
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, 2021;32: 2797–2815

https://doi.org/10.1093/cercor/bhab382
Advance Access Publication Date: 2 November 2021
Original Article

O R I G I N A L A R T I C L E

Age Differences of the Hierarchical Cognitive
Control and the Frontal Rostro–Caudal Functional
Brain Activation
Zai-Fu Yao1,2 and Shulan Hsieh 3,4,5

1Brain and Cognition, Psychology Research Institute, University of Amsterdam, 1001 NK Amsterdam, The
Netherlands, 2Graduate Institute of Sports Training, College of Kinesiology, Tianmu Campus, University of
Taipei, Taipei City 11153, Taiwan, 3Department of Psychology, College of Social Sciences, National Cheng Kung
University, Tainan City 70101, Taiwan, 4Institute of Allied Health Sciences, College of Medicine, National
Cheng Kung University, Tainan City 70101, Taiwan and 5Department of Public Health, College of Medicine,
National Cheng Kung University, Tainan City 70101, Taiwan

Address correspondence to Shulan Hsieh, No.1, University Road, Tainan City 70101, Taiwan. Email: psyhsl@mail.ncku.edu.tw

Abstract

Age-related differences in the functional hierarchical organization of the frontal lobe remain unclear. We adopted
task-related functional magnetic resonance imaging (fMRI) to investigate age differences in the functional hierarchical
organization of the frontal lobe. Behavioral results report both reaction time and efficiency declined as the levels of
abstraction increased in the selection of a set of stimulus–response mappings in older adults compared with young adults.
fMRI findings suggest trends of the hierarchical organization along the rostro–caudal axis in both groups, and
brain–behavior correlation further suggests neural dedifferentiation in older adults when performing at the highest level of
control demands experiment. Behavioral performances and age difference overactivations at the highest level of control
demands were both associated with working memory capacity, suggesting the working memory capacity is important for
processing the highest task demands. Region-of-interest analysis revealed age differences in brain overactivation and
common activation across experiments in the primary motor cortex, parietal lobule, and the fusiform gyrus may serve as
shared mechanisms underlying tasks that are required for the selection of stimulus–response mapping sets. Overall, older
adults reflect maladaptive overactivation in task-irrelevant regions that are detrimental to performance with the highest
control demands.
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Introduction
Frontal lobes are typically thought of as crucial brain regions
for executive functions (Miyake et al. 2000; Alvarez and Emory
2006; Anderson et al. 2011; Badre and Nee 2018), especially for
the cognitive control of goal-directed behavior (Badre 2008).
The frontal lobe is the cerebral cortex that covers the anterior
part of the frontal lobe; this brain region has been implicated

in planning complex cognitive behavior, personality expression,
decision making, and moderating social behavior (Bicks et al.
2015). Although the importance of frontal lobes is self-
evident, its functional organization remains unclear. Badre
and D’Esposito (2009) proposed the rule of abstraction models
based on observations across a range of neuroimaging and
neuropsychological studies of a functional gradient along the
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rostro–caudal axis of the frontal lobe, whereby progressively
anterior subregions of the frontal lobe are associated with
higher-order processing requirements of planning and selection
of action (Badre 2008; Badre and D’Esposito 2009). To support
their notion, Badre and D’Esposito (2007) conducted series of
experiments to examine whether the frontal lobe is relatively
homogeneous in function or whether specialization and
organization along the rostro–caudal axis in both healthy
individuals (Badre and D’Esposito 2007) and patients with
damage to the frontal lobe occur (Badre et al. 2009). According
to their hypothesis, the most caudal region is associated with
processing information about the concrete stimulus, whereas
more anterior frontal lobe activity is seen when behavior is
instructed by the abstract stimulus. Their results showed that
the frontal lobes are organized along their rostro–caudal axis
to support hierarchical cognitive control (Badre and D’Esposito
2007; Badre et al. 2009). Despite fruitful evidence suggesting the
frontal lobes are necessary for cognitive control at all levels
of abstraction, whether aged frontal lobes are still activated
hierarchically with different levels of abstract rules remains
unclear. Although Badre’s fMRI competition experiments
provide the first evidence that functional organization processes
hierarchically along the rostro–caudal axis of the frontal lobe
in both healthy individuals (Badre and D’Esposito 2007) and
patients with damage to the human frontal lobe (Badre et al.
2009), whether these observations can be seen in an aging
population remains to be investigated.

As our brains age, we tend to experience cognitive decline,
which may cause the lack of capability to recruit specific areas
or an attempt to compensate for the aging process (Deary et al.
2009; Cabeza et al. 2018; Cole et al. 2019). The attempt to com-
pensate for the mismatch between cognitive processing and
task demands by increasing neural activity or connectivity may
lead to enhanced cognitive processing (successful compensa-
tion) or it may lead to no change in performance or even worse
performance (unsuccessful compensation). For instance, age-
related increases in activity in the frontal lobe and connectiv-
ity have been attributed to compensatory brain activity (Stuss
and Knight 2009; Nyberg et al. 2010). Nonetheless, these find-
ings question whether efficiency for processing competition
among the abstractness of the representation progresses with
age, specifically, whether hierarchical cognitive control and the
rostro–caudal functional gradient organization of the frontal
lobes process are similar or different between different age
groups. Moreover, it is well-documented that older adults recruit
other brain regions while performing a wide variety of cog-
nitive tasks compared with those recruited by younger adults
(Gutchess et al. 2005; Davis et al. 2008; Cabeza and Dennis 2012;
Morcom and Henson 2018). However, it is unclear how such
age-related overactivation involved at different levels of control
demand abstract representations and whether this overactiva-
tion is compensatory.

Previous studies have shown that overactivation in frontal
brain regions for older adults while performing tasks (Davis et al.
2008; Reuter-Lorenz and Cappell 2008; Park and Reuter-Lorenz
2009; Reuter-Lorenz and Park 2014; Nashiro et al. 2018; Qin
and Basak 2020) might reflect compensatory brain activity to
delay cognitive decline in older participants (Cabeza et al. 2018).
In regards to age-related increases in PFC activity, two well-
known theories of the pre-frontal cortex (PFC) compensation
are posterior–anterior shift with aging (PASA) as described
by Davis et al. (2008) and hemispheric asymmetry reduction
in older adults (HAROLD) as described by Cabeza (2002) and
Koen and Rugg (2019). For PASA, there is evidence of an

age-related reduction in functional connectivity involving
posterior brain regions coupled with an age-related increase
in functional connectivity with PFC regions (Grady et al. 2003;
Daselaar et al. 2006; St. Jacques et al. 2009). As for HAROLD,
evidence that aging is not only associated with more bilateral
activation patterns but also with an increase in functional
connectivity to homologous regions in the two hemispheres
can be found. An alternative explanation for the increase in
brain activity in the frontal lobe is more related to reduced
functional efficiency or specificity in the aged brain (such as
the dedifferentiation hypothesis; Koen and Rugg 2019) than
to compensation. This dedifferentiation hypothesis put forth
that task-evoked neural activity in the brain regions becomes
less selective with increasing age. This interpretation of neural
dedifferentiation is a consequence of the age-related decline
in functional specialization of brain regions in older rather
than in younger adults such that brain regions specialized
for a single cognitive function in younger adults are adopting
multiple cognitive functions for completing the task (Dennis
and Cabeza 2011; Reuter-Lorenz and Park 2014; Koen and Rugg
2019). These types of overactivation have been argued to be
either compensatory to older adults’ performance, indicated
by positive brain–behavior correlations (Cabeza 2002; Davis
et al. 2008; Cabeza and Dennis 2012; Basak et al. 2018), or are
maladaptive to performance as indicated by a negative brain–
behavior correlation (Steffener et al. 2014; Nashiro et al. 2018).
Specifically, the observation of overactivations is interpreted
as a compensatory mechanism if a significant, positive, brain–
behavior relationship with task performance is reported (Cabeza
et al. 2018). Our goal was to test whether increased frontal lobe
activity in older adults reflects compensation or nonselective
recruitment (e.g., neural dedifferentiation).

Furthermore, if maladaptive types of overactivation are
observed in older adults, activation of such task-irrelevant
regions may add detrimental noise to the memory system
and contribute to worsened updating (Qin and Basak 2020).
Previous studies have shown that older adults exhibit deficient
working memory performance that is related to a selective
deficit in inhibiting sensory processing related to irrelevant
stimuli (Gazzaley et al. 2005; Chadick et al. 2014). Importantly,
such a decline in suppressing irrelevant stimulus processing
is associated with a decrease in activity in the frontal lobe
in addition to a decrease in functional connectivity between
the sensory cortex and the frontal lobe (Chadick et al. 2014).
Recent studies on age-related overrecruitment in the frontal
lobe depending on memory load may be attributed to limited-
resource functional compensatory mechanisms (Cappell et al.
2010; Qin and Basak 2020). Accordingly, older adults may exhibit
deficient working memory performance due to overloading
limited memory stores with irrelevant information. Therefore,
it is worth testing the brain–behavior relationship between
age differences in brain activity and behavioral performance
changes by exploring the aging effects on the processing of
different levels of behavioral abstraction and its relationship to
working memory.

Objectives and Hypotheses
of the Present Study
This study aims to examine whether functional organization
process hierarchically along the rostro–caudal axis of the frontal
lobe can still be seen in older adults as observed in younger
adults reported by prior research (e.g., Badre and D’Esposito
2007). We adopted the identical protocol described by Badre and



Aging Frontal Lobe Organization Yao and Hsieh 2799

D’Esposito (2007) to investigate the functional gradient of the
frontal lobe in four experiments. Behaviorally, we hypothesized
that older participants have worse performance across all con-
ditions as reaction time (RT) slowing due to aging is commonly
observed. RT slowing first occurs in sensorimotor regions that
are typically involved in how the individual forms a response.
However, as difficulty levels increase, the ceiling effects make
it harder to distinguish between groups since young adults
also process longer RTs at the most difficult levels. Therefore,
we hypothesized that a lower level of difficulty manipulation
associated with the sensory process may be affected by the age
effect.

At the neural activity level, we first aimed to examine
the patterns of fMRI activation in young adults to determine
whether a functional gradient along the rostro-caudal axis of the
frontal lobe could be replicated, whereby progressively anterior
subregions of the frontal lobe are associated with higher-order
processing requirements of more abstract action planning. The
second goal was testing whether efficiency at processing com-
petition among the abstractness of the representation declines
with increasing age. Specifically, we aimed to test whether
the rostral-to-caudal functional gradient of the frontal lobe is
disrupted by the aging processing. Our goal was to demonstrate
whether functional specialization and organization in the
frontal lobe would have different neural processing strategies
for the older group. Therefore, it was determined which cortical
surface vertices were related to the regions that were most
parametrically correlated so that competition from the lowest
to the highest levels of difficulties in task performance of older
and young groups could be determined. Moreover, whether over-
recruitment of frontal brain activity evoked by a cognitive con-
trol task reflects compensatory responses (e.g., compensatory
theory) or a deterioration process due to age was tested. The
HAROLD model (Cabeza 2002; Koen and Rugg 2019) described
that overrecruitment of the bilateral PFC in older adults in com-
parison to young adults whose PFC is activated in the lateralized
brain reflects a compensatory mechanism in order to keep up
with the equivalent task performance. Whether this observation
can be explained by neural dedifferentiation, especially with
task performance at multiple levels of abstract representations
(Koen and Rugg 2019), was examined. These hypotheses were
tested by observing whether age-related overactivation of
the fronto–parietal regions interacts with different degrees of
cognitive control demands involved in a task. If an interaction
had occurred, the compensatory hypothesis would be a more
reasonable choice. According to a recent study (Qin and Basak
2020), the relationship between age differences in overactivation
and task performance suggests different possible explanations.
Specifically, a positive correlation between activation based on
age difference in activation of ROIs and task performance would
indicate that such activations are compensatory with respect
to task performance. A negative correlation between activation
and task performance would suggest that such activation is
detrimental to task performance (Qin and Basak 2020). Finally,
whether behavioral performances and age differences of brain
activity processing at levels of cognitive controls are associated
with working memory capacity was also tested.

Materials and Methods
Participants

A total of forty-five participants were enrolled in this study.
These participants were grouped into older and younger groups

based on their chronological age of demographic information.
All participants with normal or corrected-to-normal vision were
recruited for participation in four mini experiments in an fMRI
scanning session. Three older participants failed to complete
the fMRI scanning sessions due to exhaustion. Two of the older
participants were excluded from subsequent fMRI analysis due
to technical difficulties (i.e., preprocessing quality failed to meet
the criteria and data export issues) with their scans (e.g., tempo-
ral signal loss). All MRI images were inspected visually. Specifi-
cally, MRI data with obvious motion artifacts are excluded from
the analyses. Two young adults were excluded from subsequent
analysis because of motion artifacts (FD = 0.25 mm) (Power et al.
2012). We finally included 38 right-handed healthy adult partici-
pants for the following analysis. Informed consent was obtained
from participants following procedures approved by the Com-
mittee for Governance Framework for Human Research Ethics at
the National Cheng Kung University. Participants were rewarded
of New Taiwan dollar (NTD) 1000 for their participation in MRI
sessions. All participants reported no history of brain injury,
neurological disease, mental disorder, and clinically diagnosed
hypertension. The demographic information of participants was
reported in Table 1 and Supplementary Table 1.

The Montreal Cognitive Assessment (MoCA)

The MoCA (Nasreddine et al. 2005) is a cognitive screening
test designed to assist clinical professionals to identify mild
cognitive impairment and early signs of Alzheimer’s disease.
MoCA scores range between 0 and 30. A score of 26 or over
is commonly assumed to be normal. In this study, a validated
Taiwanese version of MoCA (Tsai et al. 2012) was used to screen
the participants.

Auditory–Verbal Digit Span: Working Memory

Digit span (Szczepkowski and Demakis 2017) is the most widely
used measure of verbal working memory capacity. In this study,
two different types of recall methods were administered: “for-
ward” digit span, needing simple recall of a serial of digits
(word for word) to be remembered, and “backward” digit span,
needing to verbally repeat a given serial of digits (word for word)
in reverse order. The behavioral performance was calculated
by summing the total correctly recalled trials. The higher the
scores, the better the working memory capacity (Hilbert et al.
2015).

Beck Depression Inventory-II (BDI-II)

BDI-II is a short, criteria-referenced assessment for measuring
depression severity (Li et al. 1975). Higher total scores indicate
more severe depressive symptoms (Steer et al. 1999). The total
score of 0–13 is considered a minimal range, 14–19 is mild, 20–28
is moderate, and 29–63 is severe.

Behavioral Tasks and Experimental Procedures

In this experimental design, we aim to test whether the rostral-
to-caudal functional gradient of the frontal lobe is disrupted by
aging processing. We adopted the identical protocol as Badre
and D’Esposito (2007) to investigate the functional gradient of
the frontal lobe in four experiments. Participants were tested
on four mini experiments that were designed to test progres-
sively higher degrees of difficulties with the varied competition.
These experiments were adapted from a previous study (Badre
and D’Esposito 2007). Specifically, from concrete to abstract,
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Table 1 Demographic information for participants included in this study

Old Young t df P-value

N 19 (f = 7; m = 12) 19 (f = 8; m = 11) N/A N/A N/A
Age 67.42 (±5.98) 24.31 (±5.23) 23.623 36 1.645e−23∗
MoCA 28.7 (±1.27) 29.4 (±0.83) −1.807 36 0.079
BDI-II 4.73 (±5.17) 8.26 (±7.89) −1.629 36 0.112
Education (yr) 14.632 (±2.49) 16.789 (±1.78) −3.064 36 0.004∗
WM span 22 (±3.48) 27 (±1.44) −6.377 36 2.185e−7∗

∗N = number of participants; f = female; m = male; MOCA = The Montreal Cognitive Assessment; WM = working memory; BDI-II = Beck Depression Inventory-II.

four fMRI experiments manipulated the abstractness of stim-
ulus–response rules over four levels of competition (Supple-
mentary Figs 1–4). Each subsequent level increased the contex-
tual contingencies to be traversed to select a response (color–
feature–finger, color–dimension–feature–finger, episode–color–
dimension–feature–finger). Experiments had one, two, or four
hierarchical levels of rule complexity, which served as a para-
metric variable approximating cognitive demand in the data
analysis to identify regions specifically involved in cognitive
loading at each rule order. The procedure of each experiment
consisted of blocks with manipulation of the abstractness of
stimulus–response rules over three hierarchical levels of rule
complexity.

Before performing each block, participants were shown all
the color mappings that they would encounter for that task, one
block at a time. The mappings were covered, and the participants
have performed one practice block with the mapping set that
they had just memorized. The practice block was identical to
the experimental setting with eight trials. During initial training
outside the scanner, participants were taught the mappings
they would encounter in the fMRI scanning session and then
practiced both outside and inside the scanner.

In each trial of blocks, an instruction screen cued the par-
ticipant which stimulus–response rule mappings were relevant
(until response) before the outset of each block. Specifically,
at the beginning of each cueing task, participants were shown
the size, orientation, as well as texture of each target object
as an example for reference. Individual trials were separated
by a jittered null fixation interval (0–4 s). Instruction screen of
color cue for each block (10 s per block). Participants were then
shown a colored square as a visual contextual cue with a target
object on the screen for 3.9 s followed by a 100-ms noise mask
presented one at a time. Participants could make a response
after the target is present on the screen. The time window of
response allowed for a maximum of 2 s to respond. The reasons
for this arrangement were to make sure the older adults have
enough time to respond. Trials within a block were separated by
jittered fixation-null events (0–4 s).

In the response experiment (Supplementary Fig. 1), partic-
ipants responded based on stimulus–response associations
(color–finger). Based on a learned color-to-response mapping
from instruction, subjects made a button response on an fMRI
manual response pad under their right hand depending on
the color of the presented square. In each subsequent block,
only four color-to-response mappings were relevant for each
block. During 1-Response blocks (R1), all four colors mapped
to a single response. During 2-Response blocks (R2), there
were two of the four colors mapped to each of two responses,

producing response competition. During 4-Response blocks (R4),
each of the four colors uniquely mapped to one of the four
responses, producing the greatest response competition. As
these responses were mapped to colored squares only [same
dimension (e.g., color) and feature (e.g., colors)], the competition
was minimal.

In the feature experiment (Supplementary Fig. 2), partic-
ipants responded based on stimulus–response associations
(color–feature–finger). The feature experiment manipulated
feature competition by varying the number of specific textures
of an object that could map to a given response. Participants
were presented with a series of colored squares one at a time
(3900 ms, followed immediately by a noise mask of 100 ms), and
each square contained a single object. Trials were separated by
a jittered null fixation interval (0–4 s).

In the dimension experiment (Supplementary Fig. 3), the
series of colored boxes each contained two objects that each
varied along four dimensions (texture, shape, size, and orien-
tation) from trial to trial. The participants were required to
decide whether the objects matched along only one of those
dimensions on each trial. The relevant dimension was cued
by the colored box. Competition increased with the number of
alternative dimensions for a given block increasing from one
(low) to two (mid) to four (high).

The context experiment (Supplementary Fig. 4) was identical
in terms of the task instructions to the dimension experiment,
except that two dimensions were always relevant across all
blocked conditions. Moreover, in the context task, a given color
cue could map to different dimensions on different blocks (in
the dimensioning task, a given color is always mapped to one
dimension). Thus, in the context task, it is necessary to use infor-
mation about the current temporal frame (the current block or
the most recent instructions) to select the appropriate mapping
for a given color cue. Thus, the competition was manipulated
by varying the frequency across blocks that a given color cue
(the context) mapped to a specific dimension. Certain color-
to-dimension mappings were relevant for 100% of the blocks
in which that cue was encountered, other color-to-dimension
mappings were relevant for 50% of blocks in which that color was
encountered, and other color-to-dimension mappings were rel-
evant on only 25% of blocks in which that color is encountered.
In the latter two cases, determining which color-to-dimension
mapping is currently relevant requires the selection of a partic-
ular color-to-dimension mapping based on the instructions of
the current block. In this way, as the frequency of a given color-
to-dimension mapping decreases, uncertainty or competition
with other mappings increases and so selection of the currently
relevant mapping requires more control.
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Experimental Apparatus

All experiments were coded, presented, and collected in Presen-
tation (Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA,
www.neurobs.com), which is frequently used as task creation
and presentation software application in fMRI studies. Across
all experiments, visual cues consisted of centrally presented
colored squares (subtending 68◦ of visual angle). The fixation
target was designed as a previous study (Thaler et al. 2013)
suggested for combined low dispersion and microsaccade rate to
improve optimal stability of ocular fixation across experiments.
For a given experiment, one of two distinct color sets of eight
colors was used twice across the four experiments, and the
order was counterbalanced across subjects. Object stimuli used
in the feature, dimension, and context experiments consisted of
grayscale, 3-D shapes. Objects were images labeled with permis-
sion for reuse with modification from objects—Textures.com
(https://www.textures.com/) designed to be unfamiliar, difficult
to name, and without real-world counterparts. Piloting deter-
mined that these feature variations in these objects were easily
distinguishable. The four mini experiments (response, feature,
dimension, and context) were tested in an fMRI scanning ses-
sion. Experiments were counterbalanced for order across sub-
jects, while the order of experiments was performed as fol-
lows (based on Badre and D’Esposito 2007): The context exper-
iment was always performed first, the dimension experiment
was always performed in the session after the context experi-
ment, the response experiment was performed at third after the
dimension, and the feature experiment was performed at last.
The rest of each experiment was determined by the participant.

In each block, thirty-two trials consisted of twenty-four trials
for the target event, and eight trials for the fixation-null event
(25%) were included in each run, respectively. The trials have
scheduled the order and timing of events for event-related fMRI
experiments using NeuroDesign (http://neuropowertools.org/de
sign/start/) across participants. To minimize discomfort due
to a long period of scanning in older participants, we short-
ened the number of trials across experiments. For the context
experiment, participants performed 192 trials consisting of six
blocks of mappings. The order of blocks, cycled twice, was a
block of low-competition condition, followed by a block of high-
competition condition, and finally by a block of midcompetition
condition. The response, feature, and dimension experiments
consisted of three blocks, and each competition condition (from
low, mid, to high) was randomly presented for order across
participants. Each block was self-paced after participants under-
stood the instruction and were fully counterbalanced for an
order for the response, feature, and dimension experiments. All
participants were encouraged to respond as quickly and as accu-
rately as possible on every trial. The specific color mappings,
responses, and objects used in the tasks were counterbalanced
across subjects and two-color sets were used to minimize confu-
sion between tasks. Where applicable in each experiment, color
cue, response, feature, and dimension switches were controlled
for frequency across blocks of each condition. All combinations
of colors and features in the feature experiment and colors
and shapes in the dimension and context experiments were
controlled across the competition and switching conditions.

fMRI Acquisition

The imaging data for all four experiments were collected
on a General Electric (GE) Discovery MR750 3 Tesla scanner

(General Electric Medical Systems, Milwaukee, USA) using a
32-channel receive-only phased-array head coil in the Mind
Research Imaging center at the National Cheng Kung University.
High-resolution structural images were acquired with fast-SPGR
consisting of 166 axial slices (TR/TE/flip angle 7.6 ms/3.3 ms/12◦;
a field of view (FOV) 22.4 × 22.4 cm2; matrices 224 × 224; slice
thickness 1 mm). The functional EPI images were collected using
an interleaved T2∗ weighted gradient-echo planar imaging (EPI)
pulse sequence (TR/TE/flip angle, 2000 ms/30 ms/77◦; matrices,
64 × 64; FOV, 22 × 22 cm2; slice thickness, 4 mm; voxel size,
3.4375 × 3.4375 × 4 mm). A total of 75 volumes were acquired for
each block; the first five were dummy scans and were discarded
to avoid T1 equilibrium effects. Moreover, localizer scans (5 min)
and distortion correction scans (B0 field map and a pair of spin-
echo EPI scans with opposite phase-encoded directions) are also
acquired. The visual stimulus was displayed using Presentation
(Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.
neurobs.com) on an MSI GS65 Stealth laptop and was projected
onto a screen that was viewed through a mirror attached to the
head coil.

Statistical Analysis—Behavioral

Average median reaction time (mRT) across all experiments
and mappings were obtained for each participant. Delta reac-
tion time (dRT) was the calculated difference between mRT
and overall averaged reaction time in each mapping across all
participants for taking reaction time distributions and individ-
ual differences into account (Wagenmakers and Brown 2007;
Pratte et al. 2010). Inverse efficiency score (IES) (Townsend and
Ashby 1978) was also calculated to deal with speed–accuracy
tradeoffs in RT experiments. The higher the IES, the lower the
performance accuracy. Group comparison between young and
older adults was also conducted using the independent sam-
ple t-test (see Supplementary Tables 2–4). Pearson’s correlation
analysis was also conducted to measure the statistical associ-
ation between the behavioral performance of fMRI tasks and
demographic measurements (see Supplementary Table 5). Addi-
tionally, we performed the Bayesian version of statistical tests
to examine the strength of evidence in favor of our hypothe-
sis by JASP (Version 0.14.1, https://jasp-stats.org/). Specifically,
the Bayes factor (BF) provides an easily interpretable index of
preference for one hypothesis over another that has advantages
over traditional null hypothesis testing techniques (Keysers et al.
2020). It can be interpreted as a measure of the strength of
evidence in favor of one theory among two competing theories.
BFs are indices of relative evidence of one “model” over another.
BF was computed as a Savage-Dickey density ratio (Makowski
et al. 2019), which is also an approximation of a BF compar-
ing the marginal likelihoods of the model against a model in
which the tested parameter has been restricted to the point-
null (Wagenmakers et al. 2010, 2018). For both the behavioral
and following fMRI results, we report classical frequentist P-
values and BFs, which provide a more conservative evaluation
of the correlations. We also provide using the Bayesian indepen-
dent t-tests with the BF for group comparison. We provide BF10

that is giving the evidence for alternative hypotheses over null
hypotheses. BFs may be interpreted as proportional evidence
for the presence or absence of an effect. For instance, a BF10 of
five indicates that the data are five times more likely to occur
under the alternative hypothesis than under the null hypothesis
(van Doorn et al. 2021). In addition, we can interpret the BF
categorically based on a grouping of evidence accumulated. For

www.neurobs.com
Textures.com
https://www.textures.com/
http://neuropowertools.org/design/start/
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https://jasp-stats.org/
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a detailed explanation of the Bayesian statistics and the BF, see
van Doorn et al. (2021).

Statistical Analysis—Structural Volumes

Structural images were analyzed with FSL-VBM (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM) (Ashburner and Friston
2000, 2001; Bookstein 2001) for optimizing voxel-based mor-
phometry analysis. First, structural images were extracted
from nonbrain tissues using BET and gray matter segmented
before being registered to the MNI 152 standard space with
nonlinear registration (Andersson et al. 2007). The thresholded
images were extracted and averaged to generate a GM
template for this study. After creating the GM template, GM
images were nonlinearly reregistered to the template and
adjusted for local contraction because of the nonlinear spatial
transformation. The registered partial volume images were
then adjusted for local contraction by dividing the Jacobian’s
warp field. The adjusted segmented images were smoothed
to sigma of 3 mm with an isotropic Gaussian kernel. Group
comparison of gray matter differences between young and older
adults was measured using permutation-based nonparametric
testing (Winkler et al. 2014) incorporating threshold-free cluster
enhancement (TFCE) with the significance of P value at <0.05
(Smith and Nichols 2009; Salimi-Khorshidi et al. 2011), family-
wise error (FWE) was used for correcting multiple comparisons.
To process structural images, we also derived voxel-wise
gray matter nuisance regressors for each participant, which
were used in the analysis of functional images to control for
structural differences on the individual’s voxel level, following
the method used by Oakes et al. (2007). After tissue-type
segmentation using FSL’s automated segmentation tool (FAST)
(Zhang et al. 2001), gray matter images were normalized
into MNI 152 standard space and then demeaned across
the participants. Further mediation analysis is conducted
to verify whether the functional changes are the reflec-
tion of atrophy. For the mediation analysis, we used Mplus
(Mangold 2017) emulation on JASP statistical software (https://
jasp-stats.org/) (JASP Team 2020) to build a mediation path
model without any latent variables. This estimated both the
direct and indirect effects on age differences in functional
changes across experiments. The model was estimated using
maximum likelihood estimation and bootstrapping methods
(Vinet and Zhedanov 2011). The significance of indirect effects
was assessed with a 95% confidence interval. To estimate
confidence intervals, we used a bias-corrected method with
the percentile bootstrap estimation approach, which ran
1000 bootstrap iterations that were implemented (Hayes
2009). Adopting a two-tailed P < 0.05, we rejected the null
hypothesis if the interval did not include zero. In particular, the
rationale of the bootstrapping approach over other traditional
approaches of mediation analysis is its improved sensitivity for
estimating indirect effects (Demming et al. 2017). To interpret
the results, if the CI included zero, we concluded that the
indirect effect was not significant because zero suggests no
relationship between the mediator and dependent variable.
Conversely, the CIs that did not include zero suggested that
there was a significant relationship (Kane and Ashbaugh 2017).
Standardized coefficients are reported after the data were
transformed to z-scores and before entry into the model (see
Supplementary Table 6).

Statistical Analysis—fMRI

All MR image data analyses were conducted using FSL (version
5.0.10) (Jenkinson et al. 2012). Computation was performed on
a Dell PowerEdge server with a Linux system (Debian/Ubuntu)
(32 Cores/64 Threads and 32 GB Memory). All raw images output
from the scanner were converted by conversion tool “dcm2niix”
to NIfTI format (https://www.nitrc.org/plugins/mwiki/index.
php/dcm2nii:MainPage). In FSL, analyses were carried out using
the FMRI Expert Analysis Tool (FEAT, v6.00). Brain extraction
was performed on both the functional and structural data. The
Brain Extraction Tool (BET) (Smith 2002) was applied to each
structural image from the command line before preprocessing,
and for functional data with the BET option within the Prestats
module of FEAT, time-series statistical analysis was carried out
using FILM with local autocorrelation correction (Woolrich et al.
2001, 2004). Specifically, preprocessing steps included MCFLIRT
for motion correction (Jenkinson et al. 2002), nonbrain removal,
spatial smoothing with a Gaussian kernel (5 mm), and high-
pass temporal filtering with Gaussian-weighted least-squares
straight-line fitting (sigma = 50s) (Smith et al. 2004). Field maps
were generated (Duong et al. 2020) for distortion correction.
Specifically, we calculate the difference in phase between the
two images is proportional to the difference in echo times and
the B0 inhomogeneity. The field map is calculated by taking
the difference between the two-phase images and dividing that
by the echo time difference using TOPUP (https://fsl.fmrib.ox.a
c.uk/fsl/fslwiki/topup). Boundary-based registration (Greve and
Fischl 2009) was performed in a two-step procedure using FLIRT
(FMRIB’s Linear Registration Tool) (Jenkinson and Smith 2001):
First, field map–corrected EPI images were registered to the high-
resolution brain T1-weighted structural image (6-parameter
affine transformation). Second, the transformation matrix (12-
parameter affine transformation) from the T1-weighted image
to the Montreal Neurological Institute (MNI) template brain was
estimated. This allowed for transforming the EPI images to the
standard MNI template brain.

As each mini experiment constituted an independent
dataset, separate statistical models were constructed for each
of the four experiments (i.e., response, feature, dimension, and
context) under the assumptions of the general linear model.
Epochs corresponding to each block of trials within a session
were included in the statistical model along with regressors
for the instruction periods at the beginning of each block. For
each analysis, at the first level, a separate .fsf file was created
for each scanning session. Runs were then combined as part
of a second-level fixed-effects model, yielding results that
were subsequently inputted into a group analysis. Furthermore,
blocks of each mapping condition were weighted as a parametric
regressor in the model. Statistical effects were estimated using
a subject-specific fixed-effects model, with session-specific
effects and low-frequency signal components (<0.01 Hz) treated
as confounds. Linear contrasts between target trials and null
trials were used to obtain subject-specific estimates for each
effect. These estimates were entered into a third-level group
comparison analysis treating subjects as a random effect, using
GLM model for two-sample unpaired t-test against a contrast
value of zero at each voxel. These data were then cluster
corrected so that only clusters with a Z-score of at least 3.1
and a P value lower than 0.001 survived.

All GLM analyses were carried out in the following steps
(Beckmann et al. 2003). First, blood oxygenation level-dependent
(BOLD) time series were prewhitened with local autocorrelation

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM
https://jasp-stats.org/
https://jasp-stats.org/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage
https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup


Aging Frontal Lobe Organization Yao and Hsieh 2803

correction. A first-level FEAT analysis was carried out for each
run of each subject. Second, a second-level (subject-level) fixed-
effect (FE) analysis was carried out for each subject that com-
bined the first-level FEAT results from different runs using the
summary statistics approach. Finally, a third-level (group-level)
mixed-effect (ME) analysis using FSL’s FLAME module (FMRIB’s
Local Analysis of Mixed Effects) was carried out across subjects
by taking the FE results from the previous level and treating
subjects as a random effect (Woolrich et al. 2004). Specifically,
analyses in the third level, the main effect of each experiment,
were contrasting to obtain the group BOLD response for each
experiment. The significance threshold of group-level results
was set to P < 0.05 with family-wise error rate (FWE) corrected
and cluster-wise inference with a P ≤ 0.001 uncorrected cluster
forming threshold. To understand the main and interaction
effects of the fMRI analyses better, we extracted the parameter
estimates of the GLM for each participant. For each cluster
of the main and interaction effects, a mask was created. For
each mask, mean parameter estimates were extracted for each
condition in each group of participants. Task-related effects will
be estimated according to the general linear model at each
voxel. Group effects will be estimated using a random-effects
analysis to highlight brain regions activated in common in all
subjects along with group-related differences, and the statistical
maps will be corrected for false discovery rate (FDR). All reported
whole-brain results were corrected for multiple comparisons.
We first identified clusters of activation by defining a cluster-
forming threshold of the z statistic (z > 3.1, P < 0.001) (Worsley
2012; Woo et al. 2014; Eklund et al. 2016). Then, an FWE corrected
P value (P < 0.05) of each cluster based on its size was estimated
using Gaussian random field theory (Worsley et al. 1992). In
addition, we performed a nonparametric permutation test using
the randomize function in FSL (threshold-free cluster enhance-
ment or TFCE option (Smith and Nichols 2009) to identify sig-
nificant clusters of activations on the contrasts reported in the
study. All analyses conducted were adjusted for educational
experiences. Based on results from the whole-brain analysis,
we then use an independent and unbiased regions-of-interest
(ROI) approach for confirming parametric effects on each level
of mapping across independent experiments. Blocked paramet-
ric effects obtained in the group-level voxel-based contrasts
between groups were subsequent with ROI analyses. Group
functional ROI analysis was used to verify the characteristic
event-related signal change in voxels identified by a prior block-
level contrast. Moreover, ROI analysis based on prior findings
with identical tasks (Badre and D’Esposito 2007) was also ana-
lyzed. ROI has then created a sphere mask based on signifi-
cant neighboring voxels within a 5-mm radius around a chosen
maximum z-statistic from the blocked parametric contrast at
each level of mapping of experiments. We applied the Harvard–
Oxford subcortical probabilistic atlas thresholded at 25% proba-
bility when performing the ROI analysis for reducing the effects
of outliers. We then extracted the mean contrast of parameter
estimates within the mask from each participant and used it
for further statistical analysis. Moreover, seed-based correlation
analysis between age difference in activation of ROIs and behav-
ioral performance (i.e., working memory capacity and mRT dif-
ference scores (dRT)) for each experiment across all participants
was also conducted (Supplementary Table 7–9). According to a
recent study (Qin and Basak 2020), the relationship between age
differences in overactivations and task performance indicates
different possible explanations (Koen and Rugg 2019). Specifi-
cally, a positive correlation between activations from age differ-
ence in activation of ROIs and task performance would indicate

Figure 1. A box and whisker plot for average RT performance across four fMRI
experiments. Generally, increases at higher mapping conditions are evident

across all correct trials except mapping at midlevel of context experiment;
RT = average median reaction time; msec = millisecond.

that such activations are compensatory to task performance. A
negative correlation between activations and task performance
would suggest that such activations are detrimental to task
performance.

Results
Behavioral Performances

Average mRT and IES on mappings between young and older
adults were reported as follows. In RT measures, significant
age differences were observed on all mappings except for the
most demanding mappings on context (t(36) = 0.712, P = 0.481)
and dimension (t(36) = 0.28, P = 0.781) experiments. Average RT
from the four fMRI experiments was reported in Figure 1. More-
over, in the IES measures, significant age differences similar to
behavioral RT performances were observed across all competi-
tion except for the most demanding mappings on dimension
(t(36) = −0.626, P = 0.535) (for detail, see Supplementary Tables 2–
4). Correlation coefficient analysis shows significant linear rela-
tionship between IES scores across experiments and working
memory span; specifically, working memory span is negatively
correlated with IES scores (Supplementary Table 5) of response
experiments (R1 (P = 0.03, r = −0.352), R2 (P = 0.029, r = −0.355),
R4 (P = 0.01, r = −0.414)), feature experiments (F4 (P = 4.611e−5,
r = −0.611)), dimension experiments (D1 (P = 0.004, r = −0.46), D2
(P = 0.001, r = −0.502)), and context experiments (C4 (P = 5.945e−5,
r = −0.604)) (Supplementary Table 5). Moreover, correlation coef-
ficient analysis shows significant linear relationship between
RT performance of the task across experiments and working
memory span; specifically, working memory span is negatively
correlated with RT performance of response experiments (R1
(P = 0.038, r = −0.338), R2 (P = 0.01, r = −0.415), R4 (P = 7.747e−4,
r = −0.522)), feature experiments (F2 (P = 0.047, r = −0.325), F4
(P = 0.001, r = −0.512)), dimension experiments (D1 (P = 0.009,
r = −0.419), D2 (P = 0.043, r = −0.331)), and context experiments
(C2 (P = 0.047, r = −0.324)) (Supplementary Table 10).

Structural Differences between Older and Young Adults

We also investigated whole-brain voxel-wise differences in
gray matter (GM) volume in both young and older adults, to

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
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determine whether the age-related structural GM changes at
the individual level modulate the task-evoked functional brain
activations. Voxel-based morphometry (VBM) (Ashburner and
Friston 2000, 2001; Bookstein 2001) analyses revealed that young
adults had a greater overall GM volume (754.04 ± 34.23 mm3)
than older adults (690.1 ± 41.64 mm3) (t(36) = 2.339, FWE cor-
rected P = 0.009, Cohen’s d = 1.463). Specifically, the most
prominent age differences of GM volume differences were in the
superior parietal lobule, superior frontal gyrus, middle temporal
gyrus, superior temporal gyrus, and frontal pole after adjusting
for education levels (see Supplementary Table 11).

fMRI Results

Group BOLD response changes to mapping blocks for each exper-
iment were reported in Figures 2 and 3. All whole-brain fMRI
results were based on cluster-level inference and FWE corrected
for multiple testing at P < 0.05. Two procedures were imple-
mented. First, for cluster-level inference using Gaussian random
field theory, we used z > 3.1 (P = 0.001) as the cluster-forming
threshold (Eklund et al. 2016). Second, for cluster-level infer-
ence based on the nonparametric permutation test, we used
the threshold-free cluster-enhancement procedure (Smith and
Nichols 2009). Group comparison results showing significant
clusters of parametric activation in each experiment can be seen
in Supplementary Tables 12–14 and Figure 4. For the parametric
effects on context experiments, we observed significant BOLD
response differences when contrasting the older with young
adults (see Fig. 6, and Supplementary Table 12). These BOLD
response differences were seen in the brain regions includ-
ing the left inferior frontal gyrus (−48, 28, 20), left temporal
anterior fusiform gyrus (−34, −2, −40), posterior left temporal
fusiform cortex (−38, −28, −32), and superior parietal lobe (8,
−62, −66), indicating stronger parametric BOLD response in
these brain regions of older adults associated with increased
mappings of context experiment across blocks. For the para-
metric effects on dimension experiments, we observed signif-
icant BOLD response differences when contrasting the older
with young adults (see Supplementary Table 13). These BOLD
response differences were seen in the brain regions including
the right inferior parietal lobule (44, −66, 24), left middle tempo-
ral gyrus (−38,−60, 12), left superior parietal lobule (−14,−56, 68),
and left frontal orbital cortex (−42, 24, −18), indicating stronger
parametric BOLD response in these brain regions of older adults
associated with increased mappings of dimension experiment
across blocks. For the parametric effects on feature experiments,
we observed significant BOLD response differences when con-
trasting the older with young adults (see Supplementary Table
14). These BOLD response differences were seen in the brain
regions including middle/superior frontal gyrus (30, −6, 64), right
precentral gyrus/premotor cortex (32, −14, 64), posterior tempo-
ral fusiform cortex (−32, −40, −22), and juxtapositional lobule
cortex (formerly known as the supplementary motor cortex)
(0, −12, 54), indicating stronger parametric BOLD response in
these brain regions of older adults associated with increased
mappings of feature experiment across blocks. No significant
difference in parametric brain activation when contrast with
the older adults to young adults during the response experi-
ment was observed. Also, contrasting young adults with older
adults observed no significant differences across experiments.
Specifically, blocked parametric effects obtained in the group-
level voxel-based contrasts between groups were subsequent
with ROI analyses. Group functional ROI analysis was used to

verify the characteristic event-related signal change in voxels
identified by a prior block-level contrast. ROI results confirm
these regions’ significant differences between the young and
older adults. Specifically, older adults exhibit stronger BOLD
response in left inferior frontal gyrus (−48, 28, 20; t = 2.907;
df = 36; P = 0.0006), left temporal anterior fusiform gyrus (−34, −2,
−40; t = 2.228; df = 36; P = 0.0032), posterior left temporal fusiform
cortex (−38, −28, −32; t = 4.317; df = 36; P = 1.184e−4), and supe-
rior parietal lobe (8, −62, −66 (t = 3.8; df = 36; P = 5.379e−4); 4,
−72, 52 (t = 5.294; df = 36; P = 6.106e−6)) across the parametric
context competition. For the parametric dimension competition,
older adults exhibit stronger BOLD response in right inferior
parietal lobule (44, −66, 24; t = 2.547; df = 36; P = 0.015), left middle
temporal gyrus (−38, −60, −12; t = 2.934; df = 36; P = 0.006), left
superior parietal lobule (−14, −56, 68; t = 3.052; df = 36; P = 0.004),
and left frontal orbital cortex (−42, 24, −18; t = 2.263; df = 36;
P = 0.03). For the parametric feature competition, older adults
exhibit stronger BOLD response in right precentral gyrus (30, −6,
64; t = 3.19; df = 36; P = 0.003), right premotor cortex (32, −16, 68;
t = 3.47; df = 36; P = 0.001), left temporal fusiform cortex (−32, −40,
−22; t = 3.656; df = 36; P = 8.125e−4), right premotor cortex (32,
−20, 56; t = 2.398; df = 36; P = 0.022), and juxtapositional lobule
cortex (formerly known Supplementary Motor Cortex) (0, −12,
54, t = 2.780; df = 36; P = 0.009). Moreover, ROI analysis based on
prior findings with an identical task (Badre and D’Esposito 2007)
was also analyzed. In their findings, a rostro–caudal gradient
was evident as the level of abstraction increased. Specifically,
response competition activated the left dorsal premotor cortex
(PMd; −30 −10 68), and ROI analysis reveals similar sensitivity
of dorsal premotor cortex (PMd) activation to the parametric
response competition experiments (see Fig. 6A). Other regions
from prior findings (Badre and D’Esposito 2007) also observed
similar sensitivity of brain activation (see Fig. 6) in pre-PMd = left
anterior dorsal premotor cortex(−38, 10, 34), IFS = left inferior
frontal sulcus (−50, 26, 24), and FPC = left frontopolar cortex (−36,
50, 6). Moreover, the seed-based correlation between age dif-
ferences in brain activations and behavioral performances (i.e.,
mRT difference and working memory) was reported in Tables 2
and 3.

Mediation Analysis

In the mediation model, our goal is to determine whether the
age-related functional changes are the reflection of atrophy.
The model parameters are as follows: X is the age, Y is the
brain regions of age differences in task-related functional
changes from each experiment, and M is the gray matter
volumes across all participants. Of the experiments, we
found significant indirect effects of gray matter volumes
on three age differences in functional changes in context
experiments (Supplementary Fig. 5). Specifically, significant
mediation (indirect) effects of gray matter volumes were found
in age differences of the superior parietal lobe (z = 4.126,
P = 3.684e−5 [95% CI = 0.392 ∼ 1.102]). The parameter estimates
of mediation models were reported in the Supplementary
Materials.

Discussion
We adopted Badre’s fMRI paradigm (Badre and D’Esposito 2007)
to investigate whether an age effect on frontal lobe activation,
which is organized hierarchically based on abstract levels of
representation, could be found. Consistent with our hypothesis

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
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Figure 2. Task activation for parametric effects across four experiments in young and older adults. Z (Gaussianized T/F) statistic images were thresholded using clusters
determined by Z > 3.1 and a (corrected) cluster significance threshold of P = 0.001.

on behavioral performance, increasing competition under each
condition was found, which was associated with a parametric
increase in mRT in both young and older groups although older
adults showed additional general RT slowing. The efficiency
score was also investigated to examine whether speed–accuracy
tradeoffs in RT experiments with respect to the abstractness
of the representation represent a strategic choice in the older

group. Results of behavioral performances at different abstrac-
tion levels suggest both response time and IES score decline
when the levels of abstraction increased. Specifically, age effects
on behavioral performance can prolong the RT and efficiency
in comparison with young adults, indicating poor performance
accuracy in the older adults. Behavioral findings indicated that
age-related slowing is seen in response speed in tasks that
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Figure 3. Task activation for parametric effects across four experiments in young and older adults. Z (Gaussianized T/F) statistic images were thresholded using clusters
determined by Z > 3.1 and a (corrected) cluster significance threshold of P = 0.001.

required the selection of sets of stimuli–response mappings. To
address our first goal, the overall behavioral performance of
young adults was consistent with the original study by Badre,
while older adults exhibited declines in task performances more
than young adults. Furthermore, the behavioral performances
across four experiments showed that working memory capacity
appears to be negatively associated with RT and positively asso-
ciated with efficiency score, indicating age-related differences
in working memory capacity influence the processing levels of
abstractions.

On the fMRI findings, BOLD results demonstrated a clear
trend in hierarchical gradient patterns depending on abstraction
levels in both age groups, while older adults exhibited overaction
in frontal-associated regions. Specifically, our results demon-
strate that coherent patterns of fMRI activation when compared
with a prior study (Badre and D’Esposito 2007) in which the func-
tional gradient along the rostro–caudal axis of the frontal lobe
exists whereby progressively anterior subregions of the frontal

lobe are associated with higher-order processing requirements
of more abstract action planning. ROI results from group activa-
tion support these findings. Importantly, age-related differences
of task-evoked brain activation patterns were variable within
the four different difficulty manipulations, reflecting more hier-
archical activation across different task manipulations. These
findings provide empirical support for the hypothesis that cog-
nitive control is organized in a representational hierarchy along
the rostro–caudal axis of the frontal lobes (Badre 2008; Badre
et al. 2009; Badre and D’Esposito 2007, 2009). Moreover, our
findings are also in agreement with a recent view in which
the functional gradient at each order of cognitive control is not
restricted to the frontal lobe but also includes regions of medial
frontal, parietal, and temporal cortices (Choi et al. 2018). This
observation is consistent with a recent study in which it was
reported that older adults were recruiting more distributed cor-
tical resources as task demands increased (Crowell et al. 2020).
Furthermore, age differences in overactivation in different brain
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Figure 4. Age differences of BOLD response in contrast with older and young adults across experiments (target > null trial). IFG = inferior frontal gyrus; TAFG = temporal

anterior fusiform gyrus; TPFG = temporal posterior fusiform gyrus; SPL = superior parietal lobule; FOC = frontal orbital cortex; TOG = temporal occipital gyrus;
IPL = inferior parietal lobule; PMC = premotor cortex; SMA = supplementary motor cortex; ITPFG = inferior temporal fusiform gyrus.

Table 2 Seed-based correlation between parametric effect on age differences of ROIs and mean changes in mRT difference for each experiment

Experiment Brain area MNI coordinates Pearson’s r P BF10

x y z

Context Left inferior frontal gyrus −48 28 −20 −0.642 1.398e−5∗∗∗ 1771.274∗∗∗
Left temporal anterior fusiform gyrus −34 −2 −40 −0.340 0.037∗ 11.652∗
Left temporal fusiform cortex, posterior division −38 −28 −32 −0.566 2.132e−4∗∗∗ 148.381∗∗∗
Superior parietal lobe 8 −62 66 −0.525 7.225e−4∗∗∗ 49.567∗∗
Superior parietal lobe 4 −72 52 −0.613 4.211e−5∗∗∗ 646.613∗∗∗

Dimension Right inferior parietal lobule 44 −66 24 −0.269 0.102 0.731
Left middle temporal gyrus, temporo-occipital part −38 −60 12 −0.207 0.212 0.426
Left superior parietal lobule −14 −56 68 −0.030 0.858 0.205
Left frontal orbital cortex −42 24 −18 −0.127 0.449 0.266

Feature Right precentral gyrus/premotor cortex 30 −6 64 −0.253 0.125 0.627
Right precentral gyrus/premotor cortex 32 −14 64 −0.217 0.190 0.461
Right precentral gyrus/premotor cortex 32 −16 68 −0.176 0.289 0.347
Temporal fusiform cortex, posterior division −32 −40 −22 −0.142 0.395 0.286
Right precentral gyrus/premotor cortex 32 −20 56 −0.252 0.127 0.620
Juxtapositional lobule cortex (formerly known as
supplementary motor cortex)

0 −12 54 −0.031 0.853 0.205

∗P < 0.05;
∗∗∗P < 0.001; Behavioral performance (i.e., mRT difference scores (dRT)) was calculated by subtracting the average mRTs from the RT of correct trials across
participants in each experiment.

regions, including inferior frontal gyrus, frontal orbital cortex,
temporal fusiform gyrus, superior parietal lobe, precentral gyrus,
premotor cortex, and supplementary motor cortex, in three of
four experiments were observed. These age-related functional
gradient differences also were noted along the rostro–caudal
axis of the frontal lobe depending on the levels of abstractions.
General findings were consistent with numerous neuroimaging
studies (Li et al. 2015; Fjell et al. 2017; Escrichs et al. 2021) that
demonstrated that older adults tend to activate the brain to
a greater extent than younger adults during the performance
of a task (Spreng et al. 2010). This observation is commonly
found to be activated in frontal regions (Davis et al. 2008; Park
and Reuter-Lorenz 2009; Reuter-Lorenz and Park 2014). This

finding is typically interpreted as evidence for neurocognitive
compensation (Reuter-Lorenz and Cappell 2008) coupled with
behavioral performance if a significant, positive, brain–behavior
relationship is observed. In our study, we observed overrecruit-
ment activation primarily in the context experiment, which
is based on the information from a current temporal frame
(e.g., episodic control). Importantly, only age differences in the
context experiment showed a significant negative correlation
between parametric brain activity and dRT performance across
mappings, indicating older adults possibly attempt to recruit
overactive more cortical activity to delay cognitive decline while
at the highest level of task-difficulty manipulation. According
to the frontal lobe hypothesis (Cabeza and Dennis 2012), the
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Table 3 Seed-based correlation between parametric effect on age differences of ROIs and working memory capacity for each experiment across
participants

Experiment Brain area MNI coordinates Pearson’s r P BF10

x y z

Context Left inferior frontal gyrus −48 28 −20 −0.241 0.145 0.563
Left temporal anterior fusiform gyrus −34 −2 −40 −0.510 0.001∗∗ 34.900∗∗
Left temporal fusiform cortex, posterior division −38 −28 −32 −0.457 0.004∗∗ 10.999∗
Superior parietal lobe 8 −62 66 −0.417 0.009∗∗ 5.337
Superior parietal lobe 4 −72 52 −0.464 0.003∗ 12.680∗

Dimension Right inferior parietal lobule 44 −66 24 −0.322 0.049∗ 1.316
Left middle temporal gyrus, Temporo-occipital part −38 −60 12 −0.354 0.029∗ 2.739
Left superior parietal lobule −14 −56 68 −0.495 0.002∗∗ 24.507∗
Left frontal orbital cortex −42 24 −18 −0.350 0.031∗ 1.895

Feature Right precentral gyrus/premotor cortex 30 −6 64 −0.204 0.219 0.419
Right precentral gyrus/premotor cortex 32 −14 64 −0.308 0.030∗ 1.115
Right precentral gyrus/premotor cortex 32 −16 68 −0.261 0.113 0.678
Temporal fusiform cortex, posterior division −32 −40 −22 −0.472 0.003∗∗ 14.970∗
Right precentral gyrus/premotor cortex 32 −20 56 −0.388 0.035∗ 3.303
Juxtapositional lobule cortex (formerly known as
supplementary motor cortex)

0 −12 54 −0.407 0.018∗ 4.494

∗P < 0.05; ∗∗∗P < 0.001; Behavioral performance (i.e., mRT difference scores (dRT)) was calculated by subtracting the mean RTs from the RT of correct trials across
participants in each experiment.

observation of attempted compensation would be greatest in
those that need it the most but decline with advanced brain
deterioration. With respect to our hypothesis, a negative cor-
relation between activation and task performance would sug-
gest that such activation is detrimental, rather than compen-
satory, to task performance (Qin and Basak 2020). Specifically,
observed negative correlations between age difference-related
brain activity in context experiment and dRT were found (see
Table 2), indicating overrecruitment of brain activity in these
regions associated with the relatively poor individual perfor-
mance of RT deviation compared with the average performance.

To verify these patterns, the results reported in the scatter
plot (see Fig. 5) show that the trends of correlation in both
groups reveal that stronger overrecruitment brain activity
in older adults covaries negatively with task performances
with high cognitive control demands. For results illustrated
in Figure 5D as an example, the task performance of young
adults covaried less with overrecruitment of brain activity in the
temporal anterior fusiform gyrus, while older adults exhibited
stronger brain activity in this same region to involve in their
task performance. With regards to the PASA hypothesis, our
primary observed overactivation in the context experiments
for older adults showed no reduction in activity in occipital
regions (such as the visual processing area) in addition to
worse performance (see Supplementary Table 15). According to
the PASA hypothesis, older adults with the weakest occipital
recruitment are the ones who are more dependent on PFC
overrecruitment to maintain performance. In a classic study
(Grady et al. 1994), older and younger adults were matched in
terms of accuracy but differed in RTs, so the authors further
suggested that additional recruitment of PFC functions would
allow older adults to maintain a good accuracy level at the
expense of slower RTs. However, our current results did not seem
to support such a compensatory theory. Also, for the HAROLD
model, age differences of compensatory activity showed no
positive correlation task performance despite the observed
patterns of bilaterality of PFC activation in older adults during

the highest task demands. For example, Reuter-Lorenz et al.
(2000) found that older adults who showed bilateral recruitment
during working memory tasks showed faster reaction times
(Reuter-Lorenz et al. 2000). Likewise in a recent study by
Bergerbest et al. (2009), activation in the contralateral PFC
region recruited by older adults in the right PFC was positively
correlated with the magnitude of behavioral priming in these
people. Nonetheless, possible mechanisms, including a lack of
efficiency in the utilization of neural resources or a reduction in
the selectivity of responses, known as dedifferentiation (Grady
2008, 2012), may also explain age-related increases in brain
activity. Age-related overrecruitment has been interpreted in
a way of neural dedifferentiation, especially when it is observed
to covary negatively with task performance (i.e., deterioration)
(Stevens et al. 2008; De Chastelaine et al. 2011). This observation
was consistent with the finding from most aging neuroimaging
studies in which older adults activate extra brain regions
compared with the regions that are activated in younger adults
during a cognitive task (Spreng et al. 2010). Such overactivation
in older adults has been reported during tasks of episodic
memory retrieval (Cabeza 2002; De Chastelaine et al. 2011).
According to our design of the task, some of these observed
overactivations in older adults on context experiments may
reflect age-related differences in neural recruitment for the
most control-related demands.

These age differences of brain activations between the
parametric effect across mappings obtained in each experiment,
showing overactivation of brain regions in older adults, reflect
functional mechanisms either in compensatory activity or in
dedifferentiation. Overactivation in prefrontal brain areas has
been previously observed in older adults during fMRI tasks,
giving rise to different theories (Davis et al. 2008; Reuter-Lorenz
and Cappell 2008). One of which is the compensation-related
utilization of the neural circuits hypothesis (Reuter-Lorenz
and Cappell 2008). According to this utilization of the neural
circuit’s hypothesis, cognitive demands of the task play a
critical role in age-related differences in neural recruitment. For

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
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Figure 5. Scatter plots between age difference of ROIs and dRT on parametric effects of context experiment across participants. Correlation between age difference in

brain activity and dRT of context experiment across participants. dRT = delta reaction time; msec = milliseconds; old = older adults; young = young adults; IFG = inferior
frontal gyrus; TAFG = temporal anterior fusiform gyrus; TPFG = temporal posterior fusiform gyrus; SPL = superior parietal lobule.

lower task demands, older adults are hypothesized to recruit
additional brain regions to compensate for age-related neural
degradation, resulting in similar performance levels to those
of younger adults. However, the dedifferentiation hypothesis
does not necessarily predict that age-related overactivation
reflects functional compensation (Rajah and D’Esposito 2005).
This hypothesis considers that with increasing age, brain
regions become less specialized in their functions, resulting
in generalized spreading of brain activity to other brain regions.
For example, younger adults were found to recruit the medial
temporal lobe for explicit learning and the striatum for implicit
learning, whereas older adults did not show a clear neural
distinction between these two types of memory (Cabeza and
Dennis 2012). Similarly, category-specific brain regions, which
respond selectively to one type of item or task (such as the
fusiform region for faces) in younger adults, become less
selective in older adults (Park et al. 2012; Abdulrahman et al.
2017). A variation in the dedifferentiation hypothesis considers

such overactivation to be due to a reduced ability to suppress
task-irrelevant brain activity by older adults, which impairs
their optimal engagement of task-relevant regions (Logan
et al. 2002). Along this line, if maladaptive overactivation is
observed in older adults, activation of such task-irrelevant
regions may add detrimental noise to the memory system
and contribute to worsened updating (Qin and Basak 2020).
Previous studies have shown that older adults exhibit deficient
working memory performance that is related to a selective
deficit in inhibiting sensory processing activity to irrelevant
stimuli (Gazzaley et al. 2005; Chadick et al. 2014). Importantly,
such decline in suppressing irrelevant stimulus processing is
associated with decreased activity in the frontal lobe in addition
to decreased functional connectivity between the sensory cortex
and the frontal lobe (Chadick et al. 2014). Recent studies on
age-related overrecruitment in the frontal lobe depending on
memory load may be attributed to limited-resource functional
compensatory mechanisms (Cappell et al. 2010; Qin and Basak



2810 Cerebral Cortex, 2021, Vol. 32, No. 13

Figure 6. BOLD responses of parametric effect across the four experiments based on ROIs from Badre and D’ Esposito (2007). A rostro–caudal gradient was evident as

the level of abstraction increased. Specifically, BOLD response of response competition activated in PMd (A), BOLD response of feature competition activated in the
pre-PMd (B), BOLD response of dimension competition activated the IFS (C), and context competition associated with BOLD response activated the FPC (D). PMd = left
dorsal premotor cortex(−30, −10, 68); pre-PMd = left anterior dorsal premotor cortex(−38, 10, 34); IFS = left inferior frontal sulcus (−50, 26, 24); FPC = left frontopolar
cortex (−36, 50, 6).

2020). Accordingly, older adults may exhibit deficient working
memory performance due to overloading limited memory
stores with irrelevant information. Parallel to our findings
of working memory, a correlation between working memory
performance and overactivation brain regions showed a strong
and consistent negative association in most of the brain regions
with overactivations (Table 3), especially in parietal regions
(Jonides et al. 1998), indicating overactivation could be attributed
to a reduced ability to suppress task-irrelevant brain activity by
older adults, which impairs their optimal engagement of task-
relevant regions (Crone et al. 2006; Mattay et al. 2006). Moreover,
the correlation between task performance in each mapping and
working memory capacity across participants also showed a
consistent link between performance efficiency (such as IES
score) and working memory capacity (Supplementary Table 16),
suggesting a critical role for working memory in the process
of levels of task difficulty. Hence, increased frontal-associated
activity may be more related to reduced neural specificity
than to compensation at the lower level of control demand.
This process may explain why our findings did not observe
associations between the age difference of the parametric brain
activity for other experiments (e.g., dimension, feature, and
response) and dRT performances.

Furthermore, we observed no age differences in the para-
metric effects of the response experiment despite a decrease

in behavioral performance, suggesting lower control demands
in sensorimotor representation did not differ in brain activity
recruitment. A possible explanation would be either young
adults have increased brain activity when task difficulty
increased or older adults failed to show any significant neu-
romodulation in response to motor task demands. Nonetheless,
age differences in parametric effects of feature experiments
become more prominent in the motor cortex for stimulus–
response mappings, suggesting functional dysregulation of
motor cortex excitability during sensorimotor control pro-
cessing with this deficit becoming progressively evident with
greater task complexity. Other than the predicted activation
observed along the posterior to anterior frontal lobe gradient,
the parametric analyses with ROI also confirmed the brain
activation in regions of primary motor, parietal, and inferior
temporal cortices across the experiment. Likewise, these regions
also reflected the age difference in parametric effects on brain
activity, showing overrecruitment in older adults. ROI analysis
further showed brain activation in these regions across exper-
iments in response to control demands (competitions). The
observation of these brain regions suggests a general sensitivity
to the increase in control demands without being selective to
the type of competition at a particular representational level.
These regions also reflect the age difference of parametric
effects across experiments, meaning these brain regions may

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab382#supplementary-data
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serve as shared functional connectivity to process levels of
abstraction and control demands. Activation of these regions,
which are not positively correlated with task performance, has
been interpreted as a reduced specificity in neural recruitment
during tasks in older adults (Koen and Rugg 2019). It is plausible
that for young adults either a difference in neuromodulation
with respect to executive control or overactivation that is
compensatory to task performance occurs, whereas older adults
may fail to modulate cognitive control and show maladaptive,
reduced specificity in neural recruitment during tasks. However,
if this overactivation is associated with a decrease in task
performance, it can then be interpreted as maladaptive
overactivation (Nashiro et al. 2018).

Limitations of the Study and Future Directions

Before closing, some issues are worth mentioning, especially for
the applications in age-related neuroimaging studies (Luna et al.
2010). Maturation and aging are important life periods that are
linked to drastic brain reorganization processes (Rakic et al. 1994;
Petanjek et al. 2011). Brain reorganization processes throughout
a person’s lifetime demonstrate brain circuit remodeling at the
structural and functional levels that are parallelized by phys-
iological trajectories during maturation and healthy aging. In
this study, the developmental stages of brain maturation in the
young adult group may affect the neurobiological aging profiles
(Petanjek et al. 2019). These developmental processes within
young adults could underlie a better integration of structural
and functional communication between brain regions with age.
Future studies should consider the developmental stages in
young and older groups that may weaken the sample represen-
tative. Nevertheless, in this study, the young age group was going
through the final stage of cerebral cortex development, which
paradoxically made the young group an ideal control group in
which the comparison between the two age groups might reflect
the growing maturity versus the aging decline.

Moreover, there is substantial individual variability in the
aging process between men and women. For example, sex hor-
mones organize structural connections and activate the brain
areas they connect (Gong et al. 2011; Arain et al. 2013). Therefore,
when examining brain development and aging or when inves-
tigating the possible biological mechanisms of developmental
changes, the contribution of gender should not be ignored (Gong
et al. 2011; Arain et al. 2013). Future studies should consider
the sex differences of brain maturity when investigating the age
differences of brain organization.

In this study, two of the most challenging mappings (iC4 and
D4) failed to show slower RT for older adults; a possible expla-
nation for this finding may be due to the ceiling effect of RT for
both older and young adults. This inference can be supported by
parametric effects of context experiments in those older adults
who show more extensive frontal lobe activation than do young
adults across different mappings. One possible explanation is
that age-related overactivation is driven by a combination of
control demand–related overactivation of task-relevant regions
in response to increasing cognitive control demands, and thus
overrecruitment of additional brain regions by older adults that
are not recruited by younger adults when performing the task
(less functional specifications) occurs. While task difficulty is
typically indexed by a proportional increase in RT as a function
of increased difficulty in a given task (Basak and Verhaeghen
2011), control demand refers to our responses to the differ-
ent types of cognitive challenges encountered within the same

complex task. Therefore, each type of control demand (abstract-
ness of representation) is typically calculated from trials of two
different levels of task difficulty, by subtracting the average RTs
of the less difficult trials from the average RTs of the more
difficult trials. A complex task, such as a multitasking paradigm,
may involve different types of control demands, which in turn
could recruit both overlapping in addition to distinct cognitive
control demands in brain regions.

Furthermore, the calculated power (1—β) for the statistical
t-test (Erdfelder et al. 1996) was relatively low (0.32), indicating
the probability of a type II error (Brydges 2019). Therefore, future
studies should try to aim for recruiting more older adults to
participate in task-related fMRI studies. Alternatively, other sta-
tistical power methods, such as BF, can also be applied to test
the hypothesis by using Bayesian inference with the strength of
evidence (Keysers et al. 2020). Despite the challenges posed to
older adults for completing this task in the MRI scanner, this
is the first study to investigate whether the rostral-to-caudal
functional gradient of the frontal lobe is disrupted by age. Recent
studies have shown the difficulties in recruiting older adults for
aging research (Mody et al. 2008), a finding that may present
concerns for the current study (Brydges 2019). Nonetheless, a
recent well-cited meta-analysis review of seventy-seven studies
(Spreng et al. 2010) on age differences in brain activity reports
the age of young participants was on average 24.81 ± 2.8 years,
while that of old participants was 68.81 ± 3.9 years across 77
studies. These age results were identical to the ages of both
young and older adults in the current study. This finding also
can be viewed in the aforementioned meta-analysis review of
seventy-seven studies (Spreng et al. 2010) on task-related brain
activity differences that the average number of participants in
fMRI studies was 14.54 ± 6.1 years. Depending upon the size of
the effect that one wishes to detect, the small sample size may
be unwise, but a small sample size does not invalidate the test.
Although challenges for recruiting older adults in aging research
exist, we believe the current study would have a substantial
contribution to better understand the age effect of the functional
organization on the frontal lobe.

Additionally, one potential confounding effect from brain
structural abnormalities may be undermined by the overrecruit-
ment of brain activity in older adults as a strategy to compen-
sate for individual variability of task performance (Venkatraman
et al. 2010; Hinault et al. 2020). To mitigate the confounding
effects, we performed an additional mediation analysis of gray
matter volumes on the relationships between age differences
of ROIs in context experiments and cognitive performance was
conducted. Results suggest that possibilities of age differences
in functional changes that can be affected by the individual
atrophy levels, especially in the left temporal fusiform cortex,
can exist. Nonetheless, the results indicate compensatory brain
activity in the left temporal fusiform cortex may need to be
interpreted with a warrant as to the presence of underlying brain
connectivity structural abnormalities.

In this study, we applied Badre’s fMRI paradigm (Badre and
D’Esposito 2007) to investigate the age differences of functional
specialization and organization in the frontal lobe. Behavioral
findings suggested a parametric effect of behavioral perfor-
mance changes across experiments and mappings, overall slow-
ing RT, and poor efficiency of selection of a set of stimulus–
response mappings in older adults was observed. Results of
behavioral performances at different abstraction levels suggest
both response time and efficiency decline when the levels of
abstraction increased. Task performances at different levels of
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abstract representations and age difference overactivations are
associated with working memory, highlighting the key role of
working memory in processing different levels of abstract rep-
resentations and control demands. Together with fMRI findings,
the current results suggest clear trends of specialization and
organization along the rostro–caudal axis in both groups can
be found, and further brain–behavior seed-based correlation
suggesting a reduction of neural specificity for the highest level
of control demands experiment. Less specialization when lower
task control demands increased in the older adults was shown,
resulting in generalized spreading of brain activity to other brain
regions. Attempts to compensate mechanisms are activated
when performing higher task control demands, resulting in
overrecruitment of additional brain regions that are detrimental
to task performance. Age differences in overactivation in brain
regions were observed in three of four experiments, including
inferior frontal gyrus, frontal orbital cortex, temporal fusiform
gyrus, superior parietal lobe, precentral gyrus, premotor cortex,
and supplementary motor cortex. ROI analysis reveals identi-
cal parametric activations as shown in a study by Badre and
D’Esposito (2007) for fMRI across mappings in each experiment.
Moreover, age differences in overactivation and general activa-
tion across experiments in the primary motor cortex, parietal
lobule, and fusiform gyrus may serve as shared mechanisms
underlying tasks that are required for the selection of sets of
stimulus–response mappings. These findings provide empirical
support for the hypothesis that cognitive control is organized
in a representational hierarchy along the rostro–caudal axis of
the frontal lobes in both older and young adult groups. Overall,
findings suggest age differences in task-evoked brain overacti-
vation changes, indicating the loss of neural specificity in task
performances with higher control demand for older adults.
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Supplementary material can be found at Cerebral Cortex online.
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