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Suboptimal resource allocation in changing
environments constrains response and growth in
bacteria
Rohan Balakrishnan1,* , Roshali T de Silva2, Terence Hwa1,3 & Jonas Cremer2,**

Abstract

To respond to fluctuating conditions, microbes typically need to
synthesize novel proteins. As this synthesis relies on sufficient bio-
synthetic precursors, microbes must devise effective response
strategies to manage depleting precursors. To better understand
these strategies, we investigate the active response of Escherichia
coli to changes in nutrient conditions, connecting transient gene
expression to growth phenotypes. By synthetically modifying gene
expression during changing conditions, we show how the competi-
tion by genes for the limited protein synthesis capacity constrains
cellular response. Despite this constraint cells substantially express
genes that are not required, trapping them in states where precur-
sor levels are low and the genes needed to replenish the precur-
sors are outcompeted. Contrary to common modeling
assumptions, our findings highlight that cells do not optimize
growth under changing environments but rather exhibit hardwired
response strategies that may have evolved to promote fitness in
their native environment. The constraint and the suboptimality of
the cellular response uncovered provide a conceptual framework
relevant for many research applications, from the prediction of
evolution to the improvement of gene circuits in biotechnology.

Keywords cellular response; diauxie; environmental changes; growth opti-

mality; resource allocation

Subject Categories Metabolism; Microbiology, Virology & Host Pathogen

Interaction

DOI 10.15252/msb.202110597 | Received 25 July 2021 | Revised 29 November

2021 | Accepted 1 December 2021

Mol Syst Biol. (2021) 17: e10597

Introduction

Changing environmental conditions are a hallmark of microbial hab-

itats, and microbes have to respond appropriately to thrive (Stanier,

1951; Roszak & Colwell, 1987; Siegal, 2015; Bertrand, 2019; Erez

et al, 2020; Moreno-G�amez et al, 2020). For instance, the depletion

of a preferred carbon source requires the efficient transitioning to

the consumption of another carbon source (Monod, 1949, 1966).

Several studies have characterized the response to such diauxic

shifts by identifying the up- and downregulation of hundreds of

genes (Chang et al, 2002; Kao et al, 2005; Mostovenko et al, 2011),

and implicating major regulators such as cAMP (Loomis & Maga-

sanik, 1967; Ullmann & Monod, 1968; Inada et al, 1996; Kimata et

al, 1997) and ppGpp (Traxler et al, 2006; Fern�andez-Coll & Cashel,

2018). Executing these different processes is a major challenge for

the cell, especially when biosynthetic precursor levels drop during

shifts, yet how cells navigate these challenges and strategize an opti-

mal response remains poorly understood. To decipher the funda-

mental principles shaping the cellular response and growth kinetics,

we here present a quantitative study on cell physiology connecting

gene expression to growth phenotypes.

Results

We first studied the shift from growth in glucose to growth in ace-

tate, a shift previously used to study growth transitions (Kao et al,

2005; Kotte et al, 2014; Enjalbert et al, 2015; Basan et al, 2020). We

grew Escherichia coli–K-12 cells in batch cultures and tracked

growth by measuring optical density (Fig 1A). The shift from

growth on glucose (blue zone) to acetate (red zone) is accompanied

by a period of growth arrest (lag-time τlag) lasting ~3.5 h (gray

zone). The lag is also illustrated by the drop of the instantaneous

growth rate during the shift (Fig EV1A). From the metabolic per-

spective, this transition requires a switch from glycolytic pathways

to the activation of the glyoxylate shunt and gluconeogenesis path-

ways(Oh et al, 2002; Kao et al, 2005; Wolfe, 2005; Enjalbert et al,

2015) so that the synthesis of amino acids and other growth precur-

sors (green arrows) can continue (Figs 1B and EV1B). Hence, fol-

lowing glucose depletion, the synthesis of the glyoxylate shunt

enzymes (AceB, AceA) and gluconeogenesis enzymes (MaeA,

MaeB, Pck, PpsA) is required before growth can resume on acetate

(Fig EV1B). Indeed, maintaining enzyme reserves of the glyoxylate

shunt pathway by pre-expressing aceBA prior to glucose runout
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reduces the lag-time (Fig EV1C and D). Yet, why does it take so long

for the few required enzyme types to reach sufficient concentrations

for growth to resume?

To tackle this question, we next followed gene expression during

the course of the shift. Translation rates are known to severely fall

with growth arrest upon glucose depletion (Madar & Zaritsky, 1983;

Erickson et al, 2017). Given these low rates, the high stability of

proteins synthesized before the glucose runout, and the technical

challenges to detect low levels of novel proteins, it is difficult to ana-

lyze the proteome response in high resolution. In contrast, given the

fast turnover of mRNA (Chen et al, 2015; preprint: Balakrishnan

et al, 2021), transcriptomics and the pool of mRNA species provide

a good readout of momentary gene expression during the shift.

Using RNA sequencing (RNA-Seq), we determined mRNA abun-

dances at six different time points. The mRNAs of the glyoxylate

shunt and gluconeogenesis genes, represented as fraction of total

mRNA, increase immediately (< 5 min) following glucose depletion,

and these increased levels are maintained through the duration of

the growth lag (Fig 1C). Given such a rapid regulatory response, the

speed at which the transcriptional program changes is likely not the

reason for long lag-times, but it is rather the expression strength that

could be important. To test this idea, we first employed a strain in

which the native promoter of the aceBAK operon is replaced by the

titratable promoter Ptet (Basan et al, 2020). In this strain, as increas-

ing concentrations of the inducer chlortetracycline (cTc) are added

at the moment of glucose depletion, growth recovery is

A

D E

B C

Figure 1. Diauxic shift from glucose to acetate.

A Diauxic growth of WT Escherichia coli (NCM3722) in minimal media containing glucose and acetate, bacterial density measured as optical density (OD600). Growth on
glucose is captured by the exponential fit (blue dashed line) and proceeds until glucose runs out (black dashed line) at time = 0 h. This is followed by a period of
growth lag lasting ~3.5 h before exponential growth resumes on acetate (red dashed line).

B The central carbon metabolism pathways are illustrated along with the nodes branching out into amino acid precursor synthesis (green arrows). Glucose to acetate
diauxie requires switching from the pathways facilitating glucose consumption (represented in blue) to those responsible for acetate consumption (represented in
red). More details in Fig EV1B.

C The mRNA fractional abundances for aceB, aceA, and the gluconeogenesis genes (summed abundance of maeA, maeB, pck, and ppsA genes) were estimated by RNA
sequencing performed at various time points during the diauxic transition as indicated on the x-axis. The x-axis is truncated 2.3 h into the shift, and the “post-shift”
(pink) regime represents transcript levels when growth fully resumes on acetate, measured under steady-state growth on acetate minimal medium. The series of
RNA-Seq through the growth transition was performed once.

D Lag-times for controlled titration of aceBA expression using an inducer construct in strain NQ1350 (inset). Addition of chlortetracycline (cTc) removes the tetR
repression and induces aceBA expression. As the expression of aceB/aceA during the response (inducer added at time = 0 h) is increased, lag-times decrease. Bar plot
shows mean lag-times (N = 3 biological repeats) for different inducer concentration with error bars denoting the standard deviations (SD).

E Of the overall transcription and translation fluxes (arrows), a strong allocation toward the expression of shunt and gluconeogenesis genes (red) increases the novel
synthesis of required enzymes and should thus lead to faster growth recovery.

Source data are available online for this figure.
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progressively faster, from no recovery for over 10 h in the absence

of induction to ~3-h recovery at the highest cTc concentration used

(Fig 1D). Since the aceBA expression levels prior to glucose deple-

tion are unperturbed, and thus uniform among the cultures, the

decrease in lag-times with increasing cTc concentrations highlights

the significance of the active response to changing conditions in

determining the transition kinetics. Following these results, we won-

dered whether lag-times emerge due to a fundamental competition

for shared resources such as RNA polymerase and ribosomal activ-

ity, which could be particularly limited during the shift: If a larger

portion of the limited transcriptional and translational fluxes are

allocated to the synthesis of the required mRNAs and proteins (Fig 1

E top), the shunt and gluconeogenesis enzymes become available to

replenish precursors earlier than in the case with a lower allocation

of resources toward these genes (Fig 1E bottom).

To probe this allocation picture, we next employed a titration

construct to overexpress lacZ (Scott et al, 2010), the product of

which hydrolyses lactose and is thus useless for growth in glucose

and acetate (Fig 2A, inset): When transcriptional and translational

resources are diverted toward LacZ synthesis during the response to

changing conditions, the protein itself adds no benefit to the cell

and thus acts as a sink for shared resources, which should extend

lag-times. In line with this expectation, when inducing lacZ expres-

sion by adding various levels of the inducer chlortetracycline (cTc)

at the moment of glucose depletion, we observed that lag-times

increase strongly from τlag = 3.9 h at 0 ng/ml cTc to τlag = 12.2 h at

7 ng/ml cTc (Figs 2A and EV2A). To further explore this effect, we

measured the mRNA levels of lacZ and the required shunt genes

aceB and aceA by qPCR, 10 min after the shift. The abundance of

lacZ mRNA increases with inducer concentration (Fig EV2B) in

A B

C D

Figure 2. Expression of a non-needed gene inhibits expression of required genes and elongates lag-times.

A A plasmid system (inset) is used to control the expression of the non-required gene lacZ using the strain NQ1389. lacZ expression was induced using cTc to varying
degrees at the moment of glucose depletion (time = 0 h) using the indicated range of cTc concentrations. Diauxic growth conditions with glucose and acetate,
same as in Fig 1.

B–D lacZ mRNA resulting from the different degrees of induction and aceB mRNA in the same cultures were measured by qPCR and plotted as fold change increase
compared with that in the absence of induction. The lag-times observed in panel A are plotted against the respective change in lacZ abundances (B), where the
dashed line represents the 3.5-h lag observed for the WT strain (no induction, Fig 1A). Changes in lacZ and aceB mRNA levels are inversely related (C), shown both
as linear (left plot) and as log2 (right plot) scales. The dashed line in the left plot shows a linear fit. aceB mRNA abundance is inversely related to the lag-time (D).
Means of N = 3 and N = 5 biological replicates are shown for lag-times and expression levels, respectively, in panels B–D. Error bars denote SD.

Source data are available online for this figure.
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direct relation to the lag-time (Fig 2B). Notably, as lacZ mRNA is

dialed up, aceB and aceA expression is reduced (Figs 2C and EV2C

and D), explaining the longer lag-times based on a lower expression

of these required enzymes (Fig 2D). Hence, upon synthetically intro-

ducing a resource scarcity during an environmental shift, these

observations indeed suggest that the allocation of limited shared

resources determines the cellular response and thus lag-times.

To better understand how the competition for shared transcrip-

tion and translation resources can have such drastic impacts on

growth transitions, we next formulated a kinetic model of growth,

which focuses on protein synthesis as the most resource demanding

process of biomass synthesis (detailed description in Materials and

Methods). The model builds on recent advances to describe growth

(Molenaar et al, 2009; Scott et al, 2014; Hermsen et al, 2015;

Erickson et al, 2017; Allen & Waclaw, 2018; Korem Kohanim et al,

2018) and explicitly considers amino acid precursors, their synthesis

by metabolic enzymes, and their utilization by ribosomes in form of

charged tRNA (Fig EV3). A key feature of the model is that only a

fraction of the ribosomes synthesizes the enzymes (e.g., AceB) that

supply the precursors, while the rest of the translation flux is

diverted to the synthesis of other proteins (Fig 3A). The consump-

tion of amino acid precursors, however, depends on the (total) pro-

tein synthesis, leading to a feedback between protein synthesis and

precursor supply. During the diauxic transition, where there is a

sudden depletion of cellular amino acid pools following the runout

of the preferred carbon source, this can lead to cells being “trapped”

in a low precursor state. The mathematical analysis shows that such

states can persist for hours when (i) the required proteins such as

AceB have not been synthesized in sufficient numbers yet, and (ii)

the remaining amino acid levels are insufficient to support the syn-

thesis of new proteins (Fig EV4A–E). A direct way to mitigate this

trap is to allocate a larger fraction of the translation flux toward the

synthesis of the required enzymes (Fig EV4F–J). Accordingly, lag-
times fall drastically with a higher allocation toward the synthesis of

required enzymes (Fig 3B), reflecting the lag-time changes observed

when overexpressing the required or non-required genes aceBA and

lacZ (Figs 1D and 2). A quantitative comparison between the model

prediction and the observed lag-times upon non-required gene

(lacZ) expression is shown in Fig 3C. Taken together, our experi-

ments and theoretical analyses establish mechanistically how the

allocation of limited resources during the shift can shape growth

transitions, outlining a range of possible allocational behaviors with

varying consequences on the growth transition kinetics.

We next ask where in this range of allocational behaviors does

native E. coli (no synthetic overexpression) fall, and whether the

long lag-times observed for WT E. coli (Fig 1A) also emerge from

the synthesis of non-required proteins during the shift. It has long

been known that E. coli growing steadily on poor carbon sources

(such as acetate and glycerol) express several catabolic enzymes,

despite the absence of their specific substrates (Hui et al, 2015;

Schmidt et al, 2015). Allocating resources toward such “idling” pro-

teins during growth transitions would map E. coli toward the left of

the plot in Fig 3B, with lag-times substantially larger than those

expected with specialized regulatory strategies in which only the

required genes are expressed. To estimate the transcriptome fraction

that potentially encodes idling proteins, we first analyzed transcrip-

tomics measurements for E. coli grown under steady-state condi-

tions with either glucose plus acetate (representing the pre-shift

transcriptome) or only acetate (representing the post-shift transcrip-

tome) as carbon sources. We considered the more abundant half of

the genes and determined those genes that are expressed at least

twofold more in acetate than in glucose plus acetate. Most of these

genes belong to a few functional categories including transport,

motility, and catabolism (Figs 4A and EV5A). Furthermore, as seen

from our transcriptomics data collected over the course of the

growth transition, these genes are upregulated immediately follow-

ing glucose depletion (Fig 4B). Yet, most of these functions are not

expected to be useful for the growth transition to acetate: Motility is

not needed in shaking environments and most of the uptake trans-

porters are involved in transporting other nutrients besides acetate.

The expression of these non-required genes could impede the alloca-

tion of shared resources toward the genes encoding for shunt and

gluconeogenesis enzymes. To test this idea, we next considered the

growth behavior of deletion strains lacking motility genes, the cate-

gory which showed most increased expression in acetate (Fig 4A).

We considered two mutants, ΔfliC and ΔflhD, which either do not

express the flagella protein FliC or the motility master regulator

FlhDC required for the expression of flagella, motors, and the che-

motaxis apparatus (preprint: Honda et al, 2021). The mRNAs of

these genes comprise up to ~15% of the total transcription in the

WT strain growing on acetate and could considerably reduce the

allocation of resources toward the shunt and gluconeogenesis genes.

When grown under steady-state conditions with either glucose or

acetate as sole carbon sources, we observe that none of these dele-

tion strains have any defect in steady growth rates, but rates even

increased substantially for growth on acetate (Fig 4C), supporting

the idea that these gene products are indeed useless for growth in

the probed conditions. Notably, the increase in growth was also

observed for other carbon sources besides acetate (Fig EV6) and

provides direct support for the idea that gene regulation is not opti-

mized for steady-state growth (Ibarra et al, 2002; O’Brien et al,

2016; Towbin et al, 2017). These results corroborate similar conclu-

sions drawn in other bacteria, including studies demonstrating the

proteome burden of expressing the light-harvesting machinery in

the cyanobacteria Synechocystis (Jahn et al, 2018), and of motility

genes in Pseudomonas putida (Mart�ınez-Garc�ıa & de Lorenzo,

2011).

Given the vast expression of motility genes immediately follow-

ing glucose depletion (Fig 4B), we next probed how the synthesis of

these non-required proteins affects the growth transition from glu-

cose to acetate by quantifying lag-times for the two deletion strains.

Lag-times are shorter for the deletion strains than for the WT strain

(Fig 4D and E), suggesting that the deletion strains are better at

directing RNA polymerases and ribosomes toward the synthesis of

the shunt and gluconeogenesis enzymes. To test whether the dele-

tions lead to increased transcription of the required genes, we used

qPCR to track the upregulation of the glyoxylate gene aceB during

the transition. The ΔfliC and ΔflhD strains indeed show an up to

threefold higher upregulation of aceB compared with the WT (Fig 4

F), explaining the reduced lag-times based on the higher resource

allocation toward the required genes. These results are consistent

with the previous observation that the overexpression of non-

needed genes leads to lower aceB expression levels and thus longer

lag-times (Fig 1).

Finally, given the results for the diauxic growth on glucose and

acetate, we asked whether the expression of idle proteins and their
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competition with required metabolic enzymes is also responsible for

the lag-times observed in other diauxic growth conditions. We

tested other conditions originally reported by Monod (1949, 1966),

inducing shifts from glucose to glycerol, xylose, and maltose. These

carbon sources enter the central metabolic pathway at different

steps (Fig 5A) and do not require the flux reversal from glycolysis to

gluconeogenesis, which was recently suggested to explain long lags

in growth transitions (Loomis et al, 1967). Instead, these carbon

sources necessitate the synthesis of other unique sets of transporters

and catabolic enzymes for growth to resume and are thus distinct

from acetate. Using the motility deletion strain, we consistently find

reduced lag-times for all transitions (Fig 5B–E). Hence, the alloca-

tional constraint of shared protein synthesis resources is a general

principle governing a range of different diauxic transitions.

Discussion

Since the pioneering growth physiology studies by Monod, lag-times

have been perceived as the preparation time cells require to adjust

to a new environment before growth can resume (Monod, 1949,

1966; Stanier, 1951; Epstein et al, 1966; Fern�andez-Coll & Cashel,

2018; Bertrand, 2019). In line with this idea, several experimental

studies in bacteria and yeast suggest that the expression of required

genes before the nutrient shift can reduce lag-times but can come

with the cost of slower growth rates, implicating a trade-off between

lag-times and growth in the pre-shift condition (Siegal, 2015;

Venturelli et al, 2015; Wang et al, 2015; Chu & Barnes, 2016; Basan

et al, 2020). Theoretical studies have further rationalized some of

the observed growth kinetics assuming cells optimize protein

A

B C

Figure 3. Modeling growth kinetics during the shift.

A Essential dynamics during the shift from growth on glucose to growth on acetate: Protein synthesis by ribosomes depends on the availability of biosynthetic
precursors, which itself depends on the availability of metabolic enzymes that utilize acetate to provide novel precursors. When ribosomes synthesize more of these
required enzymes (red arrow 1) instead of other proteins (gray arrow 2), novel precursors are generated from acetate (black arrow) faster, and growth thus resumes
faster (detailed considerations and full model introduction in Figs EV3 and EV4 and Materials and Methods).

B Lag-times fall reciprocally with the allocation toward required proteins (the fraction of mRNA encoding for required proteins) during the shift. Allocation of
translation activity toward different proteins is represented by the weight of red and gray arrows (top).

C Comparison of model prediction with observed changes in lag-time when overexpressing the non-required gene lacZ (Fig 2). The model has one major free
parameter, the metabolic rate describing precursor influx. We determined this parameter by comparing predicted and observed lag-times in the absence of induction
(Materials and Methods). The model then predicts the change in lag-time without further fitting when lacZ expression was induced and the fraction of required
genes fell as a consequence. Data and error bars represent mean � SD of N = 3–5 biological replicates, as in Fig 2D. All model parameters are provided in
Appendix Table S3. Results and figures can be regenerated using the Jupyter Notebook available on GitHub.
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utilization and metabolic fluxes in encountered conditions (Beg et

al, 2007; Kalisky et al, 2007; Wang et al, 2019).

In this quantitative study, we instead focus on the cellular

response to environmental changes and find that the response is not

optimal in the conditions probed: We establish how the competition

for shared resources toward novel protein synthesis fundamentally

constrains the cellular response. The duration of growth recovery

depends on whether only the required genes (specific response) or a

diverse array of genes (diversifying response) are expressed as

response to the environmental change. Tweaking the specificity of

the response can substantially vary lag-times, and WT E. coli

express a diverse array of genes leading to long lag-times.

Our observations thus call for a revision of the previously pro-

posed explanations for growth transitions: While pre-shift growth/

lag trade-offs may affect lag-times, growth transitions are deter-

mined first and foremost by a compromise between specific versus

diversifying responses during the shift. Mechanistically, this com-

promise stems from a constraint on the allocation of shared

resources toward the synthesis of novel proteins during the

response. This constraint opens a multitude of possible response

A

C D E F

B

Figure 4. Expression of non-required genes that delay growth recovery during the glucose acetate shift.

A The major gene categories upregulated in balanced growth on acetate (red) compared with that on glucose (blue). mRNA abundances determined by RNA-Seq are
represented as percent of total mRNA in the given growth condition. Genes are categorized using the COG classification (Tatusov et al, 2000), and porins were
classified by manual curation using annotations available from ecocyc.org.

B For the various gene categories in panel A, the temporal kinetics of expression during the diauxic shift is plotted. Time 0 indicates time when glucose runs out. The
series of RNA-Seq through the growth transition was performed once.

C Steady-state growth in glucose and acetate for the WT and the motility deletion strains ΔfliC and Δflh. Growth rate differences between WT and the mutants are
not significant in glucose (P-value > 0.05), but are significant for growth in acetate (P-values < 0.02). Additional growth conditions are shown in Fig EV6.

D, E Growth transitions for the motility deletion strains ΔfliC and ΔflhD are substantially faster than that for the WT strain, with (D) showing representative growth
kinetics of the three strains and (E) showing mean lag-times and standard error of four independent biological replicates. Lag-times for WT are significantly
different from that of ΔfliC (P-value 0.01) and ΔflhD (P-value 0.004).

F ΔfliC shows a twofold increase (P-value 0.17), and ΔflhD shows a threefold increase (P-value 0.02) in aceB expression compared with WT, as measured by qPCR.

Data information: Mean of N = (4, 4, 2) biological repeats is shown in (C, E, F), respectively, with error bars denoting SD. All indicated P-values were computed by a two-
sample t-test.

Source data are available online for this figure.
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strategies, ranging between extremely specific and diversifying

mechanisms. A highly specific response tailored toward the growth

conditions encountered can ensure fast growth transitions across

many shifting conditions. But harboring specific regulatory path-

ways for multiple different nutrient sources can be cumbersome.

Indeed, cost of regulation has been suggested to play a role in shap-

ing regulatory strategies (Kalisky et al, 2007). In addition, a diversi-

fying response involving the expression of a broad array of genes

might provide benefits in certain ecological scenarios.

A series of recent studies have explained certain diauxic transi-

tions in bacteria and yeast on the basis of population heterogeneity

(Kussell & Leibler, 2005; Kotte et al, 2014; Solopova et al, 2014;

Grimbergen et al, 2015). Populations may “bet-hedge” through vari-

able gene expression among individual cells to maximize the

chances of successfully coping with an environmental change. The

proteome allocation constraint during cell response as is revealed in

this study is a potential driving factor underlying such bet-hedging

strategies that are enforced through population heterogeneity. It

would thus be interesting to explicitly investigate how the allocation

constraints shape bet-hedging strategies. For the diauxic condition

probed in this study, however, no heterogeneity was observed

(Basan et al, 2020). Cells thus also employ deterministic gene regu-

latory circuits to homogenously respond to encountered conditions.

The response of E. coli includes the expression of several genes

such as diverse transporters and flagella components, which may

not be required in the encountered environment. The response is

thus diversifying instead of specific, which may be rationalized from

an ecological perspective: Besides glucose, E. coli encounters many

other sugars and amino acids within the mammalian intestine, and

swimming is expected to play a crucial role in the strong flow envi-

ronment prevalent within the intestine (Cremer et al, 2016, 2017).

The diversifying response thus appears to be tailored toward coping

with the fluctuating environments typical for the gut. But it is

exactly such a response that constrains resource allocation toward

the specific required genes during other transitions, as those encoun-

tered in laboratory experiments, leading to long lag-times. Accord-

ingly, strains evolving in typical laboratory environments would be

expected to lose their diversifying response. In fact, we observe evi-

dence for this hypothesis embedded in previously published results

of the long-term evolution experiment by Lenski & Travisano (1994)

(Good et al, 2017): The evolved strains exhibit loss of growth on

many carbon sources and motility (Leiby & Marx, 2014). In light of

our findings, it would be interesting to see whether the selective

advantage for these evolved strains is indeed, in part, due to shorter

lag-times. Finally, by describing the mechanistic constraints shaping

the cellular response, our work establishes the physiological

A B C

D E

Figure 5. Expression of non-required genes is responsible for lags during many diauxic shifts.

A The expression of different uptake and metabolic proteins is required for the utilization of different carbon sources. Points of entry into the central metabolism are
indicated.

B–D Diauxic growth kinetics for growth on glucose and a different secondary carbon sources for the WT (black) and the motility deletion strains ΔfliC and ΔflhD
(magenta and green).

E Derived lag-times for the different growth transitions. Means based on N = 4 biological repeats are shown. Error bars denote SD, and lag-time difference between
WT and the two mutants is significant for shift to each transition (P-value < 0.05; two-sample t-test).

Source data are available online for this figure.
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framework for rational strain engineering in biotechnological appli-

cations: By trimming down the diverse response, highly optimized

behaviors such as short lags and high yields can be instilled.

Materials and Methods

Strain information

The wild-type strain we use is the extensively characterized E. coli

K-12 strain NCM3722 (Soupene et al, 2003; Brown & Jun, 2015).

This strain was also used as the parent for the construction of all

the strains used in this study. All strains are listed in Appendix

Table S1. To obtain the fliC and flhD deletion strains, the corre-

sponding KO strain JW1908 from the Keio collection (Baba et al,

2006) was used and the deletion was subsequently moved into the

NCM3722 strain by phage P1vir transduction, yielding strains

GE029 and NQ1225. Used primers are listed in Appendix Table S2.

Media and growth conditions

All growth media used in this study were based on the MOPS-

buffered minimal medium used by Cayley et al (1989) with slight

modifications (Hui et al, 2015). 20 mM NH4Cl was provided as

nitrogen source. One of the following substrates was used as the pri-

mary carbon source: 20 mM glucose, 30 mM acetate, 20 mM glyc-

erol, 20 mM sorbitol, 20 mM succinate, 6 mM mannose, 4 mM

mannose, and 20 mM xylose. For shift experiments, cells were

grown with 0.61 mM glucose and the concentration of the second

carbon source as stated before (e.g., 30 mM acetate). For the titrat-

able strains (NQ1389 for lacZ and NQ1350 for aceBA), different con-

centrations of chlortetracycline (cTc) to induce expression and

15 μg/ml chloramphenicol and 50 μg/ml ampicillin to maintain the

plasmid construct were additionally provided.

Cells were grown in a 37°C water bath shaker shaking at

250 rpm. To ensure balance growth, cells grew exponentially for at

least seven generations before starting measurements. We measured

optical density at 600 nm (OD600) using a UV-Vis spec. To obtain

the growth rate of steadily growing cultures, OD600 data points

within the range 0.04–0.4 (linear range of spectrophotometer) were

obtained and fitted to an exponential growth curve. In addition,

growth curves and transitions were also quantified in a microplate

reader (200 μl per well). A Tecan Spark Microplate Reader was

used, and absorbance (420 nm) was measured every 7 min; incuba-

tion temperature was set to 37°C. Between measurements, plates

were shaking at 132 rpm with an orbital amplitude. Wells loaded

with only media (no culture) were used to reset absorbance values,

and obtained absorbance values were subsequently adjusted to

obtain OD600 values matching the values obtained with the UV-Vis

spectrophotometer and a path length of 1cm. Obtained growth rates

for glass tube cultures and incubation in the microplate reader are

highly comparable (< � 5% difference). Growth rate measurements

were repeated several times as indicated in the figure captions.

Lag-time quantification

To quantify lag-times, we first fit exponential growth behavior to

the two steady growth phases (growth on glucose and growth on

acetate) using OD600 ranges (0.04. . .0.15) and (0.3. . .0.4) for

growth on glucose and acetate, respectively. Plateau levels (no

change in OD600) were then determined by hand (OD value that

first derivatives from the exponential growth on glucose), and the

times tpl,glucose and tpl,acetate where the exponential curves match the

plateau levels were calculated. The lag-time is the difference of these

times, tlag = tpl,acetate − tpl,glucose. Times were readjusted before plot-

ting (t → t − tpl,glucose, such that time=0 corresponds to the time

where the exponential growth on glucose hits the plateau level

(beginning of shift). The lag-time estimation is further described in

Fig EV1A. Experiments to quantify lag-times were repeated at least

three times as indicated in the figure captions.

Overexpression experiments

Overnight pre-cultures (OD600 ~0.5) were diluted to a starting

OD600 of ~0.02. To ensure a simultaneous entry into the shift phase

(time and density glucose runs out) for different inducer levels, a

main culture was prepared in an Erlenmeyer flask, and after 1 h of

incubation, this main culture was split into different cultures (glass

tubes with 6 ml culture each). A different amount of inducer stock

(cTc) was then added for the different cultures at the moment of

glucose runout. To ensure the addition of the inducer exactly at this

time, a control culturing starting with slightly higher cell density

was run in addition, which entered the shift approximately 30 min

earlier. The observed density value at the shift was used as the indi-

cator when to add the inducer levels to the main cultures. Obtained

lag-times were highly reproducible for inducer levels up to 5 ng/ml.

For higher inducer levels (lag-times > 5 h), variation was higher,

presumably because the slightly late addition of inducer levels leads

to small variation in bottleneck enzymes, which can have strong

consequences over long times.

qPCR measurements

RNA was extracted using the TRIzol (Thermo Fisher) method com-

bined with a column-based purification step. In detail, 2 ml culture

was collected 30 min after the shift (30 min after glucose runout)

and spinned down. Pellet was immediately resuspended in 250 μl
TMN buffer (10 mM Tris pH 8, 10 mM MgCl2, and 60 mM NH4Cl)

and thoroughly mixed with 250 μl TRIzol. After 5-min incubation,

50 μl chloroform was added, and after mixing and another minute

incubation, the sample was centrifuged for 10 min at 4°C. The clear

phase was collected, and the obtained RNA was immediately

washed using a RNA purification kit (Zymo Research RNA Clean &

Concentrator-5, following the instructions). To remove plasmid

DNA, a DNAse digestion step on the purification columns was

added following the instructions. To quantify transcription, a two-

step qPCR approach was chosen. Reverse transcription was first run

with random hexaprimers to obtain cDNA (Azura Genomics, Azura-

Flex cDNA Synthesis Kit following the instructions with 1 µl of RNA
sample). Real-time PCRs (10 μl final volume) were prepared using a

SYBR Green master mix (Bio-Rad SsoAdvanced Universal SYBR

Green Supermix), following the instructions and using 10× diluted

cDNA sample. Primer sets for 16S RNA and the genes aceB, aceA,

and lacZ were used as listed in Appendix Table S2. 300 nmol primer

concentration was used, standard curves confirmed the linearity for

each of the four primer sets chosen, and melting curves confirmed
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selectivity of the reaction. The PCR was run in a Bio-Rad CFX 384

instrument, with the protocol following the reagent instructions pro-

vided with the master mix. To calculate relative expression levels,

obtained gene expression levels were normalized to the 16S RNA

levels measured from the same cDNA sample. The expression level

of, for example, aceB was calculated as 2�ðcw;aceB�cW;16SÞ. To compare

the changes in expression for different inducer levels, values were

in addition normalized by the expression level obtained for 0

inducer level. Measurements were repeated at least three times

starting with different cultures (biological repeats).

RNA-Seq sampling and analysis

Steady-state cultures were grown to OD600 of 0.5. 10 ml samples

were spun, and cells were resuspended in 200 μl TMN buffer

(10 mM Tris pH 8, 10 mM MgCl2 and 60 mM NH4Cl). RNA was

extracted using 200 μl TRIzol reagent followed by ethanol precipita-

tion. Ribosomal RNA was removed using the Ribo-Zero Kit (Illu-

mina), and barcoded RNA-Seq libraries were generated using the

TruSeq stranded kits (Illumina) as per the vendor’s protocol. The

libraries were sequenced using Illumina’s Hiseq 4000 platform. Typ-

ically, around 20 million reads were obtained per sample, except for

the WT sample 5 min post-shift, which had 5 million reads. Reads

were demultiplexed and aligned to the E. coli MG1655 U00096.3

genome using bowtie v2.2.6 (Langmead & Salzberg, 2012). Read

counts were obtained using Python HTSeq-count (HTSeq v0.6.1p2)

(Anders et al, 2015).

Statistical analysis

Arithmetic means of growth rates, lag-times, and qPCR measure-

ments were based on N = 2–5 biological replicates as indicated in

the respective figure captions. Error bars denote standard devia-

tions. Statistical significance was probed by a two-sample t-test. The

two-tailed P-values are listed in the captions and findings. Individual

measurements, means, SD, and P-values are provided in the source

data file.

Computational modeling

Formulating a model of growth transition: We introduce in this sec-

tion in detail the allocation model to study growth transitions

(model parameters are listed in Appendix Table S3, and the code

used to solve the model is available via GitHub at https://github.

com/jonascremer/lagtimemodeling). Modeling growth transitions is

challenging because one needs to analyze how core growth pro-

cesses change with current growth conditions, which depends on

the metabolic state of the cell. More recently, several modeling

approaches have been formulated to overcome these challenges and

to investigate growth transitions in different changing environments,

including defined down- and upshifts to carbon sources supplying

faster or slower growth. These models consider the growth condi-

tions during growth transitions focusing on the link to observed

steady-state growth behavior, parameterizing, for example, the

fluxes such that they merge with steady-state conditions (Erickson et

al, 2017; Korem Kohanim et al, 2018). These approaches extended

the logic of growth laws from steady-state considerations to also

describe the growth kinetics during the transition. To explicitly

analyze the promoting effect of required metabolic proteins and the

inhibiting effect of non-required genes on growth transitions, we

built on these models but chose a more explicit approach and specif-

ically considered the expression of required and non-required

enzymes during the shift. Model logic and details are provided in

the following. Model results are shown in Figs 3 and EV4.

Growth on one nutrient source: To model for growth kinetics, we

first introduce a simpler model for the growth on one carbon source.

The model focuses on novel protein synthesis, the most resource

demanding cellular component, and considers the allocation of ribo-

some activity to different protein classes as introduced in Fig EV3.

We specifically build on the rationale introduced in Scott et al

(2014) to first consider balanced growth on one carbon source. Pro-

teins are synthesized by ribosomes, and the increase in total protein

mass in the culture (variable M) depends on the number of ribo-

somes NRb in the culture and their average translation speed kRb
(how many new amino acids a ribosome is synthesizing per time):

dM

dt
¼ kRbNRb:

For convenience, we measure protein mass in numbers of amino

acids such that no extra conversion factor is needed. Instead of the

number of ribosomes, we can also consider their mass (variable MR)

writing:

dM

dt
¼ γMR

With the translation efficiency, γRb ≡ kRb/mR being a rate (unit 1/

time) and mR = 7459AA, the number of amino acids per ribosome.

The increase in ribosomal mass depends in turn on how fast pro-

teins are synthesized, and to which extent the cell is allocation

translation resources toward the synthesis of novel ribosomes (the

thickness of arrow 3 in Fig EV3A). We write:

dMR

dt
¼ αRb

dM

dt

and call αRb, a number between 0 and 1, the allocation coefficient

toward ribosome synthesis.

To understand how biomass is increasing, we next have to

consider translation in more detail. Notably, the translation effi-

ciency γ is not a constant rate, but it is changing with the tRNA

precursor concentrations ribosomes encounter within the cells;

ribosomes rely on a sufficiently high concentration of charged

tRNA to work efficiently. Let us thus introduce a variable p

describing precursor concentrations within the cell. If p falls to

low levels, translation speeds and thus biomass accumulation

drop. In a first proxy, this can be described by a simple

Michaelis–Menten relation:

γ ¼ γ pð Þ ¼ γmax

p

pþ p0

The Michaelis–Menten constant p0 can be taken from measure-

ments characterizing how translation falls with tRNA concentra-

tions. To calculate precursor concentrations p, we consider the total

precursor mass Mpc and compare it with the total protein mass M in
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the culture: p ≡ Mpc/M (a conversion can give precursors per cell

volume or dry mass). To investigate how the precursor concentra-

tions change (over time and depending on parameters), we consider

the change of total mass of precursors:

dMpc

dt
¼ Jpc; in � dM

dt
:

Precursor mass is given by a balance of novel precursor synthe-

sis (flux Jin) and the utilization by the ribosomes increasing the

total protein mass (dM/dt). The supply of precursors depends on

the joint activity of metabolic enzymes, which take up nutrients

and make sure they are converted to amino acids, energy, and

finally charged tRNAs (the precursors ribosomes need to grow).

This is a complex process that we describe here in first order by

jointly considering all metabolic enzymes as one major protein

class and a simple 1st-order reaction, writing Jpc,in = kMbMMb. MMb

is the mass of the metabolic protein class. kMb is an effective rate

describing how fast these proteins generate precursors, which we

here call metabolic efficiency. For the precursor mass in the cul-

ture, we thus have:

dMpc

dt
¼ kMb MMb � dM

dt
:

Similarly as for the ribosomes, the increase in metabolic proteins

depends on the allocation of translation activity toward these

enzymes. We write:

dMMb

dt
¼ αMb

dM

dt
:

Here, αMb denotes the allocation parameter toward the pool of

metabolic enzymes. Notably, ribosomes can only translate one pro-

tein at a time, which leads to the overall constraint that the allocation

parameters need to add up to 1. In the simplest case, assuming the

cell only needs to generate metabolic enzymes and ribosomes:

αMb þ αRb ¼ 1:

Since cells also need to synthesize many other enzymes needed

for growth, which are not directly involved in precursor supply and

translation (Scott et al, 2010), we extend this to:

αMb þ αRb þ α0 ¼ 1

with α0 denoting the allocation toward synthesizing all other pro-

teins. All three protein classes and the allocation of protein synthe-

sis toward those are illustrated in Fig EV3A. The constraint is

described by the relative thickness of the three arrows.

With this formulation, we can analyze the balanced exponential

growth, which emerges:

1

M

dM

dt
¼ λ ¼ constant:

When the cellular concentrations and fractions are not changing

over time, dp
dt ¼ 1

M
dMRb

dt ¼ 1
M

dMMb

dt ¼ 0; and MRb

M ¼ αRb and MMb

M ¼ αMb.

The growth rate λ depends on the rates (translation efficiency γmax

and metabolic efficiency kMb), as well as the allocation parameters

αRb and αMb. It can be calculated by the solution of a quadratic equa-

tion. Notably, the cell appears to control novel ribosome synthesis

and adjusts the allocation parameter αRb toward optimizing growth

rates: Ribosome synthesis is regulated such that precursor levels are

optimal, and ribosomes can translate close to full speed (Dai et al,

2016). For our purpose, this means that we know the allocation

toward ribosomes for steady growth on glucose (or other carbon

sources) and we can parametrize the model for steady-state growth and

subsequently extend this description to analyze growth transitions.

Modeling nutrient consumption: Up to now, we have not explic-

itly considered nutrient consumption but assumed that precursor

influx via the metabolic enzymes is described by a constant meta-

bolic efficiency kMb. To consider nutrient availability, a crucial step

toward describing shifts, we model the metabolic efficiency kMb to

be dependent on the nutrient concentration (say glucose, nglu) in

the culture:

kMbðngluÞ ¼ kMb;max
nglu

nglu þ KM;glu

kMb,max denotes the maximum efficiency when nutrients are not

limiting. KM,glu is the Monod constant for growth on glucose. To

describe the change in nutrient availability, we consider the con-

sumption of all nutrient molecules in the culture (nutrient mass

Nglu) and write:

dN

dt
¼ �kMbMMb=Yglu:

Here, the yield Yglu describes the conversion from nutrients (glu-

cose) to precursors (charged tRNA). To obtain the yield in units of

amino acids, one can take measured yield value in units of dry

weight per nutrient weight and then convert assuming a fraction of

60% dry-weight content being proteins made up of amino acids

with an average weight of 118.9 g/mol.

Model parameters for growth on one carbon source: To further

parametrize the model, we can take translation speeds from in vivo

measurements, and the allocation parameters from steady-state

growth analysis across growth conditions (see above). With that, the

metabolic efficiency kMb is the only parameter remaining and we

adjust this parameter such that the emerging growth rate matches

the one experimentally observed for growth on glucose. Parameters

are provided in Appendix Table S3. The resulting dynamics is shown

in Fig EV4A–E (brown dashed lines that initially follow the black

lines) for a culture starting with a glucose concentration of 0.6 mM.

Cells grow steadily with a constant growth rate before glucose runs

out, precursor concentrations drop, and cell-growth stops.

Modeling growth transitions: To describe growth transition from

growth on glucose toward growth on acetate, we build on the for-

mulation for growth on glucose described before and consider how

cells start to express the required enzymes (e.g., AceB) to replenish

precursors once glucose is depleted. To do this, we introduce a sec-

ond class of metabolic enzymes with mass MMb,ace (Fig EV3B).

Notably, this class of enzymes includes only those enzymes, which

are needed to ensure a recovery of the precursor influx (glyoxylate

shunt and gluconeogenesis genes; Fig EV1B) and not those meta-

bolic enzymes, which are also needed for growth on glucose and

thus already available and working (such as TCA enzymes or

enzymes of the respiratory chain to provide energy). MMb,ace
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describes thus a much smaller pool of proteins than what is eventu-

ally needed for balanced growth on acetate. Since we are interested

in explaining lag-times until precursor levels recover, we here con-

sider the requirements for those latter enzymes only indirectly by

limiting the relative fraction of the enzyme class proteins (MMb,ace/

M) to a maximum value (more below).

With the two metabolic fluxes, the precursor turnover before and

during the shifts is given by:

dMpc

dt
¼ k nglu

� � �MMb;glu þ kMb;ace naceð Þ �MMb; ace � dM

dt

Nutrient concentrations in the culture change accordingly:

dNglu

dt
¼ �kMb;glu nglu

� �MMb;glu

Yglu

dNace

dt
¼ �kMb;ace naceð ÞMMb;ace

Yace
:

Here, the metabolic efficiencies depend on the abundance of glu-

cose and acetate, respectively. As for growth on glucose alone, we

model a Monod-type relation with Monod constants KM,glu and KM,

ace to describe how influx stops at low nutrient concentrations.

The synthesis of new metabolic enzymes depends on the alloca-

tion coefficients:

dMMb;glu

dt
¼ αMb;glu

dM

dt

dMMb;ace

dt
¼ αMb;ace

dM

dt
:

Depending on the availability of nutrients, the cell is adjusting

the allocation to these enzyme classes, and to model growth transi-

tions, we thus have to formulate relations describing how the alloca-

tion coefficients depend on the availability of both nutrient sources.

The allocation to enzymes required for growth on glucose is high

during steady-state growth on glucose, but we assume that their

expression reduces to lower levels when glucose concentrations

drop; we thus model:

αMb;glu ¼ αMb;glu;min þ αMb;glu;max

nglu

nglu þ KM

� �
:

Here, αMb;glu;max þ αMb;glu;min is the same allocation coefficient we

use to describe steady growth on glucose alone. In contrast, the allo-

cation toward the required enzymes to recover precursor supply

from acetate is only high once glucose runs out and this enzyme

class is hardly expressed when glucose is still available. To account

for this behavior, we use the following dependence on glucose con-

centrations:

αMb;ace ¼ αMb;ace;max 1� nglu

nglu þ KM

� �
1� Mace=M

Mace

M þ αMb;ace;steady

 !

þαMb;ace;preshif t
nglu

nglu þ KM

� �
:

That is, the synthesis of the novel metabolic enzymes required to

provide precursors via acetate consumption is occurring by a certain

fraction of translating ribosomes (αMb,ace,max) once glucose is con-

sumed. But this high rate falls again to the final steady-state levels for

growth on acetate once that fraction is reached. This limitation of the

metabolic enzymes to a lower fraction allows us to indirectly consider

that cells have to start synthesizing a broad class of metabolic proteins

(such as TCA cycle proteins) to grow once precursor supply has been

re-established (and not only the glycolytic shunt and gluconeogenesis

genes required immediately to rescue precursor influx). Finally, to

study the role of pre-shift expression, we also included an expression

term αMb;ace;pre�shif t, which describes expression when glucose is still

abundant (in the reference condition, this constant is 0).

As previously, the growth kinetics is described by how the ribo-

somes synthesize new biomass:

dM

dt
¼ γ pð ÞMR

Translation and thus growth depend on precursor levels, which

in turn depend on the abundance and activity of the metabolic

activities.

Model parameters: We modeled growth transitions for a refer-

ence parameter set listed in Appendix Table S3. Here, we provide

further context. To describe nutrient uptake toward precursor syn-

thesis, we used yield values (Yglu, Yace) and Monod constants

(Km;glu, Km;ace) known for growth on glucose and acetate. To deter-

mine the allocation parameters toward synthesis of the metabolic

enzymes required to provide precursors when growing on acetate

(αMb;ace;preshif t, αMb;ace;max, αMb;ace;steady), we used the transcriptomics

measurements we collected during the shift (Fig EV5). Given the

fast turnover of mRNA, these data provide a direct readout of the

allocation behavior at different time points during the shift. We spe-

cifically estimated the relative mRNA fraction of all glyoxylate and

gluconeogenesis genes, which are required for the continuous influx

of precursors when glucose runs out (Fig 1B), and thus used 3 and

1% as reference values for αMb;ace;max and αMb;ace;steady, respectively.

We initially neglected pre-shift expression levels as those are very

low, αMb;ace;preshif t ¼ 0. With the allocation parameters defined, only

one fitting parameter remains, the rate kMb;acedescribing how fast

metabolic enzymes recover precursors from acetate. We adjusted this

rate such that the lag-time of the modeled growth transition approxi-

mately matches the lag-time in the experiments, ~3.5 h for the shift

of WT cells (or the LacZ titration strain NQ1389 in the absence of

induction) from growth in glucose to growth on acetate (Fig 1A).

With these parameters, the post-shift growth that emerges also

resembles the growth rate observed during the experiments. The sim-

ulated growth transition for this reference parameter set is shown in

Fig EV4A–E (black lines). Growth is fast in glucose, then stops tem-

porarily and after a lag growth recovers by using acetate.

The delaying effect of non-needed protein expression on growth

transitions: With the formulated model and the given parameters,

we can now investigate how growth transitions are changing when

the cell is allocating varying fractions of its translation activity dur-

ing the shift to the required metabolic enzymes. Mathematically,

this means varying the allocation parameter αMb;ace;max. The results

are shown in Fig EV5F–J. The lag-time falls strongly with a higher

allocation toward the required enzymes, with the reciprocal relation

shown in Fig 3B. As discussed in Fig EV5, different allocations lead

to varying drops of precursor levels during the shift, which changes
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the ability to recover growth. To probe this prediction of the model,

we compared the predicted change in lag-times with those experi-

mentally observed when overexpressing the non-needed gene lacZ

(experimental data shown in Fig 2). To compare data and model

predictions, we plotted the lag-times versus the fold change of

required genes, which we calculated from the allocation parameter

αMb;ace;max and the aceB qPCR measurements for the model and

experiments, respectively; see Fig 3C. The observed trend is cap-

tured by the model without further fitting.

In Appendix Supplementary Text, we further analyze how the

duration of growth arrest (lag-time) falls with the pre-expression of

genes required to maintain a precursor flux after the shift (parame-

ter αMb;ace;pre�shif tÞ.

Data availability

The RNA-Seq data generated in this study are available via Gene

Expression Omnibus (GEO), accession number GSE185426 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185426).

The computational code of the model is available via GitHub at

https://github.com/jonascremer/lagtimemodeling.

Expanded View for this article is available online.

Acknowledgements
We thank Griffin Chure, Richa Scharma, and members of the Hwa research

group for discussions. Part of the transcriptomics sequencing work was

performed at the Institute of Genomic Medicine, University of California, San

Diego. RB and TH acknowledges the support of the NIH through grant

5R01GM109069.

Author contributions
RB and JC conceptualized and designed the experiments. RB, JC, and RTD

performed the experiments. JC performed mathematical modeling. RB, JC, and

TH analyzed the data. RB and JC wrote the manuscript. JC and TH acquired

funding.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Allen RJ, Waclaw B (2018) Bacterial growth: a statistical physicist’s guide. Rep

Prog Phys 82: 016601

Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with

high-throughput sequencing data. Bioinformatics 31: 166–169
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA,

Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12

in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol

2: 2006.0008

Balakrishnan R, Mori M, Segota I, Zhang Z, Aebersold R, Ludwig C, Hwa T

(2021) Principles of gene regulation quantitatively connect DNA to RNA

and proteins in bacteria. bioRxiv https://doi.org/10.1101/2021.05.24.445329

[PREPRINT]

Basan M, Honda T, Christodoulou D, Hörl M, Chang Y-F, Leoncini E,

Mukherjee A, Okano H, Taylor BR, Silverman JM et al (2020) A universal

trade-off between growth and lag in fluctuating environments. Nature

584: 470–474
Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, Barab�asi A-L,

Oltvai ZN (2007) Intracellular crowding defines the mode and sequence of

substrate uptake by Escherichia coli and constrains its metabolic activity.

Proc Natl Acad Sci USA 104: 12663–12668
Bertrand RL (2019) Lag phase is a dynamic, organized, adaptive, and

evolvable period that prepares bacteria for cell division. J Bacteriol 201:

e00697-18

Bosdriesz E, Molenaar D, Teusink B, Bruggeman FJ (2015) How fast-growing

bacteria robustly tune their ribosome concentration to approximate

growth-rate maximization. FEBS J 282: 2029–2044
Brown SD, Jun S (2015) Complete genome sequence of Escherichia coli

NCM3722. Genome Announc 3: e00879-15

Cayley S, Record MT, Lewis BA (1989) Accumulation of 3-(N-morpholino)

propanesulfonate by osmotically stressed Escherichia coli K-12. Mol

Microbiol 171: 3597–3602
Chang D-E, Smalley DJ, Conway T (2002) Gene expression profiling of

Escherichia coli growth transitions: an expanded stringent response model.

Mol Microbiol 45: 289–306
Chen H, Shiroguchi K, Ge H, Xie XS (2015) Genome-wide study of mRNA

degradation and transcript elongation in Escherichia coli. Mol Syst Biol 11:

781

Chu D, Barnes DJ (2016) The lag-phase during diauxic growth is a trade-off

between fast adaptation and high growth rate. Sci Rep 6: 25191

Cremer J, Segota I, Yang C, Arnoldini M, Sauls JT, Zhang Z, Gutierrez E,

Groisman A, Hwa T (2016) Effect of flow and peristaltic mixing on

bacterial growth in a gut-like channel. Proc National Acad Sci USA 113:

11414–11419
Cremer J, Arnoldini M, Hwa T (2017) Effect of water flow and chemical

environment on microbiota growth and composition in the human colon.

Proc Natl Acad Sci USA 114: 6438–6443
Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR,

Fredrick K, Wang Y-P, Hwa T (2016) Reduction of translating ribosomes

enables Escherichia coli to maintain elongation rates during slow growth.

Nat Microbiol 2: 1–9
Enjalbert B, Cocaign-Bousquet M, Portais J-C, Letisse F (2015) Acetate

exposure determines the diauxic behavior of Escherichia coli during the

glucose-acetate transition. J Bacteriol 197: 3173–3181
Epstein W, Naono S, Gros F (1966) Synthesis of enzymes of the lactose

operon during diauxic growth of Escherichia coli. Biochem Biophys Res

Comm 24: 588–592
Erez A, Lopez JG, Weiner BG, Meir Y, Wingreen NS (2020) Nutrient levels

and trade-offs control diversity in a serial dilution ecosystem. eLife 9:

e57790

Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U, Hwa T (2017) A

global resource allocation strategy governs growth transition kinetics of

Escherichia coli. Nature 551: 119–123
Fern�andez-Coll L, Cashel M (2018) Contributions of SpoT Hydrolase, SpoT

synthetase, and RelA synthetase to carbon source diauxic growth

transitions in Escherichia coli. Front Microbiol 9: 1802

Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM (2017) The dynamics

of molecular evolution over 60,000 generations. Nature 551: 45

Grimbergen AJ, Siebring J, Solopova A, Kuipers OP (2015) Microbial bet-

hedging: the power of being different. Curr Opin Microbiol 25: 67–72
Hermsen R, Okano H, You C, Werner N, Hwa T (2015) A growth-rate

composition formula for the growth of E. coli on co-utilized carbon

substrates. Mol Syst Biol 11: 801

12 of 13 Molecular Systems Biology 17: e10597 | 2021 ª 2021 The Authors

Molecular Systems Biology Rohan Balakrishnan et al

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185426
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185426
https://github.com/jonascremer/lagtimemodeling
https://doi.org/10.15252/msb.202110597
https://doi.org/10.1101/2021.05.24.445329


Honda T, Cremer J, Zhang Z, Hwa T (2021) Coordination of motility

machinery and cell size enables Escherichia coli to maintain motility while

minimizing synthesis costs. bioRxiv https://doi.org/10.1101/2021.05.12.

443892 [PREPRINT]

Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T,

Williamson JR (2015) Quantitative proteomic analysis reveals a simple

strategy of global resource allocation in bacteria. Mol Syst Biol 11: e784

Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes

adaptive evolution to achieve in silico predicted optimal growth. Nature

420: 186–189
Inada T, Kimata K, Aiba H (1996) Mechanism responsible for glucose–lactose

diauxie in Escherichia coli: challenge to the cAMP model. Genes Cells 1:

293–301
Jahn M, Vialas V, Karlsen J, Maddalo G, Edfors F, Forsström B, Uhl�en M, K€all L,

Hudson EP (2018) Growth of cyanobacteria is constrained by the abundance

of light and carbon assimilation proteins. Cell Rep 25: 478–486.e8
Kalisky T, Dekel E, Alon U (2007) Cost–benefit theory and optimal design of

gene regulation functions. Phys Biol 4: 229–245
Kao KC, Tran LM, Liao JC (2005) A global regulatory role of gluconeogenic

genes in escherichia coli revealed by transcriptome network analysis. J Biol

Chem 280: 36079–36087
Kimata K, Takahashi H, Inada T, Postma P, Aiba H (1997) cAMP receptor

protein–cAMP plays a crucial role in glucose–lactose diauxie by activating

the major glucose transporter gene in Escherichia coli. Proc Natl Acad Sci

USA 94: 12914–12919
Korem Kohanim Y, Levi D, Jona G, Towbin BD, Bren A, Alon U (2018) A

bacterial growth law out of steady state. Cell Rep 23: 2891–2900
Kotte O, Volkmer B, Radzikowski JL, Heinemann M (2014) Phenotypic bistability

in Escherichia coli’s central carbon metabolism. Mol Syst Biol 10: 736

Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and

information in fluctuating environments. Science 309: 2075–2078
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2.

Nat Methods 9: 357–359
Leiby N, Marx CJ (2014) Metabolic erosion primarily through mutation

accumulation, and not tradeoffs, drives limited evolution of substrate

specificity in Escherichia coli. PLoS Biol 12: e1001789

Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a

10,000-generation experiment with bacterial populations. Proc Natl Acad

Sci 91: 6808–6814
Loomis WF, Magasanik B (1967) Glucose-lactose diauxie in Escherichia coli. J

Bacteriol 93: 1397–1401
Madar R, Zaritsky A (1983) Bacterial adaptation: macromolecular biosynthesis

during diauxic growth of Escherichia coli. FEMS Microbiol Lett 19, 295–298
Mart�ınez-Garc�ıa E, de Lorenzo V (2011) Engineering multiple genomic deletions

in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile

of Pseudomonas putida KT2440. Environ Microbiol 13: 2702–2716
Molenaar D, van Berlo R, de Ridder D, Teusink B (2009) Shifts in growth

strategies reflect tradeoffs in cellular economics. Mol Syst Biol 5: 323

Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3: 371–394
Monod J (1966) From enzymatic adaptation to allosteric transitions. Science

154: 475–483
Moreno-G�amez S, Kiviet DJ, Vulin C, Schlegel S, Schlegel K, van Doorn GS,

Ackermann M (2020) Wide lag time distributions break a trade-off

between reproduction and survival in bacteria. Proc Natl Acad Sci USA 117:

18729–18736

Mostovenko E, Deelder AM, Palmblad M (2011) Protein expression

dynamics during Escherichia coli glucose-lactose diauxie. BMC Microbiol

11: 126

O’Brien EJ, Utrilla J, Palsson BO (2016) Quantification and classification of

E. coli proteome utilization and unused protein costs across environments.

PLoS Comput Biol 12: e1004998

Oh M-K, Rohlin L, Kao KC, Liao JC (2002) Global expression profiling of

acetate-grown Escherichia coli∗. J Biol Chem 277: 13175–13183
Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural

environment. Microbiol Rev 51: 365–379
Schmidt A, Kochanowski K, Vedelaar S, Ahrn�e E, Volkmer B, Callipo L, Knoops

K, Bauer M, Aebersold R, Heinemann M (2015) The quantitative and

condition-dependent Escherichia coli proteome. Nat Biotechnol 34: 104–
110

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010)

Interdependence of cell growth and gene expression: origins and

consequences. Science 330: 1099–1102
Scott M, Klumpp S, Mateescu EM, Hwa T (2014) Emergence of robust growth

laws from optimal regulation of ribosome synthesis. Mol Syst Biol 10: 747

Siegal ML (2015) Shifting sugars and shifting paradigms. PLoS Biol 13:

e1002068

Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, Kuipers

OP (2014) Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci

USA 111: 7427–7432
Soupene E, van Heeswijk WC, Plumbridge J, Stewart V, Bertenthal D, Lee

H, Prasad G, Paliy O, Charernnoppakul P, Kustu S (2003) Physiological

studies of Escherichia coli strain MG1655: Growth defects and apparent

cross-regulation of gene expression. J Bacteriol 185: 5611–5626
Stanier RY (1951) Enzymatic adaptation in bacteria. Annu Rev Microbiol 5:

35–56
Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a

tool for genome-scale analysis of protein functions and evolution. Nucleic

Acids Res 28: 33–36
Towbin BD, Korem Y, Bren A, Doron S, Sorek R, Alon U (2017) Optimality and

sub-optimality in a bacterial growth law. Nat Commun 8: 14123

Traxler MF, Chang D-E, Conway T (2006) Guanosine 30 ,50-bispyrophosphate

coordinates global gene expression during glucose-lactose diauxie in

Escherichia coli. Proc Natl Acad Sci USA 103: 2374–2379
Ullmann A, Monod J (1968) Cyclic AMP as an antagonist of catabolite

repression in Escherichia coli. FEBS Lett 2: 57–60
Venturelli OS, Zuleta I, Murray RM, El-Samad H (2015) Population

diversification in a yeast metabolic program promotes anticipation of

environmental shifts. PLoS Biol 13: e1002042

Wang J, Atolia E, Hua B, Savir Y, Escalante-Chong R, Springer M (2015)

Natural variation in preparation for nutrient depletion reveals a cost-

benefit tradeoff. PLoS Biol 13: e1002041

Wang X, Xia K, Yang X, Tang C (2019) Growth strategy of microbes on mixed

carbon sources. Nat Commun 10: 1279

Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69: 12–50

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

ª 2021 The Authors Molecular Systems Biology 17: e10597 | 2021 13 of 13

Rohan Balakrishnan et al Molecular Systems Biology

https://doi.org/10.1101/2021.05.12.443892
https://doi.org/10.1101/2021.05.12.443892

