therapy [62]. For emerging peptide 
drugs, one of the largest problems is the increased proteolytic instability 
as compared to not small molecules and monoclonal antibody thera-
peutics [63]. The advantages to this model are that the stability can be 
accounted for in the simulations and that the epitope of the peptide is 
conserved. Further, once peptides are elucidated from the MDPPM, 
experimental testing using wet lab techniques such as the serum stability 
assay could be beneficial, with future correlations to peptide stability to 
the MDPPM to be measured in future studies for machine learning model 
refinement [64]. 

Recent epidemiological data has shown that many people are still 
contracting SARS-CoV-2. There is, therefore, the need to have effective 
treatments for people infected with SARS-CoV-2. Current treatments of 
SARS-CoV-2 include two prominent drugs that were used for other in-
dications, hydroxychloroquine (HCQ) and Remdesivir (RDV) [65]. HCQ 
has had mixed results in Covid19 treatment, however, when coupled 
with azithromycin it resulted in a good clinical outcome and a virolog-
ical cure in 973 out of 1061 patients within 10 days (91.7%) [66]. 
Notably, of those, 9 developed QTc prolongation but did not die of 
cardiotoxicity. Rare cardiotoxicity adverse events are a large concern 
among the public. RDV in a compassionate use clinical study showed 
that there were clinical improvements in 67.9% of patients but that 
60.3% had adverse events that included enzyme elevation and renal 
impairment [67]. Both drugs demonstrate the need for alternative 
treatments due to safety measures and uncertain effectiveness, hence the 
need for nsp10/nsp16 conserved region interface drugs that target the 
virus machinery with higher safety and efficacy profiles. 

Targeting MTase activity is a mechanism that can help suppress viral 
replication. Normally, the host cell will degrade non-human RNA, but in 
order to overcome this SARS-CoV-2 has two methyltransferases that 
methylate viral RNA making it appear human to the host cell. The in-
hibition of methyltransferase has the advantage of allowing the host cell 
to degrade viral RNA preventing viral replication. The peptide would be 
specific to the viral methyltransferase and not affect the host, thereby 
having limited side effects. Lin et al. compared the nsp10/nsp14 struc-
ture with the nsp10/nsp16 structure and found them highly similar [4]. 
Kozielski et al. observed that the binding interface of nsp10 with nsp14 
and nsp16 were conserved by screening binding of nsp10 fragments 
(PDB ID: 7ORR, 7ORU, and 7ORV) [5]. Krafcikova et all compared the 
structures of the nsp10/nsp16 protein complex and found that while the 
active site of SARS-CoV-1 and SARS-CoV were conserved, they were not 
similar to Zika Virus [68]. 

Experimental studies show that a substitution inactivating the N7- 
MTase activity substantially attenuated replication, while complete 
knockout of 2′O-MTase knockouts was less effective [69,70]. Based upon 
these observations, DeCroly et al. has suggested that compounds spe-
cifically inhibiting cap-methylating enzymes, either N7-MTase or 
2′O-MTase or both, could act as potent antiviral agents [71]. Wang et al. 
has shown that this approach can work in their experiments [11]. Hsu 
et al. found that nsp14 shuts down host protein synthesis in order to help 
SARS-CoV-2 subvert protein synthesis for viral proteins [14]. The exo-
ribonuclease activity of nsp14 combines with the MTase activity of nsp7 
to promote viral replication. They showed that mutations in the sites of 
exonuclease or N7-MTase activity of nsp14 abolish its translation inhi-
bition activity. Furthermore, this mechanism is conserved in human 
coronaviruses. 

Several studies have searched for small molecules that can inhibit 
MTase activity. Bobrovs et al. computationally screened the docking of 7 
million compounds with nsp14 and nsp16 and found 80 candidates, 39 
for nsp14 and 41 for nsp16 [6]. They experimentally assayed them and 
found 9 that displayed MTase inhibition with an IC50 < 200 μM. How-
ever, challenges still remain because most of the compounds had poor 
selectivity for a specific MTase, no cytotoxic effects, and poor cell 
permeability. Basu et al. computationally screened 5000 compounds 
and found 4 compounds that were potential inhibitors of nsp14. All 4 
displayed anti-viral properties in infected cells and 3 showed synergistic 

Fig. 7. 3D image of PCA space of the original variants with known empirical 
data from Bouvet et al. (2014). The WT and Y96F were designated as having 
“high” MTase activity, >90% (green). We classified all other variants as “low” 
(red). Low value variants clustered together, and we can see qualitatively that 
the Y96F and WT distances were very close. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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effects when paired with remdesivir [9]. Bovieva et al. used S-adeno-
sylmethionine derivatives to inhibit the MTase activity of nsp16. None 
of these molecules were found to be specific to the nsp16 MTase. Despite 
inhibition of the human MTases no cytotoxicity was observed [7]. 
Devkova et al. tested 161 in-house synthesized S-adenosylmethionine 
(SAM) competitive MTase inhibitors and SAM analogs and found that 6 
that were inhibitors of nsp14. Of these one was found to have an IC50 =

70 nM and was selective against 70 human lysine MTases [8]. 
On the other hand, discovering peptide inhibitors of the interaction 

between nsp10 and nsp16 to disrupt MTase activity to suppress viral 
replication has also been an area of active research. Previous SARS-CoV 
studies have shown that synthetic peptides can interfere in the binding 
of nsp10 to nsp14 or to nsp16 and can diminish or modulate viral 
replication [10–13]. Ke et al. showed that two small peptides from the 
range of amino acids 65–107 of nsp10 successfully inhibited 2′-O-me-
thyltransferase activity of SARS-CoV nsp16/10 complex [13]. Wang 
et al. designed a peptide called TP29 that was extracted from the nsp10 
interaction interface of mouse hepatitis virus (MHV) nsp10 and showed 
that the peptide inhibits the 2′-O-MTase activity of different coronavi-
ruses in both biochemical assays and in viral replication studies in MHV 
infection and SARS-CoV replicon models [11]. The % BRET, % Inter-
action, and % MTase activity data for training the model was gathered 
from the experimental work of Bouvet et al. [15]. The work presented 
here, builds upon these studies by using machine learning to predict 
another candidate peptide that should be studied in experiments to 
verify efficacy at disrupting MTase activity. These studies differ from the 
computational work of Dutta et al. who used molecular dynamics 
simulation of nsp10/nsp16 and that two fragments of nsp16 that bound 
to nsp10 in their simulation studies [72]. While based on the same idea 
of disrupting nsp10/nsp16 oligomerization to inhibit MTase activity, 
they performed computationally expensive studies of peptide fragments 
of nsp16 binding to the nsp10 protein. However, their approach was not 
validated with known inhibitory peptides. Our approach on the other 
hand is much more computationally efficient and used a machine 
learning model trained and tested on nsp10 peptides measured to affect 
MTase activity. 

Here, we found one candidate, H80R, that is almost 100% likely to 
have greater than 90% MTase activity, and, hopefully, more than 100%. 
This variant, deemed as a candidate for further study, had a Euclidean 
distance that was very close to the “high” activity cluster. We have very 

high confidence in this candidate, nevertheless, we have not completely 
written off the other nine new variants as new candidate possibilities 
because we do not have MTase data for these yet. In fact, we recommend 
that if it is possible, these variants should be studied in a wet lab envi-
ronment to gain insights into their potential to bind nsp16 or nsp14, and 
this would further add to the accuracy and fine-tuning of the MDPPM. 
We found that the new variants created their own cluster, which was 
further away from the deleterious variants. It is not beyond the realm of 
possibilities that the variant found furthest away from the “low” MTase 
variants, as well as the wild type, L92Y, may be the variant that has the 
most potential to increase the affinity for nsp16. 

The data shown in Table 2 has two variants that fall in the high 
category and thirteen variants that fall in the low category. This presents 
the potential of the data being unbalanced, e.g., the numbers of data 
entries in each class are not the similar. During the training and testing 
the random forests model displays 100% accuracy, precision and recall. 
As the data is not balanced, the F-measure or balanced F-score (F1 score) 
can be calculated as a measure of test’s accuracy. In the case of this 
model the F1 score is 1.0 which indicated high accuracy [73]. In the case 
of this study each of the variants has ~30,000 structures (data points) 
making ~60,000 in the high category and 260,000 in the low category. 
When there is a large number of data points (large data set), then 
problems caused by unbalanced data are reduced because the minority 
class (H) is well represented by the large number of data points [74]. 
Therefore, the issue of unbalanced data does not confound the results 
presented here. If the accuracy of predicting the high category was 
closer to 87% (13/15), there would be more of a concern about the data 
being unbalanced. 

The findings of the phi and psi angle prediction accuracy by random 
forest discovered that accurate angles were mostly located in the 70’s 
and 90’s portion of the peptide, suggesting that these residues are 
important structurally and that changes in residues here may cause a 
decrease in MTase activity. It should be noted that residues in the 80’s 
portion of the peptide are mostly semi-conserved, and that they are not 
as conserved as those in the 70’s and 90’s, which may also be a 
contributing factor to these results. Further, we found that the chelating 
residues of C74, C77, and C90, located in the zinc finger, were in the top 
20 phi and psi angles for accuracy predictions, and that D82, adjacent to 
the fourth chelating molecule H83, was in the Gini index, which cal-
culates the data taking part in the decision making of the algorithm. If 

Fig. 8. New PCA space including all new variants of 
PC1 vs PC5. This is the 2D PCA plot that shows a new 
PCA analysis with all the variants, including the new 
variants to be tested (cyan). Variants with high MTase 
are in green and those in red have low MTase activity. 
New variants tended to be clustered lowered and to 
the right. New variants closest to the green cluster, 
Y96C and H80 were predicted by random forest to be 
candidates for future testing. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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the peptide cannot chelate to zinc it most likely loses function, therefore 
peptides affecting these residues or those adjacent may not be good picks 
for future peptide candidates. 

Structurally and qualitatively, we were able to discern that the var-
iants which had a rotamer at the H80 position had decreased MTase 
activity. This rotation also caused a knock-on effect which moved I81 
and D82 away from the WT location. The H80 rotation is significant 
because even though H80 is not involved in binding nsp16, a rotation 
towards the C77 molecule may well affect the binding of nsp16, because 
C77 is directly involved in the nsp10/nsp16 interaction. And this may 
also be why nsp16 MTase activity is not as affected as nsp14 in the H80A 
variant, because it can only affect nsp16 indirectly through the C77 
residue [15]. Converse to nsp16, the H80 residue is directly involved in 
nsp14 binding, so any movement in this case is detrimental. 

The Y96”X” residue variants’ most important change seemed to be 
the Y96 amino acid itself. Although the other variants had a slight 
change qualitatively in the A71 residue, which is involved in the nsp16 
interaction, the molecular simulations suggest that are two possibilities 
for the decrease in MTase activity, either subtle changes in the entire 
structure add up to an overall change that affects binding, or, that Y96 is 
important for a different reason, possibly biochemically. 

5. Conclusion 

In conclusion, molecular dynamics coupled with machine learning 
can afford a way to predict whether new candidate peptides will have 
functional changes that affect methyltransferase activity. Molecular 
simulations show that there are structural misalignments at residues 
F68, H80, I81, and D94 compared to wild type that are associated with 
loss of MTase activity. Another structural change is the rotation near 
H80, where the differences that each variant creates can be visualized, 
which allows any subsequent variants with the same phenotype to be 
eliminated. However, as is the case with Y96 variants, when there are no 
distinct structural changes, we can rely on the specificity and accuracy of 
this new method. We have shown that with the nsp10 peptide we were 
able to predict precise residues that affect the binding of nsp16, and that 
these need to be considered when developing new sequences. Further-
more, this study has described a method in which to produce compelling 
new peptide leads computationally. For example, the H80R variant 
peptide is predicted to attenuate MTase activity and is a potential 
candidate for an anti-MTase peptide. Finally, this method shows promise 
in weeding out variants that may be of no use to scientists or those with 
limited resources who may only be able to test one or two sequences at a 
time. With the potential of septillions of residues in this small sequence 
alone, simulations coupled with machine learning can be of great use to 
scientists in the discovery of new drug leads. 
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