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Abstract

A major goal of evolutionary developmental biology (evo-devo) is to understand how multicellular body plans of increasing
complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been
repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying
developmental gene regulatory networks (GRNs). This modularity is considered essential for network robustness and
evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use
computer simulations to study the evolution of GRNs’ underlying body plan patterning. We select for body plan
segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular
networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and
relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary
strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation
domains evolve (SF strategy). In the second scenario segments and domains evolve simultaneously (SS strategy). We
demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of
this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural
approach, we determine network modularity. We find that while SS networks generate segments and domains in an
integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find
that widely used, purely architectural methods for determining network modularity completely fail to establish this higher
modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation and differentiation in
combination, we obtained in-silico developmental mechanisms resembling mechanisms used in vertebrate development.
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Introduction

A major goal of evolutionary developmental biology (evo-devo) is

to understand how multicellular body plans of increasing complex-

ity have evolved, and how the underlying developmental programs

are encoded in the genome and gene regulatory network (GRN).

Modern evo-devo research shows more and more that a shared

developmental toolkit of signaling, adhesion and transcription

factor genes are essential for the development of organisms

ranging in body plan complexity from cniderians to arthropods

and vertebrates [1–3]. Therefore the current paradigm is that

body plans of increasing complexity are the result of increases in

the complexity of regulation of this similar set of genes [1,2,4–9]

combined with increases in the number of variants of certain

developmental toolkit genes [10–12]. As a consequence, a strong

focus in current evo-devo research is on changes in spatio-

temporal gene expression patterns and the differences in

architecture of the developmental networks generating them.

Network characteristics that are considered key for the evolution

of increasingly complex body plans are modularity, robustness and

evolvability. It is frequently argued that developmental GRNs are

typically modular, i.e. that different functions are performed by

largely independent network parts [2,13–16], and that this is the

key property responsible for both network robustness and

evolvability. The idea is that modularity reduces pleiotropy,

allowing for the malfunctioning of or tinkering with network parts

involved in one function without producing failure in other

functions [2,13–16]. Although this reasoning sounds appealing

and intuitively correct, little research has been done to explicitly

test the roles and relationships of developmental network

modularity, robustness and evolvability in the evolution of

complex body plans. Indeed, we argue that it is currently unclear

how modular developmental networks are, how such modularity

evolves, and how this modularity looks.

Today, only a limited number of developmental GRNs have

been studied in considerable detail. These studied networks are

mostly involved in the patterning of a single organ or

developmental phase, without detailed knowledge on their

relationships with the rest of the developmental network [17–

22]. As a consequence, although these networks have often been

claimed to be modular, it is currently hard to fully assess the

modularity of developmental networks.

Based on theoretical studies it has been argued that evolution

should neither be expected to produce nor to preserve architectural
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modular networks. This follows from the fact that modular networks

form only a small subset of the possible network architectures

capable of performing a particular function [23]. Indeed, theoretical

studies aimed at investigating the evolution of architecturally

modular networks have had to use quite specific fitness targets to

obtain modular networks [24–27]. On the other hand, it has

previously been shown for other genome [28,29] and network [30]

properties that these may arise as a neutral side effect of the

mutational dynamics rather than requiring an adaptive explanation.

Similar suggestions have been made for network modularity

[31,32].

With regards to the appearance of modularity, note that in its

most general sense network modularity is defined fairly functional

-different functions are performed by largely independent network

parts- but is currently most frequently measured entirely

architectural -different modules of genes that are more densely

connected with genes within the module than genes in different

modules [33–35]. However, it is recently being suggested that

functional or dynamic rather than architectural network modu-

larity may be most relevant for network functioning and evolution

[36–40]. Note that architectural and functional modularity do not

necessarily overlap. This might mean that different, more

functionally oriented methods to measure modularity are needed

[36,37,40]. Recently, several such methods have been proposed,

among which clustering of genes with similar expression in

network attractors [36], or with similar knockout effects [40], or

with a function in the same specific process [37].

Thus, currently both the extent and shape of developmental

network modularity remain unclear. In addition, it is not well

known whether evolution of this modularity requires selection for

robustness or evolvability or arises neutrally. The goal of the

current study is to use computer simulations to investigate what

type of network architecture and properties evolve during the

evolution of complex body plan patterning. This will allow us to

check to what extent evolved developmental networks are

modular, whether network modularity is related to increased

robustness and evolvability, and what exactly network modularity

looks like. In our simulations we select for segmented and

differentiated body plans. Segmentation and extensive anterior

posterior domain differentiation are considered key innovations of

the bilaterian clade, and have been extensively studied both

experimentally and theoretically. This will allow us to compare our

in-silico evolved developmental networks with actual biological

patterning networks and results of previous simulation studies.

Furthermore, by independently selecting for segmentation and

domain formation we enhance the chances for modular networks

to evolve.

We study the different types of evolutionary trajectories that

arise, and compare them with respect to network robustness,

evolvability and modularity and the type of developmental

mechanism they produce. Quite interestingly, we find that there

are only two distinct evolutionary strategies to evolve a segmented

and differentiated body plan, each resulting in a distinct

developmental mechanism. In one strategy, first most segments

and only then domains evolve (SF strategy), while in the other

segments and domains evolve more or less simultaneously (SS

strategy). In addition, we show that in the SF strategy, a complex

time transient is responsible for domain differentiation, while a

genetic oscillator produces regular body segments. In contrast, in

the SS strategy, a complex time transient generates both the body

segments and domains. We find that imposed indirect selection for

robustness causes the SF strategy to evolve much more frequently

than the SS strategy. Furthermore, the SF strategy was also found

to be more evolvable.

The different types of expression dynamics involved in

segmentation and domain formation, together with the larger

robustness and evolvability of SF networks suggests that they may

also be more modular. However, frequently used, purely

architectural modularity scores suggest that the two network types

are equally non-modular. Pruning of non necessary network parts

that potentially obscure architectural modularity did not change

these results. Furthermore, changing model parameters such that

less densely connected networks evolve also did not produce

architecturally modular networks. Therefore, we also used a more

functionally oriented method. Specifically, we take into account

the fact that the networks generate both segments and domains

and investigate whether or not there are relatively independent

network parts responsible for these two processes. Using this

approach we could demonstrate that while SS networks generate

segments and domains in an highly integrated manner, SF

networks generate segments and domains in a more modular

manner.

Our results show that evolved developmental networks are not

necessarily highly modular, robust or evolvable. However, upon

significant selection for robustness, networks that are more

modular, robust and evolvable will dominate. Our results thus

confirm the relationship between modularity, robustness and

evolvability. Our results also show that the type of modularity that

evolved could not be detected by frequently used, automated,

purely architectural algorithms, but required a more functionally

oriented method. Beslon recently reported similar results [40].

Importantly, these results suggest that for the detection of

biologically meaningful modularity purely architectural methods

Author Summary

An important question in evolutionary developmental
biology is how the complex organisms we see around us
have evolved, and how this complexity is encoded in their
DNA. An often heard statement is that the gene regulatory
networks underlying developmental processes are modu-
lar; that is, different functions are carried out by largely
independent network parts. It is argued that this network
modularity allows both for robust functioning and
evolutionary tinkering, and that selection thus produces
modular networks. Here we use a simulation model for the
evolution of animal body plan patterning to investigate
these ideas. To allow for the evolution of modular
networks we independently select for both body plan
segmentation and differentiation. We find two distinct
evolutionary trajectories, one in which segments evolve
before domains, and one in which segments and domains
evolve simultaneously. In addition, the two evolved
network types also differ in terms of developmental
dynamics. We show that indirect selection for robustness
favors the segments first type networks. Furthermore, as a
free side effect, these more robust networks are also more
evolvable. Finally, we take into account both functional
and architectural aspects to determine the modularity of
the network types. We show that segments simultaneous
networks generate segments and domains in a integrated
manner, whereas segments first networks use largely
independent modules to generate segments and domains.
Finally, although mimicking natural developmental mech-
anisms was not part of our model design, the segments
first developmental mechanisms resembles vertebrate
axial patterning mechanisms. This resemblance arises for
free, simply from considering segmentation and differen-
tiation in combination.

Evolution of Networks for Body Plan Patterning
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are less suitable and approaches (also) taking into account network

dynamics and function should be preferred.

Intriguingly, we find that the patterning mechanism employed

by our SF networks shares key characteristics with vertebrate

somitogenesis and axial patterning, even though this was not a

specific aim of our study or explicit part of our model design.

Methods

Here we provide a succinct description of the methods used, for

a more elaborate description we refer to Text S1.

General
Briefly, we use an individual based, spatially embedded model

of a population of evolving embryo-organisms (Figure 1). The

organisms consist of a one dimensional row of 100 cells, similar to

the approach followed in [41–43]. The organisms have a genome

that contains genes coding for transcription factors (TFs) and

upstream regulatory regions with transcription factor binding sites

(TFBS) [44,45].

Segmentation and differentiation genes
Genes have a certain type, indicated with a number ranging

from 0 till 15. There can be multiple genes of the same type. The

gene types can be subdivided into a few functional categories.

Gene type 0 is a maternal gene. Its expression is not controlled by

the organism, but instead is imposed to give rise to a morphogen

wavefront. This wavefront moves from the anterior to the

posterior of the embryo, switching the expression from gene type

0 from a level of 100 to 0. Gene type 5 is a gene that the organisms

can use to indicate the boundaries of body segments. Differential

expression of gene types 8 till 15 can be used to subdivide the body

into functionally different regions (domains). Finally, gene types 1

till 4, 6 and 7 are general transcription factors. By assigning gene

type 5 to segmentation and gene types 8 till 15 to differentation the

evolving segmentation and differentiation processes are not forced

to be coordinated but can in principle use completely disjoint sets

of genes.

Genome, network and development
The genome codes for a gene regulatory network, with genes

corresponding to nodes, and TFBS defining the activating and

repressing influence of genes on each other. These regulatory links

have a non-evolving impact strength of +1 or 21, respectively.

At the beginning of development, gene expression in each cell of

an organism is initialized with gene types 1 to 4 having an

expression level of 100 and all other genes having an expression

level of 0. Subsequent gene expression dynamics and protein levels

are governed by the GRN and are modeled with ordinary

differential equations using a similar approach as in [41].

Fitness
The gene expression pattern present at the end of development

is used to determine the number of segments and domains the

body is patterned in. A segment boundary is defined as a position

in space where the expression of the segmentation gene switches

from a high to a low level or vice versa. A domain is defined as a

region in space where cells express the same combination of

differentiation genes at a high level. The minimum length for a

segment and domain is 7 cells, allowing for a maximum number of

14 segments and domains. To ensure stable differentiation, we

compare gene expression at the end of development with that 20

time steps before. For each cell that has different gene expression

levels at these two time points a fitness penalty is applied. In

addition, to prevent excessive genome growth small fitness

penalties are applied for each gene and TFBS present in the

genome (See Table S1 in Text S1).

Evolution
At the start of evolution the population is initialized with a

group of 50 identical organisms in a field of size 30630. These

organisms have a genome containing a single copy of each gene

Figure 1. Overview of the model. The in-silico embryos live in a two-dimensional grid world (left). Each individual consists of a one dimensional
row of 100 cells over which a maternal morphogen travels to provide some initial spatial information (middle). Each individual has a genome,
consisting of genes and upstream transcription factor binding sites (middle) that codes for a gene regulatory network (right). This network dictates
the spatiotemporal gene expression dynamics that give rise to the developmental process. The final gene expression pattern is used to determine the
number of segments and domains the one dimensional body is divided in by the developmental process (right). An individual’s fitness depends on
both the number of segments and domains in an independent manner (right). Mutations occur on both genes and transcription factor binding sites
(middle). All individuals have the same constant death rate, selection is imposed by making reproduction chances fitness dependent. For more details
see text and Text S1.
doi:10.1371/journal.pcbi.1002208.g001

Evolution of Networks for Body Plan Patterning
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type in a randomized order and with an average of 2 TFBS,

randomly drawn from the possible types of TFBS, upstream of

each gene. Evolution occurs through mutations on the genome

and fitness dependent reproduction. We apply gene duplications

and deletions, TFBS duplications and deletions, and changes in

the type and weight (activating or repressing) of TFBS. Note that

in contrast to some previous studies [41–43] we do not evolve gene

expression rates, protein decay rates, or TF activation and

inactivation threshold levels here. Tournament selection is used

to determine which organisms may reproduce. Death occurs with

a constant probability of 0.5. After an initial transient population

sizes plateau at around 600 individuals.

As explained, we are interested in the robustness, evolvability

and modularity of the evolved developmental GRNs. To give

evolution the freedom to evolve networks producing segments and

differentiation domains either in a modular or integrated manner,

we choose our fitness function such the number of segments and

domains contribute independently to fitness (i.e. we use

fitness~eSzD rather than e.g. fitness~eS|D). As a side effect

of this choice, evolution is also free to evolve only segments or

domains, rather than both. For our analysis we select those

simulations that were successful in evolving both a significant

number ($7) of segments and domains.

To determine the evolutionary history of a developmental

mechanism and its underlying GRN we traced the ancestry of the

final fit evolved individuals.

Simulation experiments and analysis
We performed a total of 50 simulations using the default

parameter settings of our model (see Table S1 in Text S1). We

analyzed the networks that successfully evolved segmentation and

differentiation in terms of evolutionary strategy followed (whether

segments and domains evolve sequentially, simultaneously, or

something in between), network size and architecture (number of

genes and connections, positive feedback loops, attractors) and

generated developmental dynamics (type of spatiotemporal gene

expression patterns and how this generates segments and

domains).

Furthermore we evaluated the robustness, evolvability and

modularity of different evolved network types. First, to determine

robustness of different evolved network types we performed three

additional series of 50 simulations. We increased mutation rate,

added gene expression noise, or added variability in morphogen

wavefront speed (see Text S1). From the frequency with which the

different evolutionary strategies (SS or SF) occur we determine

their relative robustness. Second, we performed a total of 140

simulations to find how network types differ with respect to

evolvability. Here, we first performed 20 simulations with a fitness

target of 6 segments and 6 domains. From these we selected 6

successful networks that differed in type (SS or SF). These were

each used as a starting point for 20 independent simulations with a

fitness target of 9 segments and 9 domains (see Results). From

differences in rates of success of evolving to this second target we

determine the relative evolvability of the different network types.

Finally, we determined the modularity of the different network

types. Here we used a range of approaches. First, we determined

the architectural modularity of the evolved networks using

algorithms that try to find the optimal modularity score or Q

value for a network. To ensure that our results were not biased by

the particular details of the algorithm used, we used two different

methods applying different heuristics. The first uses Newman’s

leading eigenvector method to determine optimal modularity

[33,34], the second method uses a random walk approach to

determine Q values [35]. Furthermore, to allow interpretation of

the thus found Q values, we determined Q values for not only

random and architecturally modular networks, but also for

neutrally evolved networks. These neutrally evolved networks

serve as a benchmark against which to test whether there is

selection for architectural modularity in our simulations.

However, architectural network modularity can easily be

obscured by the presence of non-functional or redundant genes

and regulatory interactions. Therefore, we pruned the original

evolved networks to a minimal essential core network (see Text S1)

and also determined Q values for these core networks.

Furthermore, architectural modularity may be obscured by the

particular model parameter setting used, when these tend to cause

the evolution of densely connected networks. To determine

whether this was the case, we performed 3 additional series of

simulations in which the impact of TFBS deletion rates on

modularity was tested. In the first two series, TFBS deletion rates

were increased either twofold or fivefold, while all else was kept the

same as in the default simulations. In the last series of experiments,

a core network with a relatively high Q value was selected from the

set of default simulations. This core network was subsequently

taken as a starting point for continued evolution simulations with a

fivefold higher than normal TFBS deletion rate.

Finally, as an alternative to these automatic, purely architectural

methods of determining network modularity, we also assessed

modularity in an alternative way. Here we used the core networks

as a starting point to determine the minimal networks needed for

either segmentation or differentiation alone. To determine how

modular a network is we subsequently asses three points. First, we

check how well the minimum networks are capable of autono-

mously reproducing the original segment or domain pattern.

Second, we determine how well they can produce one thing

(segments) without as a side effect also accidentally producing the

other thing (domains). Finally, we assess the amount of overlap

between the two minimum networks. Thus, we assess how

functionally autonomous and how functionally and architecturally

independent these network parts are. The method thus takes into

account prior knowledge about network function (they generate

both segments and domains) and considers both functional and

architectural aspects of modularity. If the minimum segment and

domain networks function are good at reproducing either only the

original segment or the original domain pattern and contain only a

few overlapping genes and connections, we will classify the

network as modular. In contrast, Q value based algorithms may

fail to detect modularity if modules share not only connections but

also a few genes.

Results

Two different types of evolutionary trajectories
Figure 2A schematically shows the phase space of possible

evolutionary trajectories of evolving both segments and domains.

In it we show 3 theoretically possible extreme trajectories: 1) all

segments evolve before domains evolve; 2) the opposite, all

domains evolve before segments evolve, 3) the intermediate,

segments and domains evolve simultaneously.

In our analysis we focus on those 30 simulations (out of the total

of 50) in which $7 segments and $7 domains evolved. We find

that in 10 of these simulations (33%) first most segments and then

domains evolved. In Figure 2B the evolutionary trajectory of 5 of

these simulations is shown. Each trajectory shows the maximum

number of segments and domains in the population as a function

of evolutionary time. In the 20 other simulations (67%) segments

and domain numbers increased more or less simultaneous over

evolutionary time. Figure 2C shows the trajectories of 5 of these

Evolution of Networks for Body Plan Patterning
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simulations. None of the simulations first evolved most domains

and then segments.

Network and developmental dynamics of the two
evolutionary strategies

A detailed overview of the results of the 10 SF simulations and

20 SS simulations can be found in Tables S4–S9 of Text S1. These

results are summarized in Table 1.

When comparing network architecture, we find that SF

networks are simpler, with similar numbers of genes but

significantly lower connectivity. With regards to the network’s

developmental output, we find that the two alternative strategies

attain very similar overall fitness levels. However, SF type

networks produce body plans with more segments then domains,

whereas the SS type networks do exactly the opposite. In addition,

the segments produced by SF networks are much more regularly

sized than those produced by SS networks. Indeed, the

developmental gene expression dynamics generated by the two

network types differ significantly.

Figure 3 shows final evolved networks together with the

generated intracellular gene expression dynamics, developmental

space-time plot, and the final gene expression pattern for both an

example SS (Figure 3A) and SF (Figure 3B) network.

We see that the evolved SS GRN is quite complex, containing

24 nodes and 72 connections (Figure 3A, top row). The network

produces a complex time transient of gene expression (Figure 3A,

bottom row) that upon passage of the maternal morphogen

wavefront (gene type 0, arrow) is converted into a stable gene

expression pattern. We furthermore observe that the gene types

that become stably expressed at a location depend on the time

when the wavefront passes. As a consequence, the complex time

transient is translated into a temporally stable, but spatially

diversified gene expression pattern (Video S1). The space-time plot

(Figure 3A, top row) shows another representation of this process.

We recognize the anterior to posterior progression of the

morphogen wavefront as a distinct diagonal pattern, and see

how it transforms the time varying gene expression into a stable

spatial pattern (Video S2). If we look at the gene expression

pattern at the end of development (Figure 3A, top row) we see that

a spatially alternating expression of the segmentation gene (gene

type 5) produces 7 body segments of different sizes. The

combination of spatially varied expression of the identity genes

(gene types 8 till 15) produces a total of 10 domains, also of varying

sizes.

The SF network is indeed simpler, containing 23 genes and 57

connections (Figure 3B, top row). The networks produces a

complex time transient of gene expression (Figure 3B, bottom row)

in which a subset of genes (gene types 2, 5, 7, 10, 12, 13 and 15)

display an oscillatory dynamics that we did not observe for the SS

network. As for the SS network, the passing by of the morphogen

Figure 2. Evolutionary trajectories. A The dark and light gray area together form the evolutionary phase plane of possible combinations of
segment and domain numbers that can be visited by simulated evolutionary trajectories. If an evolutionary trajectory ends up in the light gray area
organisms with 7 or more segments and 7 or more domains have evolved, and the simulation is considered successful. The black lines with arrows
indicate the 3 theoretically possible ‘‘extreme’’ evolutionary scenarios: 1) first all segments evolve, then domains evolve; 2) first all domains evolve,
then segments evolve; 3) segments and domains evolve simultaneously. In addition, more intermediate evolutionary trajectories may evolve, e.g.
sequentially evolving a few segments, a few domains, etc. B Example of 5 simulations in which first segments and then domains evolved. C Example
of 5 simulations in which segments and domains evolved more or less simultaneously.
doi:10.1371/journal.pcbi.1002208.g002
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wavefront converts the time-varying gene expression into a stable,

spatially varied expression pattern (Video S3, Video S4). However,

in this case the oscillatory dynamics of genes 2, 15, 5 and 7 are

translated into a regular, alternating expression pattern, allowing

gene type 5 (segmentation gene) to produce 12 regularly sized

segments (Figure 3B, top row). This mode of producing segments

resembles the process of somitogenesis in vertebrates. In addition,

the non-oscillatory dynamics of genes 3, 6, 8 9 and 11 are

converted to 4 continuous, staggered expression regions (Figure 3B,

top row). This expression pattern resembles the typical expression

pattern of Hox genes along the anterior posterior axis of bilaterian

animals. As genes 8 till 15 all are identity genes, the combination

of the alternating expression of gene 13 and 15 and the continuous

staggered expression of genes 8, 9 and 11 produce a total of 7

different domains (if multiple regions express the same set of

identity genes only the first counts as a domain).

Similar results were found for other SS and SF networks. Thus,

while SS networks use a complex time transient to produce both

segments and domains, SF networks use a similar complex time

transient to produce domains, while using oscillatory dynamics to

produce regularly sized segments. In later sections we discuss

further details of these developmental dynamics in the context of

network modularity.

Robustness of the two evolutionary strategies
We found that under the default parameter settings (Table S1 in

Text S1) the SS strategy evolved more frequently than the SF

strategy. Next, we investigated how the propensity of the two

evolutionary strategies is affected by adding noise to our

simulations. Previous research has shown that robustness evolves

as a result of increased mutational or gene expression noise [46].

Here we thus assume that increased noise, independent of the type

of noise, produces indirect selection for robustness. By assessing

the frequency with which the different strategies evolve under

increased noise we investigate which of the two strategies is more

robust.

We performed 3 series of 50 simulations. In the first series

mutation rate was increased by a factor 10. In the second the

propagation speed of the maternal morphogen gradient was varied

between individuals within a 30% range. In the third series 5%

gene expression noise was incorporated. Table 2 shows the

percentage of successful simulations and how often the different

evolutionary trajectories were followed. Note that we did not

observe any additional types of evolutionary trajectories, i.e. first

evolving domains and then segments. We see that for all 3

additional series of simulations a shift occurred from SS as a

dominant evolutionary strategy to SF as a dominant evolutionary

strategy. Thus indirect selection for robustness favors the SF type

networks, suggesting that these are more robust.

Evolvability of the two evolutionary strategies
Next we determined whether the two network types also

differed in evolvability. It is frequently thought that a special

selection regime is required for the evolution of evolvability [2,13–

16]. An often used approach is to impose indirect selection for

evolvability by alternating between different selection regimes

[44,47–49]. Clearly, such a back and forth alternation between

selection criteria is hardly realistic in a developmental context.

However, it has been shown that robustness and evolvability of

GRNs is strongly correlated [50,51]. It is thus interesting to

investigate whether the differences in robustness we observed

between the two evolutionary strategies are correlated with

differences in evolvability. Specifically, we tested for differences

in the evolutionary potential of the two network types for evolving

new segments and domains.

To do this, we first performed 20 simulations in which we

selected for 6 segments and 6 domains (Figure 4). From these

simulations we selected the successful ones. Next, we selected 3 SF

and 3 SS simulations. From these 6 simulations we extracted the

genome of a finally evolved, fit individual. Each of these 6

genomes were used as input for a series of 20 independent

Table 1. Summary of simulation results.

SF SS

size of evol. network

nrgenes original 24.163.4 25.568.1

nrconn. original 74.7619.5 96.6651.7

nrgenes core 19.162.7(,79%) 22.668.2(,89%)

nrconn. core 52.7614.8(,71%) 82.9653.6(,86%)

developmental outcome

nr of segments 11.761.3 8.060.8

nr of domains 8.461.6 9.361.3

size of min. networks

nrgenes minsegm 9.661.8 14.561.8

nrconn. minsegm 18.965.5 35.068.7

nrgenes mindom 10.463.7 13.464.6

nrconn. mindom 16.467.6 30.7616.2

nrgenes sum 15.662.4 17.562.6

nrconn. sum 30.265.3 45.0612.8

nrgenes overlap 4.462.1(,28%) 10.463.6(,59%)

nrconn. overlap 5.163.7(,16%) 20.7612.2(,45%)

dev. outcome min networks

nr of segm minsegm 10.061.6(,85%) 5.960.9(,74%)

nr of dom minsegm 1.460.5(,12%) 4.261.8(,45%)

nr of segm mindom 0 0

nr of dom mindom 3.661.4
(,42%; ,100%)

6.462.8
(,68%; ,98%)

Q values evol network

Qwt original 0.2960.09 0.3060.07

Qle original 0.2960.09 0.2760.09

Qwt core 0.2960.08 0.3060.07

Qle core 0.3260.07 0.2960.10

nr of simulations with osc 100% 0%

Results shown are for the total of 30 successful simulations in which at least 7
segments and at least 7 domains evolved. Results are subdivided in those of the
10 simulations in which segments evolved first and those of the 20 simulations
in which segments and domains evolved simultaneously. Averages and
standard deviations are computed. Shown are: 1) the number of genes and
regulatory connections in the original evolved networks and their minimum
core networks, and how large the core network is relative to the original; 2)the
numbers of segments and domains produced by the evolved networks; 3) the
number of genes and connections in the minimum segment and domain
networks, the sum of unique genes and connections in the two minimum
networks together, and the number and percentage of genes and connections
overlapping between the two minimum networks; 4) the number of segments
and domains generated by the minimum segment network and which
percentage this is of the number produced by the original network, the number
of segments and domains generated by the minimum domain network, the
percentage this is of the number produced by the original network and the
percentage this is of the number produced by the core network minus the
segmentation gene; 5) Q values found with the walktrap and leading
eigenvector methods for both the original and core networks; Finally, the
percentage of simulations showing oscillatory dynamics is given.
doi:10.1371/journal.pcbi.1002208.t001
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simulations in which now selection for 9 segments and 9 domains

was imposed. Finally, we compared the success rates of these 6

series of simulations (Table 3) and whether these differed

significantly (pairwise t-test) (Table 4).

We see that simulations started with SF type genomes have a

considerably higher success rate than simulations started with SS

type genomes (Table 3) and that these differences are significant

(Table 4). In contrast, simulations started with different genomes but

of the same strategy type have much more similar success rates

(Table 3), differences being not or hardly significant (Table 4).

Differences in success rate are thus not due to random differences

between genomes from different simulations, but rather are due to

the more fundamental differences between genomes evolved

following SF versus SS type evolutionary trajectories. Clearly,

genomes evolved in a SF trajectory have a higher evolvability for

inventing new segments and domains. These results imply that

increased network evolvability can occur as a byproduct of selection

for robustness, rather than requiring selection for evolvability itself.

Figure 3. Evolved developmental dynamics. Details of the regulatory network and resulting developmental dynamics for a final fit individual
evolved in an example SS (A) or a SF (B) type evolutionary trajectory. The shown individuals are from the line of ancestry leading up to a fit individual
in the final population, and are those individuals in which the final evolutionary innovation occurred. top row, A and B Architecture of the evolved
gene regulatory network with green activating and red inhibiting interactions; developmental space-timeplot depicting the developmental dynamics
produced by the network; and final, end of development gene expression pattern generated by the network. bottom row, A and B Detailed
temporal protein concentration dynamics produced by the network in cells 30, 60 and 90 along the anterior posterior axis of the embryo. The
position of the arrow indicates the time at which the morphogen gradient passes this particular cell.
doi:10.1371/journal.pcbi.1002208.g003

Table 2. Results of the evolvability test.

simulation series successful runs SF SS

default param. settings 60% 33.33% 66.67%

mutation rate 610 55% 78% 22%

wavespeed varies 30% 66% 61% 39%

5% expression noise 76% 76% 24%

Shown are the percentage of simulations that are successful ($7 segments and
domains evolved), and the percentage of this subset of successful simulations
that evolve using the SF or using the SS strategy. Results are shown for the
default parameter settings and for the 3 series of simulations in which indirect
selection for robustness was imposed by adding noise. For details on how these
3 additional series of simulations were performed see Text S1.
doi:10.1371/journal.pcbi.1002208.t002
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Note that it remains an interesting question for further research

whether other types of evolvability have also increased. Particu-

larly relevant would be whether the ease with which segmentation

and differentiation patterns are maintained if embryo size changes,

the ease with which celltypes within domains can be changed, or

the ease with which segment and domain numbers can decrease

are also increased.

Modularity of the two evolutionary strategies
Architectural modularity scores of the evolved

networks. Next, we determined the modularity scores for

both SF and SS networks. Based on the higher robustness and

evolvability of SF networks together with the fact that they use

distinct expression dynamics to generate segments or domains, one

would expect SF networks to be more modular. In contrast,

independent of the method used we found for both the SF and SS

networks an average modularity score of around 0.29 (see Table 1,

Figure 5A and Tables S4 and S7 in Text S1).

Setting a baseline for architectural modularity

scores. To be able to interpret the meaning of these similar

modularity scores, we also determined modularity scores of

randomly generated networks, neutrally evolved networks

(without a fitness target) and manually designed, architecturally

modular networks (see Figure 5 and Text S1). Independent of the

modularity algorithm used we found Q values of around 0.29 for

random networks (Table S2 in Text S1). For modular networks we

found Q scores of around 0.65 (Table S3 in Text S1). Interestingly,

for neutrally evolved networks we obtained Q values of around

0.45 (see Text S1). This demonstrates that the mutational

Figure 4. Assessing evolvability potential. Overview of the procedure used to determine differences in evolvability between networks evolved
in the different evolutionary trajectories. First, we performed 20 simulations in which we selected for 6 segments and 6 domains. From these 20
simulations we determined the ones that evolved both 6 segments and 6 domains. Next, from these successful simulations, we selected 3 simulations
following the segments first and 3 simulations following the segments simultaneous evolutionary strategy. From these 6 simulations we extracted
the genome of a finally evolved, fit individual. Each of these 6 genomes were used as input for a series of 20 independent simulations in which now
selection for 9 segments and 9 domains was imposed. Finally, we compared the success rates of these 6 series of simulations and whether these
differed significantly.
doi:10.1371/journal.pcbi.1002208.g004

Table 3. Results of the evolvability test.

genome success rate

1, SF 13 (65%)

2, SF 10 (50%)

3, SF 17 (85%)

avg, SF 13.363.5 (67%617.5)

4, SS 5 (25%)

5, SS 2 (10%)

6, SS 2 (10%)

avg, SS 361.7 (15%68.6)

Shown are the number and percentage of simulations that succeed in evolving
to the secondary fitness target of 9 segments and 9 domains. Results are split
out for the 6 different starting genomes that were derived from simulations
successfully evolving to the initial fitness target of 6 segments and 6 domains.
For details see Figure 7 and the text.
doi:10.1371/journal.pcbi.1002208.t003

Table 4. Significant differences in evolvability.

genomes 1 2 3 4 5 6

1 - 0.350 0.1516 0.0101 ,0.0001 ,0.0001

2 0.350 - 0.0176 0.1077 0.0049 0.0049

3 0.1516 0.0176 - ,0.0001 ,0.0001 ,0.0001

4 0.0101 0.1077 ,0.0001 - 0.2221 0.2221

5 ,0.0001 0.0049 ,0.0001 0.2221 - no diff

6 ,0.0001 0.0049 ,0.0001 0.2221 no diff -

P values for pairwise t-test comparison of the success rate for the 6 different
genomes are shown. For details see Figure 7, Table 3 and the text.
doi:10.1371/journal.pcbi.1002208.t004
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dynamics alone causes a significant bias towards architectural

modularity, without any present functionality.

If we compare the modularity scores of our evolved networks to

these data we see that they are only slightly higher than those of

random networks and significantly lower than those of neutrally

evolved networks. Thus, selection clearly does not increase the

type of architectural modularity measured by the used methods in

either the SF or SS networks. This result is further confirmed by

the observation that during evolution no significant increases in Q

values are observed (see Figure S8 in Text S1).

Modularity of core networks and networks evolved with

increased TFBS deletion rates. To determine whether non-

functional and redundant network parts obscure an underlying

architectural modularity we also determined Q values for the core

networks derived from the evolved networks. Similar to the

original networks, the SF core networks have significantly less

connections than the SS core networks (Table 1, also compare

Figure 6A and 6B, top rows). However, again Q values of around

0.3 were obtained for both SF and SS type networks (Table 1,

Figure 5B, and Tables S4 and S7 of Text S1).

Next, to check whether the parameter setting used causes a bias

towards densely connected non modular networks we performed

three series of additional simulations in which TFBS were

increased. In the first two series we performed simulations that

are the same as before, but with two times or five times higher

TFBS deletion rates. This did not result in networks with

significantly higher architectural modularity scores, independent

of whether the original or core networks were evaluated (Table

S10 of Text S1). In the final series, we started simulations with a

previously evolved core network and continued its evolution under

five times higher TFBS deletion rates. As a starting core network

we took the core of the SF network shown in Figure 6B, as it has a

relatively high Q value compared to average found values. Again,

no significant increases in Q values were observed (Table S11 of

Text S1). We conclude that frequently used, purely architectural

methods to determine network modularity suggest that SS and SF

networks are equally non-modular.

Alternative evaluation of network modularity. Summa-

rizing, SS networks generate both segments and domains from a

complex gene expression time transient, whereas SF networks

use a complex time transient to generate domains and oscillating

dynamics to generate segments. Furthermore, SF networks are

more robust and more evolvable. Still, no differences in network

modularity were found using frequently used, purely archi-

tectural methods. The question thus is whether SF networks

indeed are not more modular than SS networks, or that the

methods we used above perhaps fail to uncover certain types of

modularity.

Recently, several alternative, more functionally oriented

methods to asses network modularity have been suggested.

Examples are the clustering of genes with similar expression in

network attractors [36], or with similar knockout effects [40], or

with a function in the same specific process [37]. Here we also took

such a function based approach. We use the fact that networks

were evolved to produce both segments and domains, and our

observation that SF networks use different dynamics to generate

segments or domains. We determine the minimum networks

needed for either segmentation or differentiation alone to asses

network modularity in an alternative manner (for details see Text

S1).

SS network. Figure 6A shows the core, minimum segment

and minimum domain networks derived from the example evolved

SS network, together with the developmental dynamics and final

gene expression patterns they generate. The core network has 21

genes and 64 regulatory connections (Figure 6A, top row), and the

minimum segment network (Figure 6A, middle) still contains 16

genes and 38 connections. It produces a segmentation gene

expression pattern that is shifted relative to the original pattern

and capable of producing 6 of the original 7 segments.

Furthermore, even though it is only required to produce

segments, as a side effect it also produces 5 of the original 10

domains. The minimum domain network (Figure 6A, bottom row)

consists of 17 genes and 36 connections. It generates an identity

gene expression pattern that is very different from the original, and

is capable of producing only 7 of the original 10 domains.

Summarizing, the minimum segment network produces a

significant number of domains as a side effect of producing

segments, and the minimum domain network performs rather

poorly at reproducing the original domain pattern. We conclude

that the evolved network is rather non-modular. Instead segments

and domains are generated in a highly integrated manner. Indeed,

if we compare the two minimum networks, we see that only 2

genes are unique for the minimum segment network and only 3

genes are unique for the minimum domain network (light blue), all

other genes are used both for segmentation and domain formation.

Thus, to understand the mechanism behind body plan

patterning we should look at the core network, which generates

segments and domains in an integrated manner. The observation

that a complex gene expression transient is translated into a spatial

differentiation pattern suggests two things. First, the core network

contains multiple attractors allowing for different stable cell types.

Indeed, we see a total of 6 positive feedback loops, essential for

attractor formation [52–54], in the core network (Figure 6A, top

row). Second, the network produces complex and slow expression

dynamics, allowing different times of wavefront passage to cause

convergence to different attractors. In Text S1 we further explain

this developmental mechanism and contrast it with the one

described by Francois and Siggia in which a slow timer gene

controls a linear sequence of gene activations [43]. Finally, to

understand how segments arise as part of this process we study the

regulation of the segmentation gene. We see that genes 14 and 15

Figure 5. Architectural modularity scores. Q value frequency
distributions for random networks, neutrally evolved networks, evolved
SF type networks, and evolved SS type networks are shown. In addition,
average Q values of manually designed, architecturally modular
networks are indicated. Q values shown are those obtained by the
walktrap method, for the leading eigenvector method similar values
and distributions were obtained (see Tables S4 and S7 in Text S1). For
comparison, Q values obtained for modularly designed networks are
also indicated. For details on how Q values were obtained see Text S1.
A Q value distributions for the original, evolved SF and SS networks are
shown. For comparison, random networks and manually designed
architecturally modular networks of similar size as these original
network were taken. B Q value distributions for the core networks of
the SF and SS networks are shown. For comparison, random networks
and manually designed architecturally modular networks of similar size
as these core networks were taken.
doi:10.1371/journal.pcbi.1002208.g005

Evolution of Networks for Body Plan Patterning

PLoS Computational Biology | www.ploscompbiol.org 9 October 2011 | Volume 7 | Issue 10 | e1002208



Evolution of Networks for Body Plan Patterning

PLoS Computational Biology | www.ploscompbiol.org 10 October 2011 | Volume 7 | Issue 10 | e1002208



activate and gene 8 represses gene 5 (Figure 6A, top row). Thus,

the spatially alternating expression of gene 5 arises from

integrating the inputs of these three genes. Each segment is thus

generated by a different combination of regulatory inputs, in a

very crude manner resembling Drosophila segmentation.

SF network. In Figure 6B we show the core, minimum

segment and minimum domain networks derived from the

example evolved SF network, combined with the developmental

dynamics and final gene expression patterns they generate. We see

that, in contrast to the SS network, the core network contains only

18 genes and 36 connections (Figure 6B, top row) and the SF

minimum segment network contains only 7 genes and 10

connections (Figure 6B, middle row). The latter produces an

oscillatory expression pattern that the passing wavefront

transforms into a spatially alternating pattern, producing 11 of

the 12 original segments. The segmentation network can be

decomposed into a part responsible for generating bistability and a

part responsible for producing oscillations, which in combination

enable the translation of temporal oscillations into spatial stripes

(see Figure S12 in Text S1). Also in contrast to before, the SF

minimum segment network does not produce any domains as a

side effect.

The minimum domain network (Figure 6B, bottom row)

contains 13 genes and 15 regulatory interactions. It produces a

complex gene expression transient that generates 4 continuous

staggered expression domains, very similar to the Hox-like

domains produced by the original network. The SF minimum

domain network uses the same developmental mechanism as we

discussed before for the core SS network to generate different

stable expression domains. In this case, the network contains 3

positive feedback loops: a loop consisting of genes 3, 6 and 11, and

positive autoregulation of genes 8 and 9. Further details of this

developmental mechanism can be found in Text S1.

However, we also see that the spatially alternating expression of

identity genes is not reproduced by the minimum domain network

(compare Figure 6B top and bottom row), causing 4 rather than 7

domains to be formed. This shortcoming is due to the standard

removal of the segmentation gene from the minimum domain

networks (see Methods and Text S1). In the original network the

segmentation gene causes genes 13 and 15 to have an alternating

expression pattern that contributes to the number of domains.

Note however that in contrast to the SS network, the subset of

domains that is generated by the minimum domain network

corresponds well to those generated by the original network, rather

than being shifted in position or expressing different gene

combinations.

In contrast to the SS network, the SF minimum networks are

thus well capable of generating either segments or domains

autonomously and independently. Indeed, the dynamics and

expression patterns generated autonomously by the minimum

segment and domain networks to a large extent add up to the

behavior of the original network. The only clear exception is

formed by a subset of identity gene expression domains that are

dependent on the segmentation process (see above). However the

correspondence is not perfect. For example, the minimum

segment number generates a first segment that is too wide and a

total of 11 rather than 12 segments (compare Figure 6B top and

middle row). In addition, the expression patterns of genes 3, 8, 9, 6

and 11 produced by the minimum domain network are somewhat

different than those produced by the original network (compare

Figures 6B top and bottom row) (for more details see Text S1).

Apparently some of the network parts present in the core network

but not in the minimum segment and domain networks are needed

both for some segmentation dependent domains and for some

additional fine tuning of the segmentation and differentiation

processes.

Also in contrast to the SS minimum networks, the two SF

minimum networks together contain 17 unique genes, of which

only 3 (colored yellow) are shared between the two networks.

Together these observations demonstrate that the SF minimum

segment and minimum domain networks are modules that are

largely independently capable of segmenting and differentiating

the body plan. We conclude that the SF network is significantly

more modular than the SS network. As discussed above, the SF

network is not completely modular: some domains are segmen-

tation gene dependent, some fine tuning between segmentation

and differentiation is needed, and a few connections and genes are

shared between the minimum networks.

Architectural modularity after incorporating prior

knowledge. Given the observed modularity of the SF

minimum segment and domain networks, we next investigated

whether the earlier used purely architectural modularity methods

are capable of retrieving this modularity. Put differently, if we sum

the minimum segment and domain networks into a single network,

do the Q value methods retrieve these modules and assign the

summed minimum network a high Q value? Perhaps surprisingly,

modularity scores for the summed minimum networks are still

lower than those of neutrally evolved networks (Qle~0:48 and

Qwt~0:43, see Text S1). In addition, found architectural modules

are inconsistent between the two used methods and unrelated to

the above discussed segmentation and differentiation modules (for

details see Figure S11 in Text S1).

We suspect that apart from not taking functional aspects into

account, an important problem of the architectural modularity

algorithms is that even a limited amount of overlap in genes used

between functional modules causes them to not be recognized as

architectural modules. In contrast, with our alternative method we

simply classify a network as being more modular if fewer overlaps

between minimum segment and domain networks are found.

Again, similar results were found for other SS and SF

simulations (Table 1).

Sequence of evolutionary innovations in the two
evolutionary strategies

As a final part, we investigated whether the differences between

the SS and SF evolutionary and developmental strategies are

reflected in further differences between their evolutionary

dynamics.

SS network. Figure 7A shows the evolutionary dynamics of

segment and domain numbers, attractor numbers and genome size

along the line of ancestry leading to fit individuals at the end of the

example SS simulation. The arrow indicates the position along this

ancestral line of the individual we have analyzed in detail in

Figures 3A and 6A. The inset shows the initial phase of evolution.

As expected, we see a gradual and simultaneous increase of

segment and domain numbers. In addition, the increase in domain

numbers appears correlated with an evolutionary increase in GRN

attractor numbers. In contrast, we observe no clear correlation

Figure 6. Minimum segment and domain networks. Network architecture, space-time plot of the generated developmental dynamics, and
schema of the final produced gene expression pattern for both the core (top row), minimum segment (middle row) and minimum domain
(bottom row) networks derived from the example SS (A) or SF (B) network.
doi:10.1371/journal.pcbi.1002208.g006
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between genome size and increases in segment and domain

numbers. Instead, genome size shows intermittent periods of

expansion and contraction. Interestingly, core genome size is only

slightly smaller and has a similar dynamics. This suggests that

information is stored in a diffuse, distributed manner, so that when

the amount of encoded information (number of segments and

domains) increases, the size of the core genome does not change so

much.

Figure 8 displays another representation of the evolutionary

process. Here we depicted those agents along the ancestral lineage

in which a major evolutionary innovation arose, i.e. an increase in

segment or domain numbers. Note that we only show a subset of

selected innovations. As in Figure 7A, we see that segment and

domain numbers increase more or less simultaneously and that the

number of positive feedback loops present in the core network

increases. Furthermore, the number of regulatory inputs to the

segmentation gene (gene 5) also increases during evolution.

Finally, we see that over evolutionary time there is little

conservation of the structure of the core network.

SF networks. Figure 7B displays the SF networks

evolutionary dynamics. We see the fast initial increase of

segment numbers and a subsequent more gradual increase of

domain numbers during evolution typical for this type of

evolutionary trajectory. As before, the increase in domain

numbers is correlated with an increase in attractors. However,

we also observe that increases in attractor numbers not always lead

to increases in domain numbers (around time 2500). This can be

understood from the fact that attractors should be reachable

through the developmental process in order to increase domain

numbers.

Similar to before, we observe no clear correlation between

genome size and increases in segment and domain numbers and

instead see intermittent periods of genome expansion and

contraction. However, here there is a strong correlation between

evolutionary increases in segment and domain numbers and

increases in size of the core genome (especially clear in the inset).

Similarly, the genome size of the minimum segmentation,

respectively minimum domain network are correlated with

segment, respectively domain numbers. So, in contrast to what

we saw before, here the size of the minimum genome needed to

encode the necessary information does increase with segment and

domain numbers.

In Figure 9 we again show those agents along the ancestral

lineage in which an innovation arose. We see that first bistability,

Figure 7. Evolutionary dynamics. Evolutionary dynamics of the
number of segments, number of domains, number of network
attractors, number of genes in the original genome, number of genes
in the core genome, number of genes in the minimum segment
genome and number of genes in the minimum domain genome for the
example SS (A) and SF (B) simulations. Numbers are shown for
individuals along the line of ancestry. The position of the example SS
and SF individuals shown in detail in Figures 3 and 6 is indicated with
an arrow. The inset shows in more detail the dynamics up to time 1000.
doi:10.1371/journal.pcbi.1002208.g007

Figure 8. Evolutionary innovations in the SS trajectory. Temporal sequence of the major evolutionary innovations occurring in the example SS
simulation (Figures 3, 6 and 7). Shown are the evolutionary time, the number of segments and domains, the developmental space-time plot, the final
gene expression pattern, the core gene regulatory network, the number of positive feedback loops and the number of regulatory interactions
impinging on the segmentation gene (gene type 5). Only a subset of all evolutionary innovations are shown.
doi:10.1371/journal.pcbi.1002208.g008
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than oscillations and subsequently faster oscillations are invented

(see minimum segment network) generating first 2, then 8/9 and

finally 12 segments (see developmental space time-plots). Only

later on in evolution the number of domains increases. We can see

that part of this increase occurs without the number of positive

feedback loops increasing and hence presumably results from

network rewiring increasing the independence of already present

positive loops (see minimum domain network).

If we compare the minimum segment and domain networks

present in the different phases of evolution, we see that previously

invented parts are often maintained while new parts are being

added. Thus, not only is the final evolved network functionally

modular, but these modules are also constructed during evolution

in an incremental fashion. This contrasts with the changing nature

of the core network we observed for the SS strategy.

Discussion

In this paper we investigated the in-silico evolution of complex

body plans that are both segmented and show anterior-posterior

differentiation. An implicit assumption of our study thus is that

extensive body plan differentation and segmentation tend to

evolutionary co-occur. We base this on the fact that most

unsegmented, relatively simple animals such as cniderians possess

only a small number of different Hox genes and body domains. In

contrast, more complex animals with a larger set of Hox genes and

more extensive anterior posterior patterning are either segmented,

or show signs of past segmentation [55–58]. Note that we made no

further assumptions on the order in which segmentation and

differentiation evolved, or on whether they evolved once or

multiple times [58–64].

However, the main aim of the current study was not to settle

any of the above issues, but rather to use this setup to study

whether or not modular developmental networks evolved. We

furthermore investigated how evolution of developmental network

modularity depends on indirect selection for robustness. In

addition, we studied whether evolved modularity and robustness

influence future evolvability. Indeed, we could have used a much

more general fitness criterion for body plan patterning, for

example maximizing the number of celltypes [65–67] or the

amount of positional information [68], to study these issues.

Instead, we decided to use a more specific fitness criterion that

‘invites’ modularity to evolve, by independently selecting for two

functions, segmentation and differentiation. Furthermore, we

wished to study segmentation and differentiation as these are

considered two major innovations in bilaterian body plan

patterning and thus have been extensively studied both experi-

mentally and theoretically.

Evolution was successful in generating body plans that were

both significantly segmented and differentiated in 60% of our

simulations. This demonstrates two things. First, complex body

plan evolution is possible but not trivial. Second, this evolution can

be achieved without any coding sequence evolution, by allowing

evolution to rewire the regulatory interactions between a simple set

of developmental toolkit genes and to duplicate and reuse these

genes. Our results thus agree with the argued importance of

regulatory evolution [1,2,4–8] and duplication and divergent

usage of existing gene categories [10–12] in body plan evolution.

Interestingly, we found that our successful simulations could be

divided into only 2 distinct evolutionary scenarios. In 66% of

successful simulations segment and domain numbers increased

more or less simultaneously during evolution. The evolved

developmental networks produced a complex gene expression

transient that upon passage of the wavefront was translated into a

stable, spatially differentiated expression pattern producing both

Figure 9. Evolutionary innovations in the SF trajectory. Temporal sequence of all evolutionary innovations occurring in the example SF
simulation (Figures 3,6 and 7). Shown are the evolutionary time, the number of segments and domains, the developmental space-time plot, the final
gene expression pattern, the minimum segment network and whether it generates bistability or oscillations, the minimum domain network and its
number of positive feedback loops.
doi:10.1371/journal.pcbi.1002208.g009
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segments and domains. In the other 33% of successful simulations,

first the number of segments increased substantially before the

number of domains increased. The evolved SF networks generate

gene expression dynamics consisting of a combination of regular

oscillations and a complex time transient. The oscillatory

dynamics are responsible for producing segments, whereas the

complex transient generates domains. Under default parameter

settings the segments simultaneous evolutionary strategy is

dominant. However, we find that adding noise, thus producing

indirect selection for robustness, causes the segments first

evolutionary strategy to become the dominant strategy. We

furthermore demonstrate that the SF networks also have a higher

evolutionary potential for evolving new segments and domains.

Based on the observed differences in expression dynamics,

robustness and evolvability we hypothesized that SF networks may

also be more modular than SS networks. However, when applying

commonly used, purely architectural modularity algorithms

similar modularity scores were found for SS and SF networks.

Furthermore, these scores were below those of neutrally evolved

networks and very close to those of random networks, indicating

that no selection for the type of modularity measured by these

algorithms occurred.

Only by using our functional knowledge of the networks (they

should generate both segments and domains), and taking both

functional (different network parts should independently generate

either segments or domains) and architectural (these network parts

should be largely non-overlapping) aspects of modularity into

account could we establish differences in modularity between SS

and SF networks. We found that SS networks generated segments

and domains in a rather integrated manner, while SF networks

operate in a more modular fashion. However, the found

modularity was not 100%. Indeed, the SF subnetworks needed

to generate either segments or domains share a small subset of

their genes and regulatory interactions. Furthermore, a subset of

the domains can only be generated in a segment dependent

manner. Still, SF networks are considerably more modular than

SS networks.

Our results agree with the often heard suggestion that selection

for robustness favors modular GRNs and that these modular

GRNs tend to be more evolvable [2,13–16]. Furthermore, our

findings demonstrate the importance of considering functional

aspects of biologically relevant network modularity [36–39].

We observed two additional interesting differences between the

SS and SF evolutionary strategies. First, while genome size is

uncorrelated with body plan complexity for the SS networks, for

SF networks not total but core genome size is correlated with

organismal complexity. Second, we observed that the complexity

and functionality of SF networks changed during evolution in a

much more incremental fashion than did the SS networks. Both

these differences are likely to contribute to the larger robustness

and evolvability of SF networks.

We never observed a domains first segments later evolutionary

strategy. In hindsight this is easy to understand. Segments can be

generated through two alternative mechanisms. The first, applied

in SF networks, uses a segmentation gene oscillator to produce

regular segments independent of any domains. The second, used

in the SS networks, creates segments by linking segmentation gene

expression to the expression of domain forming genes. In this latter

case, once a differentiation gene has a spatially varied expression

pattern, evolution of a single regulatory link to the segmentation

gene suffices to produce segments. Because of this easiness of using

domains to make segments, we never observe early evolution of

domains with a later evolution of segments.

Previous simulation studies on the evolution of body plan

patterning have modeled the evolution of either segmentation

[41,42,69] or differentiation [43,65–67,70] alone. The major aim

of these studies was to gain an understanding of how natural

developmental mechanisms might have evolved. As a consequence

these studies focused on the resemblance between in-silico evolved

network architectures and those found in nature [41–43]. Below

we compare our results both to the findings of these earlier studies

and to developmental networks found in nature. It should however

be kept in mind that in our study this resemblance was neither an

explicit aim nor part of our model design.

As discussed above, SS networks generate a single complex gene

expression transient that produces both segments and domains. In

contrast, SF networks generate both oscillatory dynamics and a

complex time transient, the first responsible for producing

segments and the second responsible for generating domains.

The translation of oscillatory dynamics by a wavefront into a

regular segmentation pattern is called the clock-and-wavefront

mechanism for segmentation. It was first suggested by Cooke and

Zeeman [71] and has been extensively modeled [72–76]. This

mechanism is responsible for vertebrate somitogenesis [77–81],

arthropod short germband segmentation and annelid segmenta-

tion [64,82–84]. It is suggested to be the ancestral mode of

segment formation [60,62,85].

Recently, Francois and co-workers [41] found that selection for

body plan segmentation in the presence of a propagating

morphogen wavefront always leads to the evolution of a clock-

and-wavefront type mechanism. In contrast, we find that under

selection for both segmentation and differentiation either a clock-

and-wavefront type segmentation mechanism or a mechanism in

which segmentation depends on the expression of domain forming

genes may evolve. In the latter case, segments arise downstream of

the differentiation process, with different segments arising from

different combinations of domain forming genes. This mechanism

very crudely resembles the long germband, Drosophila type of

segmentation [86–88]. However, in our model segments are

formed sequentially rather than simultaneously. The fact that we

do not observe a hierarchy of mutual repressors as has been

observed in simulations of long germband type patterning [42,43]

is most likely due to this sequential rather than simultaneous

patterning. Our results suggest that key to understanding

Drosophila segmentation is not just considering that the process

occurs simultaneously rather than sequentially, but to also take

into account that the segmentation and differentiation processes

are tightly integrated.

We found that both SS and SF networks use a complex gene

expression transient to produce different domains, and in case of

the SS network also different segments. In addition, we found for

the SF network that the domains produced were of a continuous

staggered nature, somewhat similar to the Hox gene anterior

posterior expression domains. In a previous study, Francois and

Siggia [43] explicitly selected for such a Hox like differentiation

pattern. They found that in case of a propagating morphogen

wavefront, a special timer gene was needed to control the order

and location in which genes were switched on. The expression

level of this timer gene slowly accumulated in the time preceding

the passage of the wavefront, thus allowing a translation of

wavefront passage time into timer gene expression level and finally

expression of a different set of downstream genes. In contrast, in

our study we obtained anterior-posterior differentiation without

the need for such a timer gene, by combining the presence of

alternative attractors with a long and complex time transient.

Together this ensures convergence to different attractors at
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different times of wavefront passage, thus also producing

sequential spatial differentation.

Experimental data suggest that the initial Hox gene activation

occurring during the primitive streak phase is temporally colinear

and may involve timing mechanisms such as chromosomal

looping, ordered opening of chromatin domains and cluster level

activator and repressor regions [89–94]. In contrast, the Hox gene

activity in the presomitic mesoderm and during somite formation

appears to be under more individual gene level regulatory control

[93,95,96] and coordinated with the somitogenesis clock and

morphogen wavefront [94,96–103]. Indeed, in our segment first

simulations we find that the segmentation and patterning processes

both depend on the morphogen wavefront (Figure 6B, middle and

bottom row), and that they require some coordination (see Figure

S10 in Text S1). This resemblance to vertebrate axial patterning

evolved for free, as it was neither part of our fitness criterion nor of

the model design and is a side effect of considering the combined

evolution of segmentation and differentiation. Furthermore, it

demonstrates that the evolution of natural developmental

mechanisms such as vertebrate axial patterning is neither a very

unlikely event nor a completely random outcome, but a type of

solution that can be expected.

Supporting Information

Text S1 Extended description of the methods and
additional results.
(PDF)

Video S1 SS spatiotemporal developmental dynamics.
The movie shows the spatiotemporal dynamics of all 16 gene types

during development of the example SS individual described in

Figure 3A. Gene expression levels (protein concentrations) are

encoded in gray scales, white meaning high, gray intermediate and

black zero gene expression. The 16 gene types are ordered in 4

rows of 4 genes, running from left top to right bottom. Per gene,

the anterior of the embryo is to the left and the posterior to the

right.

(MPG)

Video S2 SS spatiotemporal developmental dynamics -2.
This movie shows again the spatiotemporal gene expression

dynamics during development of the example SS individual shown

in Figure 3A. Here, in a single plot the expression levels of all 16

genes are drawn as a function of their position along the anterior

posterior axis of the embryo, with expression levels changing over

time.

(MPG)

Video S3 SF spatiotemporal developmental dynamics.
Spatiotemporal gene expression dynamics for the example SF

individual shown in Figure 3B using the same movie format as in

movie S1.mpg.

(MPG)

Video S4 SF spatiotemporal developmental dynamics
-2. Spatiotemporal gene expression dynamics for the example SF

individual shown in Figure 3B using the same movie format as in

movie S2.mpg.

(MPG)
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