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1 | INTRODUCTION

Abstract

Sexual size dimorphism (SSD) evolves because body size is usually related to reproduc-
tive success through different pathways in females and males. Female body size is
strongly correlated with fecundity, while in males, body size is correlated with mating
success. In many lizard species, males are larger than females, whereas in others, fe-
males are the larger sex, suggesting that selection on fecundity has been stronger than
sexual selection on males. As placental development or egg retention requires more
space within the abdominal cavity, it has been suggested that females of viviparous
lizards have larger abdomens or body size than their oviparous relatives. Thus, it would
be expected that females of viviparous species attain larger sizes than their oviparous
relatives, generating more biased patterns of SSD. We test these predictions using
lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results
confirm a strong relationship between female body size and fecundity, suggesting that
selection for higher fecundity has had a main role in the evolution of female body size.
However, oviparous and viviparous females exhibit similar sizes and allometric rela-
tionships. Even though there is a strong effect of body size on female fecundity, once
phylogenetic effects are considered, we find that the slope of male on female body
size is significantly larger than one, providing evidence of greater evolutionary diver-
gence of male body size. These results suggest that the relative impact of sexual selec-
tion acting on males has been stronger than fecundity selection acting on females

within Sceloporus lizards.
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2007). In females, body size is strongly correlated with fecundity,

whereas in males, body size is correlated with mating success. As re-

In animal species that reproduce sexually, adult males and females
often differ in body size. This difference is termed sexual size dimor-
phism (SSD) and generally evolves because body size is commonly re-
lated to reproductive success through different pathways in females

and males (Blanckenhorn, 2005; Fairbairn, Blanckenhorn, & Székely,

sult of these differences, the body size that conveys maximal fitness
often differs between the sexes (Fairbairn et al., 2007). The impact of
sexual selection on SSD has been well established in many studies of
individual species as well as in many phylogenetically controlled com-

parisons among species (Andersson, 1994; Fairbairn, 1997; Fairbairn
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et al., 2007). In addition, fecundity selection favors large female body
size in species where females mature large numbers of eggs or live
young within their abdomens, as in most fish, insects, and spiders
(Blanckenhorn, 2005; Fairbairn, 1997; Fairbairn et al., 2007; Ruckstuhl
& Neuhaus, 2005). SSD also can arise through ecological niche diver-
gence, such as sex-specific foraging/dispersal strategies or adaptations
to reduce intersexual trophic competition (reviews in Blanckenhorn,
2005; Fairbairn, 1997; Fairbairn et al., 2007; Hedrick & Temeles, 1989;
Reiss, 1989; Ruckstuhl & Neuhaus, 2005; Shine, 1989). However, it is
unlikely that niche divergence between males and females is truly in-
dependent of sexual divergence in reproductive roles (Butler & Losos,
2002; Butler, Schoener, & Losos, 2000; Fairbairn et al., 2007).

In many vertebrate and invertebrate taxa, the magnitude of SSD
changes systematically with mean body size, either increasing or
decreasing as body size increases (Fairbairn et al., 2007; Webb &
Freckleton, 2007). The former pattern is common in species where
males are larger than females, while the latter occurs commonly in
species in which females are the larger sex. Both patterns are ex-
plained by greater evolutionary divergence in male size, compared
with female size; a pattern known as Rensch’s rule (Fairbairn, 1997;
Rensch, 1950). This allometric trend is usually attributed to sexual
selection acting on male body size (Fairbairn et al., 2007; Stillwell
et al., 2010). The converse trend, where female size varies more than
male size, is less common, but seems to be the result of strong fe-
cundity selection acting on females (Fairbairn et al., 2007; Foellmer
& Moya-Larafo, 2007; Webb & Freckleton, 2007). Lizards exhibit a
broad range of SSD. However, in the majority of species, males are
larger than females (Cox, Butler, & John-Alder, 2007; Cox, Skelly, &
John-Alder, 2003), mainly because body size often determines suc-
cess in agonistic encounters, and it is correlated with dominance and
territoriality (Carpenter, 1995; McMann, 1993; Molina-Borja, Padron-
Fumero, & Alfonso-Martin, 1998; Perry et al., 2004). Nonetheless, in
some species, females are larger than males, suggesting that fecundity
selection may have favored the evolution of large female body size
because it may allow females to (1) accommodate more offspring (Cox
et al., 2003; Stuart-Fox, 2009; Zamudio, 1998) and (2) increase the ca-
pacity for storing energy to be invested in reproduction (Calder, 1984;
Pincheira-Donoso & Tregenza, 2011).

Lizards species can be oviparous or viviparous (Blanckenhorn,
2000; Méndez-de la Cruz, Villagran-Santa Cruz, & Andrews, 1998).
In some viviparous species, the embryos develop in a placenta with
little or no shell forming, whereas in other species, the female retains
the eggs within the uterus until development is complete. In any case,
because placental gestation or extended egg retention requires more
space within the abdominal cavity associated with an increased ges-
tation period (Pincheira-Donoso & Tregenza, 2011; Qualls & Shine,
1995), it has been suggested that the females of viviparous lizards
possess larger body size or greater abdomens than their oviparous rel-
atives (Brafa, 1996; Scharf & Meiri, 2013; Yan-Yan et al., 2012).

The lizard genus Sceloporus serves as an excellent example of
SSD in lizards. This is a widely distributed genus (from southwestern
Canada to northern Panama), which can be found in several environ-

ments and along broad altitudinal ranges (0 to >4,000 m; Sites et al.,

1992; Smith, 1939). There are both oviparous and viviparous species
in the genus (Méndez-de la Cruz, Villagran-Santa Cruz & Andrews,
1998). In the majority of species, males are the larger sex and exhibit
a conspicuous coloration formed by belly and gular patches. However,
these characteristics are also present in the females of some species
within the group (Calisi & Hews, 2007; Carpenter, 1978; Fitch, 1978;
Jiménez-Cruz et al., 2005; Kohler & Heimes, 2002; Ramirez-Bautista
& Pavén, 2009; Ramirez-Bautista etal., 2008; Ramirez-Bautista,
Stephenson, Lozano, et al., 2012; Weiss, 2006). In addition, conspic-
uous coloration is also present on the dorsum, including the head,
tail, and limbs (e.g., Sceloporus minor, S. aureolus, S. horridus: Kéhler
& Heimes, 2002; Stephenson & Ramirez-Bautista, 2012). The sexual
coloration in males, principally the belly and gular patches, is related
to species recognition, territory defense, agonistic interactions, and
courtship (Carpenter, 1978; Martins, 1994; Sites et al., 1992; Wiens,
Reeder, & Nieto Montes de Oca, 1999), which suggests that sexual
selection has generated much of the divergence among males and
females in Sceloporus lizards. However, in other species, females are
larger than males (Fitch, 1978), suggesting that in these species, se-
lection on female fecundity has been stronger than sexual selection
on males.

In this study, we explore the relationship between female body
size, fecundity and reproductive modes, and the potential impact of
these relationships on body size divergence between females and
males of Sceloporus lizards. In addition, we tested Rensch’s rule in
order to evaluate the relative impact of sexual selection on the evolu-
tion of SSD, and we performed an ancestral character reconstruction
to infer the evolutionary trends of SSD in these lizards. We expected
differences in body size between oviparous and viviparous females
and that these differences affect the body size relationships between
the sexes. Nonetheless, if sexual selection has been the main force
driving the evolution of SSD in Sceloporus, we predict that the regres-
sion of male size on female size will have a slope steeper than 1, fol-

lowing the Rensch’s rule.

2 | METHODS

2.1 | Data collection

Our study comprised data collected for 56 Sceloporus species, four
Urosaurus species and Petrosaurus thalassinus for a total of 61 evo-
lutionary units (Urosaurus and P. thalassinus were used as outgroup
taxa). The Sceloporus species sampled included all major species
groups of the genus (Leaché, 2010; Wiens et al., 2010); 41 species
were oviparous and 20 were viviparous (Table 1). We performed a lit-
erature search for data on snout-vent length (SVL; a standard measure
used as a proxy for lizard size; Cox et al., 2003; Losos, 1990) for both
females and males and clutch/litter sizes (number of eggs or embryos)
for the species studied. We collected information from the literature

by executing searches on Google Scholar using the terms “snout-vent

» o« »n o« » o«

length,” “clutch size,” “litter size,” “number of eggs/embryos,” “sexual

size dimorphism,” or “reproductive cycle” for a list of species of the
genus Sceloporus, reported by Wiens, Kozak, and Silva (2013). Google
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TABLE 1 Mean snout-vent length (SVL), clutch/litter size, and reproductive mode (O = oviparous and V = viviparous) for 56 Sceloporus
species and five outgroup taxa

Species

Petrosaurus
thalassinus

Sceloporus adleri

S. aeneus
S. angustus
S. arenicolus

S. bicanthalis

S. chrysostictus

S. clarkii

S. consobrinus

S. couchii

S. cozumelae

S. cryptus

S. cyanogenys

S. dugesii

S. edwardtaylori

S. for. formosus

S. for. scitulus

S. gadoviae

S. graciosus

S. grammicus

S. grandaevus

S. horridus

S. hunsakeri

S. jalapae

S. jarrovii

SVL females (mm)

99.15(71-110)
63.11 (54-78.8)

51.88 (43.4-59.1)
62.8 (61-66)

(

(

53.8 (49-62.2)

51.84 (42.4-58)
513

88.08 (72-120)
68.4 (54-77)

50

45.48 (41-57)
67.06 (58.5-76.6)
63

61.5 (50-78)

107
67.46 (50-83.3)

66.49 (62.5-84.9)

54.95 (45.7-57.2)
57.59 (48-69)

56.05 (42.1-72.5)

58.5(58-59)
82.17 (60-100)

64.13
46 (42-50)

66.21 (60-86)

(44)
(23)

194)
5)
339)

(
(
(
(85)

(82)
(57)

(58)
(36)

(33)

(15)

(91)

(113)
(82)

(6)
(197)

(278)

(46)

(19)
(24)

(787)

SVL males (mm)

107.23 (80-152)

65.28 (59-72)

52.98 (43.4-62.8)
78.2 (65-86)
54.5 (49-64.9)
43.6 (42-53.2)

53.95

103 (91-138)

60.5 (50-68)

58

50.72 (43-60)

61.6 (58.9-68.5)

66

65.9 (50-98)

107
67.98 (50-87.4)

70.88 (63.3-87.3)

64.9 (69.6-73.5)

55.18 (48-63)

60.06 (45-79.9)

72.1(67-78)
85.49 (52-118)

73.96
49.3 (45-62)

69.67 (46-98)

(44)

(14)

(138)
(6)
(507)
(42)

(82)

(56)

(44)

(32)

(57)
(6)
(15)

(73)

(99)

(73)

(182)

(412)

(5)
(82)

(20)
(17)

(668)

Clutch size

8.6 (4-18)

6.57 (2-11)

7.3(7-12)
5.5(4-7)
5(4-6)
7.18 (3-9)

2.4 (1-4)

10.85 (1-24)

1.8

9 (6-12)

16.45 (6-18)

4.4(1-10)

8.5(8-9)
8.63(6-18)

6.04 (2-12)

3.6 (1-5)

4.55(1-10)

5.35(2-12)

6.5 (6-7)
14 (7-18)

7.5(5-10)
5.6 (4-8)

7.35(2-16)

(10)

(14)

(16)

(39)

(39)

(12)

(4)

(36)

(27)

(2)
(16)

(27)

(20)

(381)

(167)

(10)

(405)

Reproductive
mode

O

< O o0 o <

(@)

<

(@)

o O

References
Goldberg and Beaman
(2004)

Fitch (1978), Santos-
Bibiano (unpublished data)

Jiménez-Arcos (2013)
Goldberg (2014)
Fitzgerald et al. (2011)
Rodriguez-Romero et al.
(2010), This study®

Fitch (1985), Kéhler and
Heimes (2002)

Fitch (1978, 1985), Parker
and Pianka (1973)

Vinegar (1975a)

Garcia de la Pefa et al.
(2004), Lemos-Espinal and
Smith (2007)

Fitch (1978)
This study®

Fitch (1985), Garcia-de la
Pena, Castaneda, and
Lazcano (2005)

Ramirez-Bautista and
Dévila-Ulloa (2009)

Kohler and Heimes (2002)

Ramirez-Bautista and
Pavén (2009), This study®

Ramirez-Pinilla et al. (2009),
This study®

Lemos-Espinal, Smith, and
Ballinger (1999), This
study?®

Burkholder and Tanner
(1974), Fitch (1978, 1985),
Tinkle (1973)

Ramirez-Bautista,
Stephenson, Hernandez-
ibarra, et al. (2012),
Ramirez-Bautista,
Stephenson, Lozano, et al.
(2012), This study?®

Goldberg (2014)

Valdéz-Gonzalez and
Ramirez-Bautista (2002),
This study®

Galina Tessaro et al. (2015)

Ramirez-Bautista et al.
(2005)

Ballinger (1973), Gadsden
and Estrada-Rodriguez
(2007)

(continues)
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TABLE 1 (Continued)
Reproductive

Species SVL females (mm) SVL males (mm) Clutch size mode References

S. licki 63.83 (13) 71.46 (24) 6 (?) O Galina Tessaro et al. (2015)

S. macdougalli 83.84 (72.5-95.4) (29) 88.82(81.8-92.5) (7) 3.88 (2-5) (9) \ Martinez Bernal (2004)

S. magister 93.64 (80-120) (54)  111.45(80-140) (53) 6.98 (2-12)  (43) (0] Fitch (1978, 1985)

S. malachiticus 75.49 (64-86) (208) 79.12 (67-90) (146) 6(3-10) (44) \% Fitch (1978, 1985)

S. megalepidurus  44.99 (37-48) (36) 47.28 (39-55) (76) 2.04 (1-4) (25) \% Fitch (1978), Godinez-Cano
(1985)

S. melanorhinus 87.9 (62-98) (30) 84.6 (62-95) (32) 7.7 (5-9) (12) (6] Ramirez-Bautista et al.
(2006)

S. merriami 48.13 (39-55) (164) 52.24 (42-61) (355) 4.33(2-7) (127) O Fitch (1978), Grant and
Dunham (1990)

S. minor 65.65 (41.6-92.9) (182) 70.32 (53.6-99.4)  (169) 6.09 (2-13) (46) \Y Ramirez-Bautista et al.
(2008, 2014)

S. mucronatus 78.89 (56.5-102) (170)  87.02(55.2-111.2) (14¢) 5.8 (2-13) (49) Vv Ortega-Ledn et al. (2007),
Villagran-Santa Cruz et al.
(2009), This study®

S. nelsoni 52.14 (48-58) (21) 60.15 (53-65) (26) 6.25 (4-8) (4) (0] Fitch (1978)

S. occidentalis 74.63 (68-87) (43) 68.35 (61-81) (46) 8.12 (3-14) (243) O Fitch (1978), Herrel,
Meyers, and
Vanhooydonck (2002)

S. ochoterenae 44.39 (31-67) (110) 48.23 (44-56) (143) 6.77 (3-7) (35) (e} Bustos-Zagal et al. (2011),
Smith and Lemos-Espinal
(2003)

S. olivaceus 93 (63-107) (107) 82.9 (60-93) (34) 14.3(8-30) (14) (0] Blair (1960)

S. omiltemanus ~ 83.08 (39) 98.11 (25) 6.23 (6-8) (13) \Y Ramirez-Pinilla et al. (2009)

S. orcutti 92 (85-106) (77) 102 (90-115) (17) 11 (8-15) (4) (0] Mayhew (1963)

S. parvus 46.85 (44.7-49) (?) 50 (?) 3.8 (>2) O Garcia-Vazquez, Trujano-
Ortega, and Contreras-
Arquieta (2014),
Lemos-Espinal and Dixon
(2013)

S. pictus 47.86 (44-52) (7) 48.88 (47-51) (8) 3.6 (2-6) (5) A\ Fitch (1978)

S. poinsettii 89.45 (79-116) (55) 96.79 (77-130) (79) 10.5(4-23)  (90) \% Fitch (1978, 1985),
Gadsden et al. (2005)

S. pyrocephalus  53.41 (47-62) (88) 62.01 (50-75) (84) 5.65 (4-9) (24) (6] Fitch (1978), Ramirez-
Bautista and Olvera
Becerril (2004)

S. spi. caer- 87.22 (77-96) (18) 88.29 (82-99) (17) 12.82(8-19) (23) (e} Calderdn-Espinosa,

uleopunctatus Andrews, and Méndez de

la Cruz (2006), Fitch
(1978)

Sceloporus 91.11 (65.7-110.5) (164) 92.66 (60-112) (164) 14.09 (6-22) (38) (0] Méndez de la Cruz et al.

Spi. spinosus (2013), Ramirez-Bautista,

Stephenson, Hernandez-
ibarra, et al. (2012),
Ramirez-Bautista,
Stephenson, Lozano, et al.
(2012), Ramirez-Bautista
et al. (2014), Valdéz-
Gonzalez and Ramirez-
Bautista (2002)

S. scalaris 51.25 (40-60) (203) 45.53 (40-55) (45) 8.28 (4-15) (109) O Carbajal-Marquez and

Quintero-Diaz (2013),
Fitch (1978, 1985), Vitt
(1977)

(Continues)
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TABLE 1 (Continued)
Species SVL females (mm) SVL males (mm)
S. siniferus 49.88 (40-61) (139) 52.49 (53-61) (235)
S. smaragdinus 62.24 (55-77) (17) 67.22 (60-80) (14)
S. subpictus 66.47 (63.1-69) (41) 63.54 (1)
S. torquatus 94.03 (65-110) (4) 101.51 (43.2-115.9) (37)
S. tristichus 63.3 (48-67) (57) 55.9 (53-73) (54)
S. undulatus 61.11 (53-72) (118) 55.78 (45-65) (177)
S. utiformis 63.41 (51-73) (104) 61.25 (45-84) (122)
S. variabilis 52.65 (44-68) (424) 61.99 (42-74) (457)
S. virgatus 63.81 (51-74.2) (54) 50.42 (48-58) (22)
S. woodi 57.24 (64) 51.89 (78)
Urosaurus 45.84 (40-53) (249)  49.66 (38-61) (322)

bicarinatus

U. graciosus 38.69 (44-66) (60) 62.35 (42-66) (42)
U. nigricaudus 51.82 (44-60) (121) 62.47 (57.2-65.4) (42)
U. ornatus 49.98 (45-58) (14) 50.87 (47-60) (34)

Fcology and Evolution 909
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Reproductive
Clutch size mode References
4.94 (2-8) (15) (0] Fitch (1978), Ramirez-
Bautista et al. (2015)
4.2 (3-6) (10) \Y, Fitch (1978)
13 (12-14) (2) \Y This study®
7.78 (3-17) (84) V Feria Ortiz, Salgado Ugarte,
and Nieto-Montes de Oca
(2001), Guillette and
Méndez-de la Cruz (1993),
This study®
7.2 (29) O Vinegar (1975b)
8.02(3-15) (376) O Fitch (1978, 1985), Herrel
et al. (2002)
6.94 (3-10) (31) O Fitch (1978), Ramirez-
Bautista and Gutiérrez-
Mayén (2003)
3.92(1-7) (216) O Benabid (1994), Cruz-
Elizalde & Ramirez-
Bautista (2016 and
references in table 6),
Fitch (1978, 1985)
9.44 (4-16) (228) O Abell (1999), Herrel et al.
(2002), Vinegar (1975a)
4.62 (2-8) (231) O Jackson and Telford (1974),
Williams (2010)
6.26 (2-11) (50) (e} Ramirez-Bautista,
Uribe-Pena, and Guillette
(1995), Ramirez-Bautista
and Vitt (1998)
4.05(2-10)  (25) (0] Fitch (1985), Vitt, Van
Loben Sels, and Ohmart
(1978)
4.05 (2-6) (25) (e} Romero-Schmidt,
Ortega-Rubio, and
Acevedo-Beltran (1999)
7.25(2-12) (1454) O Fitch (1985), Martin (1973),

Van Loben Sels and Vitt
(1984)

Size and clutch/litter size ranges are shown in parentheses below mean values. Numbers between parentheses refer to sample sizes. The symbol (?)

represents a lack of sample size data in the literature.
2Only SVL data obtained in this study.
PBoth SVL and litter size data obtained in this study.

Scholar was used as the search engine instead of other engines be-
cause it cataloged full-text versions of published papers. Moreover,
terms that were included in our search like “clutch size,” “litter size,”
and “snout-vent length” were not the principal focus of the papers,
and the phrases were usually referred to only briefly. Thus, we were
less likely to locate the pertinent information using literature data-
bases that contain only keywords, titles, and abstracts (see Dornhaus,
Powell, & Bengston, 2012). We excluded data in which the number
of vitellogenics follicles were reported as part of clutch size, because
the follicular atresia may occur in any stage of the ovogenesis, in-

cluding previtellogenic and vitellogenic follicles, and thus does not

represent an accurate estimation of clutch/litter size (Méndez-de la
Cruz et al., 2013). For species with data on more than one clutch per
reproductive season, we used the average of all clutches reported in
the literature.

In addition to this data set, we incorporated unpublished mea-
surements collected by us from the individuals of ten species. Both
SVL and litter size data were incorporated for S. cryptus, S. formosus
formosus, and S. subpictus (all viviparous species). SVL data from both
sexes were collected for S. bicanthalis, S. formosus scitulus, S. gadoviae,
S. grammicus, S. horridus, S. mucronatus, and S. torquatus. Litter size was

obtained from direct observations of females giving birth in captivity
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(see Bastiaans et al., 2014 for care details). Digital calipers were used
to take SVL measurements to the nearest 0.1 mm (Mitutoyo CD-
15DC; Mitutoyo Corp., Tokyo, Japan). All lizards captured for this
study were unharmed and released at their original capture locations
following data collection.

The number of eggs or embryos was used as an estimation of
fecundity. Prior to further analyses, all measurements were log,,-
transformed to improve linear fits. In addition, we estimated a sex-
ual size dimorphism index (SDI) on SVL following the Lovich and
Gibbons (1992) criteria. This index expresses SSD as [(length of larger
sex/length of smaller sex) - 1]. For convention, the SDI is arbitrarily
changed to negative when males are the larger sex and positive when

females are the larger sex (Cox et al., 2007).

2.2 | Phylogenetic reconstruction

We inferred the phylogenetic relationships between the 56 stud-
ied species of Sceloporus using the nucleotide sequences of eight
nuclear (BDNF, ECEL, PNN, PRLR, PTPN, R35, RAG1, TRAF6) and
five mitochondrial genes (12S, 16S, ND1, ND2, ND4) available on
GenBank. We also retrieved the same genetic information from
five outgroup taxa which included four Urosaurus species, represent-
ing the sister group of Sceloporus (Leaché, 2010; Wiens et al., 2010)
and Petrosaurus thalassinus. The number of species sampled for each
gene was BDNF = 48, ECEL = 25, PNN =47, PRLR = 27, PTPN = 26,
R35 =48, TRAF6 =46, 125=57, 16S =56, ND1 =54, ND2 = 35,
and ND4 = 57. All matrices were similar to previous studies (Leaché,
2010; Wiens et al., 2010). However, we treated the two subspecies of
S. formosus (i.e., S. formosus formosus and S. formosus scitulus) as puta-
tive species based on previous evidence for distinct lineages (Pérez-
Ramos & Saldana de La Riva, 2008; Wiens & Reeder, 1997). A similar
situation is present in S. spinosus (with S. spinosus spinosus and S. spi-
nosus caeruleopunctatus). Wiens et al. (2010) recognized these taxa as
putative species, which was also supported by more recent evidence
(Grummer et al., 2015). Our inclusion of these taxa as distinct evo-
lutionary lineages was not an endorsement of their recognition as
different species, but we did not want to ignore important previous
taxonomic work on these groups (see Pérez-Ramos & Saldana de La
Riva, 2008; Wiens & Reeder, 1997; Wiens et al., 2013).

We used MUSCLE algorithm (Edgar, 2004) to align each gene
data set using the default parameters in the software MEGA (ver-
sion 7; Kumar, Stecher, & Tamura, 2016). We then used the software
MESQUITE (Maddison & Maddison, 2015) to combine the sequences
of each gene, and to make the final concatenated matrix for all genes
(see below). We provide the GenBank accession numbers of the se-
quences used in Appendix S1. Our concatenated alignment consisted
of genetic information from 61 terminals (56 Sceloporus species, five
outgroups taxa) and 11,113 characters. We estimated the best par-
tition scheme and nucleotide substitution models for the data using
the greedy algorithm of PARTITIONFINDER (version 1.1.1; Lanfear
et al., 2014). We conducted a concatenated Bayesian inference (BI)
analysis in MRBAYES (version 3.2.6; Ronquist et al., 2012) by applying
the specific substitution model estimated for each partition. The Bl

analysis consisted of four independent runs, each with 10,000,000
generations and four chains, sampling every 1,000 generations. We
used default priors for other parameters in the analysis. We assessed
parameter convergence and proper mixing of independent runs using
TRACER (version 1.6; Rambaut & Drummond, 2013). All parameter
values sampled during the MCMC of the analysis resulted in ESS val-
ues greater than 200. We discarded 25% of the samples obtained prior
to stability as burn-in to obtain a final consensus tree (See Appendix
S1 for details).

Our analysis only considered the phylogeny that resulted from a
concatenated matrix of both mitochondrial and nuclear loci, utilizing
a total evidence approach for Sceloporus species and outgroup taxa.
Although this approach may be controversial because nuclear and mi-
tochondrial genes may have incongruent histories due to incomplete
lineage sorting and exhibit different substitutions rates (see Maddison,
1997), concatenated matrices have improved the resolution of the
phylogenetic relationships of phrynosomatid lizards (Wiens et al.,
2010). Moreover, our phylogenetic results were largely congruent
with a recent phylogenetic study on Sceloporus that involved a wider
taxonomic and genetic sampling, as well as different methodological
approaches (concatenation and coalescent-based methods) to infer

phylogenetic relationships (Leaché et al., 2016).

2.3 | Comparative analyses

We converted the molecular branch lengths from the Bayesian analy-
sis to units of time using a penalized likelihood method (Sanderson,
2002). For branch length conversion, we used the R (version 3.1.3; R
Core Team 2015) package “ape” (Paradis, Claude, & Strimmer, 2004)
and performed all the comparative analysis on the resulting ultramet-
ric phylogeny. For more details, see Appendix S1.

2.4 | Reproductive modes, female body size,
fecundity, and SDI

We used the phylogenetic generalized least squares (PGLS) model to
test for an association between fecundity, body size, and reproduc-
tive mode. The PGLS approach incorporates phylogenetic information
into linear models to account for the statistical nonindependence of
residuals using a variance-covariance matrix (see Martins & Hansen,
1997) specified by the phylogeny. For all models, the maximum likeli-
hood value of the weighting parameter \ was estimated simultane-
ously with the models (Gonzalez-Voyer & Kolm, 2010; Revell, 2010).
The A parameter indicates whether trait evolution is independent
of the phylogeny (A = 0) or evolving according to Brownian motion
(N = 1). Intermediate values of X\ suggest a process in which the effect
of the given phylogeny is weaker than expected by Brownian motion
evolution (Pagel, 1999). The models were fitted as implemented in
the R package “caper” (Orme et al., 2012). The first model included
fecundity (dependent variable), log,, SVL female (independent vari-
able), and reproductive mode (categorical independent variable) as
well as the interaction between SVL and reproductive mode. In order
to evaluate the impact of fecundity on SDI, we first saved the residuals
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of the previous model and then constructed a model with SDI as the
dependent variable, reproductive mode as a categorical independ-
ent variable, and the fecundity residuals as a covariate. We used the
residuals to eliminate potential confounding effects associated with
female body size.

2.5 | Rensch’s rule and ancestral
reconstruction of SDI

Rensch'’s rule predicts that the slope of a regression of male body
size on female body size will be steeper than 1. To test this predic-
tion in the studied species, we used the phylogenetic independent
contrasts method (PIC method; Felsenstein, 1985), as implemented
by the R package “caper” (Orme et al., 2012) to control for the phy-
logenetic nonindependence of species (Harvey & Pagel, 1991). We
examined the studentized residuals for outliers > [+3|, but found
none in our data set. Also, in order to verify whether the stand-
ardized contrasts are independent from their estimated nodal val-
ues (see Felsenstein, 1985), we plotted the standardized contrasts
against their estimated nodal values using the “plot” function pro-
vided by “caper”. Ultimately, we tested the allometric relationship
between independent contrasts of log, , SVL male (dependent varia-
ble) and log,, SVL female (independent variable) by fitting major axis
regression using the R package “smatr” (Warton et al., 2012). Major
axis regression offers an accurate approach to test the null hypoth-
esis of isometry (hy: B = 1), because both variables were measured
on the same scale and residual variance is minimized in both x and
y dimensions, rather than the y dimension only (Cox et al., 2007;
Pincheira-Donoso & Tregenza, 2011; Warton et al., 2006). Given
that the mean value of contrasts is expected to be zero (Sanabria-
Urban et al., 2015), we forced the major axis regression through
the origin. We used the Wald statistic (r,) and confidence intervals
(95%) of the slope to test the null hypothesis (see Warton et al.,
2006). In addition, in order to explore the evolutionary trends in
body size and SDI, we performed an ancestral character reconstruc-
tion following Revell (2013). This method estimates the maximum
likelihood value for internal nodes and then interpolates the states
along the branches of the tree (see Revell, 2013, 2014 for details).
For the reconstruction and visualization of ancestral state recon-
struction of SDI (see Figure 3), we used the R package “phytools”
(Revell, 2012).

3 | RESULTS

3.1 | Reproductive modes, body size, and fecundity

After controlling for phylogenetic nonindependence among of the
species studied, the results of the PGLS analysis were highly sig-
nificant (r* = 0.3, F3y57 =8.025, p =.0001). We found a strong and
significantly positive relationship between body size and fecundity
(B=0.98 +£0.26, t =3.801, p =.0003; Figure 1). Nonetheless, there
were no differences in fecundity between reproductive modes
(B=-0.15+0.85 t=-0.174, p=.86). The interaction between

log1o number of eggs/embryos

0.4 . df =57
p=0.0003
(9]
[e]
0.2 . . . . .
1.6 1.7 1.8 1.9 2.0 2.1

logqo female SVL (mm)

FIGURE 1 The relationship between the SVL of females and
fecundity. Note this graph is shown only for illustrative purposes and
was created with ordinary least squares linear model

reproductive modes and body size was not significant (8 = 0.04 + 0.47,
t = 0.086, p =.93), indicating a similar fecundity response to an in-
crease in the body size of both oviparous and viviparous species. The
model showed intermediate A values (A = 0.54), indicating a relatively
weak phylogenetic effect on the relationships between body size and
fecundity.

3.2 | Reproductive modes, fecundity, and SDI

The results of PGLS analysis were not significant (r? =.003,
Fys7= 0.071, p = .98). There were no significant differences in the SDI
of oviparous and viviparous lizards (B = 0.01 + 0.05,t = 0.433,p = .67).
Similarly, there were no significant effects of fecundity residuals on
SDI (B = -0.005 + 0.08, t = -0.063, p = .95). The model showed a high
A value (A = 0.95), indicating a strong phylogenetic effect on the rela-
tionships between fecundity residuals and SSD.

3.3 | Rensch’s rule and ancestral
reconstruction of SDI

The results of the major axis regression of independent contrasts
indicated strong coevolution between females and males (r =.80;
df = 58, p =.0001, Figure 2). The regression showed a slope signifi-
cantly steeper than 1.0 (B = 1.17, r,, = .29, p = .02; Figure 2). Most of
the taxa (46 species, 75%) showed male-biased SSD, and 14 species
(23%) showed some degree of female-biased SSD. The males and fe-
males of only one species showed similar body sizes (S. edwardtay-
lori). The SDI reconstruction showed six independent origins of the
female-biased SSD. In a clade with male-biased SSD (formosus group),
the branch of S. cryptus and S. subpictus showed a female-biased SSD.
Other independent origin of female-biased SSD was found in the
scalaris (S. bicanthalis and S. scalaris) group. Another origin for undu-
latus group (S. olivaceus, S. occidentalis, S. virgatus, S. woodi, S. undu-
latus, S. consobrinus, and S. tristichus). Finally, three additional species
independently evolved female-biased SSD: S. utiformis (utiformis
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FIGURE 2 Independent contrasts of SVL of males as a function

of SVL of females. The solid line indicates isometry (8 = 1), while
the dashed line denotes the allometric relationship between both
variables as fitted by major axis regression. Values in parentheses
indicate the upper and lower confidence interval (95%) for the slope
and p value the probability fora > 1

group), S. graciosus (gracious group), and S. melanorhinus (clarkii group;
Figure 3).

4 | DISCUSSION

Once we control for phylogenetic effects, our results confirm a
strong relationship between female body size and fecundity, sug-
gesting that in Sceloporus lizards selection on fecundity has had a
main role on the evolution of female body size. However, regard-
less of the reproductive mode (oviparous or viviparous), the size
of females of Sceloporus is similar and has evolved in a similar fash-
ion. We must point out that the similar response in the relationship
of body size with increase in the clutch/litter size between both
reproductive modes does not imply that the overall reproductive
output (i.e., reproductive fitness of the female’s life) is similar. The
potential impact of fecundity selection on the different reproduc-
tive modes may be underestimated (Niewiarowski et al., 2004;
Pincheira-Donoso & Hunt, 2015; Shine, 2005). Oviparous species
like S. gadoviae, S. siniferus, S. undulatus, and S. variabilis may have
multiple clutches in a reproductive season (i.e., per year; Cruz-
Elizalde & Ramirez-Bautista, 2016; Ramirez-Bautista et al., 2005;
Ramirez-Bautista et al., 2015; Vinegar, 1975b), whereas other spe-
cies like S. magister, S. melanorhinus, and S. spinosus have just one
clutch per year, but they may have more than one reproductive
event in their life (Méndez-de la Cruz et al., 2013; Parker & Pianka,
1973; Ramirez-Bautista et al., 2006; Valdéz-Gonzalez & Ramirez-
Bautista, 2002). On the other hand, all viviparous species have one
litter per year, but in the majority of species, females can have sev-
eral reproductive events (Méndez-de la Cruz et al., 1998; Ramirez-
Bautista et al., 2014; Villagran-Santa Cruz, Hernandez-Gallegos, &
Méndez-de La Cruz, 2009).

The differences in the gestation period between reproductive
modes do not have any impact on the evolution of SSD, but according
to the Renchs’ rule, the slope of the regression of males on females
is significantly steeper, providing evidence of greater evolutionary
divergence in male size than in female size. Fitch (1978) noted that
the high variation of SSD in Sceloporus lizards, and the implications of
sexual and natural selection in order to explain the differences in body
size between females and males. For lizard species in which body size
often determines male mating success, males are typically larger than
females (Cox et al., 2007). Body size often determines success in ago-
nistic encounters, and it is correlated with dominance and territoriality
(Carpenter, 1995; Martins, 1994; McMann, 1993; Molina-Borja et al.,
1998; Perry et al., 2004). However, in other species, females are larger
than males, suggesting that fecundity selection may have favored the
evolution of larger-than-average female body size (Cox et al., 2003;
Zamudio, 1998). Furthermore, as Sceloporus lizards follow Rensch’s
rule, it can be argued that this allometric trend is the result of sexual
selection favoring large male body size and that the relative impact of
sexual selection on males has been stronger than fecundity selection
on female body size (Fairbairn, 1997; Fairbairn et al., 2007; Pincheira-
Donoso & Tregenza, 2011).

The reconstruction of the evolution of SSD in Sceloporus lizards
suggests that the ancestor and most of the extant species show a pat-
tern of male-biased SSD. This could indicate that directional sexual
selection acting on males has been greater than the selection acting
on female fecundity. Territoriality and aggressive behaviors are com-
mon in Sceloporus: These are mainly associated with defense of mates
in males (Martins, 1994), and resources (e.g., food, water, perches) in
both sexes (Cooper & Wilson, 2007; Martins, 1994; Vinegar, 1975c;
Woodley & Moore, 1999). In general, larger individuals have an ad-
vantage when defending territories in agonistic encounters (Martins,
1994; Swierk, 2014). However, female-biased SSD has evolved inde-
pendently at least six times (Figure 3). Perhaps in these taxa, selection
on fecundity has been stronger than sexual selection. Nonetheless, it
is possible that in these species, sexual selection has also favored small
male body size (see Cox et al., 2007; Olsson et al., 2002), albeit there is
no clear pattern as to the ecological factors associated with the evolu-
tion of female-biased SSD. These species, like other Sceloporus species
that show male-biased SSD, live in different environments, including
tropical deciduous forest, grasslands, scrubland, woodlands, and open
coniferous forests, and can be found from sea level up to elevations
>4,000 m. Moreover, species showing female-biased SSD are ovipa-
rous and viviparous (e.g., undulatus group versus S. bicanthalis, respec-
tively), and with single or multiples clutches per reproductive season
(e.g., S. melanorhinus versus S. consobrinus, respectively). The diversity
of ecological and social factors provides opportunities for changes in
the direction and magnitude of natural and sexual selection between
and within species. However, the information available for female
preference and agonistic interactions between males are, in the ma-
jority of species, severely scarce or absent (see Martins, 1994; Swierk,
2014).

Previous studies in Phrynosomatidae do not support Rensch’s
rule (Cox et al., 2007). However, these results could be obscured by
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FIGURE 3 Maximum likelihood ancestral reconstruction of SDI for 56 species of Sceloporus and five outgroup taxa performed in R package
“phytools” (Revell, 2012). For the analysis, we used the ultrametric phylogeny and the values of SDI estimated for each species. The values in
the color ramp represent the range of SDI registered for the study species. Negative values indicate male-biased SSD (blue to paleyellow) and
positive values female-biased SSD (palepurple to red). Open and filled circles indicate, respectively, oviparous and viviparous lizard species

the large diversity in morphology, behavior, ecology, and life-history
traits between different lizards genera (Cox et al., 2003). In addition,
these studies do not consider the phylogenetic relationship between
the species (see Cox et al., 2007). Conversely, our results are similar to
previous studies in the genus Liolaemus (Liolaemidae). The clutch/litter
size increases as a function of female body size. Nonetheless, fecun-
dity is not correlated with SSD, but Lioalemus species appear to follow
Rensch’s rule (Pincheira-Donoso & Tregenza, 2011). Both Sceloporus
and Liolaemus species occupy a great diversity of environments, along
wide latitudinal and altitudinal ranges and showing great variation in
morphological, ecological, behavior, and life-history traits (Pincheira-
Donoso, Scolaro, & Sura, 2008; Sites etal.,, 1992). The similarity
between our results and those reported in Liolaemus suggests that fe-

cundity selection may have driven the divergence in female body size

but that the diversifying effects of sexual selection may often exceed
fecundity selection on females in both genera.

The genus Sceloporus includes more than 90 species and has been
proposed as a group with an accelerated diversification rate (Bell,
Smith, & Chiszar, 2003; Leaché, 2010; Wiens et al., 2010). Sceloporus
lizards have colonized diverse niches throughout its distribution range,
from northern Panama to southwestern Canada, and show one of
the widest altitudinal ranges for reptiles. Due to the broad spread of
niches, it is likely that the relative impact of natural and sexual se-
lection has changed along novel environmental conditions, generating
divergence from the optimum body size of females and males. In any
case, the causal mechanisms associated with changes in the direction
of SSD bias toward females in this group remain an open question that

demand further investigation.
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