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SUMMARY

The development of effective vaccines to combat infectious diseases is a complex multi-year and multi-
stakeholder process. To accelerate the development of vaccines for coronavirus disease 2019 (COVID-19),
a novel pathogen emerging in late 2019 and spreading globally by early 2020, the United States government
(USG) mounted an operation bridging public and private sector expertise and infrastructure. The success of
the endeavor can be seen in the rapid advanced development of multiple vaccine candidates, with several
demonstrating efficacy and now being administered around the globe. Here, we review the milestones
enabling the USG-led effort, the methods utilized, and ensuing outcomes. We discuss the current status
of COVID-19 vaccine development and provide a perspective for how partnership and preparedness can
be better utilized in response to future public-health pandemic emergencies.
Introduction
The first case report of novel coronavirus 2019 (2019-nCov) in

the United States was published on January 31, 2020 in the

New England Journal of Medicine (Holshue et al., 2020). In the

year and a half since, over 34.4 million cases have been diag-

nosed with the now recognized severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), which causes coronavirus

disease 2019 (COVID-19), and over 608,000 lives have been

lost in the United States (CDC, 2021c). Around the globe, the fig-

ures are more devastating, with over 195 million cases reported

and greater than 4.1 million deaths (JHU, 2021). The adverse

impact of this pathogen concerns not only global public health

but also the economic status of nations and individuals (Cutler

and Summers, 2020). Not since 1918 has the world been so

affected by the emergence, spread, and death toll resulting

from a respiratory virus (Taubenberger et al., 2000; Wei et al.,

2020). The exponential rate of disease spread seen in early

2020 and related case projections demanded a comprehensive

response that included the public sector working in tandem

with private industry to develop prevention and treatment ap-

proaches for this new disease.

Fundamental to the response was the development of vac-

cines capable of thwarting COVID-19 disease, hospitalizations,

and associated deaths. The US government (USG), working

closely with pharmaceutical, biotech, and academic collabora-

tors, set forth a plan to capitalize on several decades of progress

on new vaccine platforms, viral immunology, structural biology,

and protein engineering research, along with clinical trial opera-

tions expertise to enable the rapid development, evaluation,

manufacturing, and deployment of successful vaccines. Also

important to note was the ‘‘Determination of Public Health Emer-

gency’’ made on February 4, 2020 by the US Secretary of Health

and Human Services (HHS) declaring there to be a ‘‘a public

health emergency that has a significant potential to affect na-

tional security or the health and security of United States citizens
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(Health and Human Services Department, 2020). The federal

notice also outlined the criteria under which emergency use

authorization (EUA) could be issued. In less than 1 year from

pathogen identification, multiple vaccines have received EUA

from the US Food and Drug Administration (FDA), enabling wide-

spread vaccine administration to begin during a public health

emergency (Figure 1).

Nearly 6 months post authorization, as the vaccination

campaign continues for the general US population, vaccine

research remains ongoing to define durability and indications

for boosting and to assess vaccine safety and immunogenicity

in pediatric and special populations. Basic and clinical research

on the epidemiology, transmissibility, pathogenicity, and anti-

genic and immune evasion properties of emerging SARS-CoV-

2 variants is also continuing. To adequately prepare for the

emergence of subsequent pathogens and to establish medical

countermeasures for known and unknown viruses with

pandemic potential, it will be important to further incentivize

comprehensive preparedness programs, including improved

global surveillance and the development of diagnostics, vac-

cines, and therapeutic products for the major viral families

known to infect humans.

This COVID-19 vaccine development perspective will review

the tools of modern vaccinology employed to combat a novel

pathogen, the critical steps taken as part of the USG response

(initially known asOperationWarp Speed [OWS]), and the collab-

orative mechanisms utilized for industry partnerships and effi-

cient clinical trial conduct. Additionally, we discuss lessons

learned and propose future approaches to improve pandemic

preparedness and response.

Modern vaccinology: Structure-guided vaccine design
The advances in technology supporting modern vaccine design

have been driven by the need to tackle challenging viral diseases
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Milestones and events leading to the successful development of COVID-19 vaccines
Key events leading to the accelerated development of COVID-19 vaccines, including insights from previous research that contributed to the scientific rationale
underlying vaccine design.
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that defy traditional ways of designing and developing vaccines.

Modern vaccinology takes advantage of advances in viral immu-

nology, structural biology, and novel vaccine platforms that can

safely elicit robust immunity. One major area of progress has

been in the definition of the structures of viral surface proteins

as well as a detailed understanding of how protective antibodies

target these proteins. The research emanating from the studies

of surface proteins of viruses, such as influenza, human immuno-
deficiency virus (HIV), and respiratory syncytial virus (RSV), has

been invaluable to hone our understanding of how protein struc-

ture impacts immune recognition of complex surface proteins. A

major aim of structure-based design is to hold the metastable

viral surface protein in the native conformation recognized by

potent neutralizing antibodies (Sanders and Moore, 2021). A

key milestone in this area was the stabilization of the RSV fusion

(F) surface protein (McLellan et al., 2013a, 2013b) that led to
Immunity 54, August 10, 2021 1637
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improved immunogenicity in phase 1 clinical trials and to the

advanced clinical testing of this and related candidate vaccines

(Crank et al., 2019). The recognition of the importance of stabiliz-

ing viral surface proteins as immunogens led investigators to

solve the atomic-level structure of the HKU1 betacoronavirus

and subsequently to assess the impact of introducing stabilizing

mutations into the spike protein of HKU1, SARS, andMiddle East

respiratory syndrome (MERS). These studies determined that

altering two sequential amino acids to prolines in the central helix

of the transmembrane portion of the protein could help stabilize

the spike protein in its native conformation, increase protein

expression, and improve immunogenicity (Pallesen et al.,

2017). Once the sequence of the novel coronavirus became

available on January 11, 2020, the sequence alignment allowed

the two proline mutations to be introduced into what we now

term the SARS-CoV-2 spike protein, and fortunately, this facili-

tated the rapid and successful design and production of a

high-quality immunogenic spike protein that fueled the rapid

development of diagnostics, therapeutics, and vaccines at the

start of the COVID-19 pandemic.

Advances in vaccine platform technologies
Traditional vaccines reproduce the pathogen in some form,

whether live-attenuated or inactivated or as a subunit of the

pathogen delivered as a recombinant protein or protein particle

as first done for hepatitis B (Gerberding and Haynes, 2021; Hille-

man, 2000; McLean et al., 1984; Plotkin, 2009; Valenzuela et al.,

1982). These vaccine modalities have worked extraordinarily

well for many pathogens, including measles, polio, hepatitis B,

and human papilloma virus (HPV), though important gaps remain

for vaccine development (Gerberding and Haynes, 2021). New

vaccine modalities include gene-based platforms that encode

the antigen of interest in a manner that allows the body to pro-

duce the vaccine antigen. Gene-based technologies include nu-

cleic-acid-based vaccines (DNA and mRNA) and viral vectors

such as recombinant adenoviruses (rAds). The endogenous pro-

duction of vaccine antigens from host cells partially mimics the

immune response to natural infection and facilitates elicitation

of CD4+ and CD8+ T cell responses as well as humoral immune

responses. For COVID-19, both mRNA and rAd vectors have

proven to induce effective immunity. Viral vectors such as the hu-

man rAd26 or the chimpanzee vector (ChAd) can be readily

manipulated to express the gene of interest and are produced

by a standardized manufacturing process, facilitating a rapid

pathway to clinical evaluation. Likewise, a particular advantage

of the mRNA platform is the rapidity with which candidate vac-

cines can be designed and produced. The synthetic chemical

nature of mRNA vaccines and their lipid nanoparticle compo-

nents circumvent the need to make a biological product grown

in cell culture, thus simplifying production and shortening the

time to the clinic (Pardi et al., 2018).

While gene-based platforms have been emphasized for their

rapid capability, recombinant protein technologies, especially

when combined with new powerful adjuvants, have several

potentially advantageous features. Protein vaccines such as re-

combinant hepatitis B and the virus-like particle for HPV have

been licensed for global use, have a strong history of safety

and immunological data to reference, can be made at relatively

low cost in large quantities, and can be used in various popula-
1638 Immunity 54, August 10, 2021
tions. Given the differing attributes of various vaccine platforms,

the USG COVID response team thought it important to develop

and test vaccines frommore than one platform technology.Apri-

ori, it was not known which vaccine platforms could be effec-

tively manufactured and advance rapidly into phase 3 trials.

Further conjecture related to which platform would demonstrate

an acceptable safety profile and produce protective immunity.

This led to the decision to fund the development of three distinct

platforms: mRNA, rAd, and subunit protein.

Scientific basis of SARS-CoV-2 vaccine development
Spike is the primary surface feature on coronavirus virions and is

responsible for both attachment and entry into target cells, mak-

ing it an important target for neutralizing antibodies (Liu et al.,

2020; Wrapp et al., 2020). It is also large, with roughly twice as

many amino acids as HIV Env or RSV F and known to contain

multiple T cell epitopes (Mateus et al., 2020). Therefore, the spike

glycoprotein is the vaccine target antigen of choice, and it can be

delivered by several different modalities. For either protein-

based or gene-based delivery of coronavirus (CoV) spike, a

number of vaccine design choices need to be made about the

spike construct that will determine its biophysical and antigenic

properties, impact manufacturability, and ultimately potentially

impact immunogenicity and vaccine efficacy. One choice is

whether to include the entire spike protein with the surface

ectodomain (S1) and the transmembrane domain (S2) or just

the ectodomain (S1) or a subdomain of the ectodomain such

as the receptor binding domain (RBD). The RBD is responsible

for viral attachment via ACE2. Vaccines comprised of RBD can

induce robust neutralizing activity, especially when measured

in assays with high levels of the angiotensin-converting enzyme

2 (ACE2) receptor on target cells that may be biased for detec-

tion of antibodies blocking attachment (Cohen et al., 2021; Saun-

ders et al., 2021). Antibodies to the N-terminal domain (NTD) or

the transmembrane domain can also neutralize virus by inter-

fering with protein rearrangement, resulting in fusion inhibition

(Liu et al., 2020; McCallum et al., 2021). Therefore, using the

entire spike ectodomain has the potential to induce a broader

repertoire of antibody specificities, including those to quaternary

epitopes that can neutralize by different mechanisms and

theoretically be more resistant to immune escape. When ex-

pressed as a soluble protein, the spike trimer needs a C terminus

trimerization domain to maintain its structure. On the other hand,

the RBD is only about 1/6 the size of full-length spike and can be

presented as a monomer, potentially improving the ease and

cost of manufacturing, and can be displayed in a nanoparticle

format.

Spike is a trimer of S1/S2 heterodimers, and the furin cleavage

site (RRAR) between S1 and S2 is important for mediating the

fusion process but not necessarily important for protein folding

andassembling into the right conformationof the functional trimer.

For protein-based vaccines, eliminating the cleavage site with an

amino acid linker likeGSAS results in amoreuniformpopulationof

proteins. For spike antigens expressed from gene-based vectors,

maintaining the transmembrane domain and keeping spike

anchored in the cell membrane is more immunogenic than

designing the antigen to be secreted from the cell, and current

mRNA and viral-vector vaccines take this approach (Table 1). In

the transmembrane context, the spike protein appears to be



Table 1. COVID-19 vaccine platforms, sponsors, and vaccine candidates

OWS COVID-19 vaccine candidates

Platform Sponsor Vaccine platform Target protein Dosing regimen Furin cleavage site

Nucleic

acid

Pfizer/BioNTech mRNA prefusion stabilized

(S-2P) transmembrane

anchored full-length

spike protein

2 doses/21

days apart

native

Moderna mRNA prefusion stabilized

(S-2P) transmembrane

anchored full-length

spike protein

2 doses/28

days apart

native

Viral

vector

AstraZeneca/

Oxford

chimpanzee

adenovirus vector

transmembrane

anchored spike protein

2 doses/28

days apart

native

Janssen human

adenovirus

vector (26)

prefusion stabilized

(S-2P) transmembrane

anchored full-length

spike protein

1 dose mutated furin

cleavage site

R682S and R685G

Protein-

based +

adjuvant

Novavax recombinant protein

(insect cell) + matrix

M adjuvant

prefusion stabilized

(S-2P) full-length

spike protein

2 doses/21

days apart

mutated furin

cleavage site

682-RRAR-685 to

682-QQAQ-685

Sanofi/GSK recombinant protein

(insect cell) +AS03

adjuvant

prefusion stabilized

ectodomain (S-2P) spike

protein with T4-foldon

trimerization domain

2 doses/21

days apart

mutated furin

cleavage site

Non-OWS COVID-19 vaccine candidates, examples

Platform Sponsor Vaccine platform Target protein Dosing regimen Furin cleavage site

Nucleic

acid

CureVac mRNA prefusion stabilized

(S-2P) transmembrane-

anchored spike protein

2 doses/28

days apart

intact S1/S2 cleavage

site and transmembrane

domain

Viral

vector

Gamaleya National

Research Centre

for Epidemiology

and Microbiology

human adenovirus

vectors (rAd26 and rAd5)

full-length

spike protein

rAd26 prime,

rAd5 boost

21 days apart

–

Inactivated

virus

Sinovac/China

National

Pharmaceutical

Group

vero cell-based, b-propiolactone-

inactivated vaccine based

on the CZ02 strain; aluminium

hydroxide-adjuvanted

whole virus 2 doses/14–

28 days apart

–

Sinopharm/Beijing

Institute of

Biological Products

vero cell-based, b-propiolactone-

inactivated vaccine based on the

19nCOV-CDC-TAN-HB02 strain

; aluminium

hydroxide-adjuvanted

2 doses/21–28

days apart

–

Covaxin/Bharat

Biotech

whole-virion inactivated

SARS-CoV-2 vaccine

formulated with a toll-like

receptor 7/8 agonist molecule

(IMDG) adsorbed to alum (Algel)

2 doses/28

days apart

–

COVID-19 vaccine platforms, sponsors, and vaccine candidates (Baden et al., 2021; Batty et al., 2021; Bos et al., 2020; ClinicalTrials.gov, 2021; Cor-

bett et al., 2020; Folegatti et al., 2020; Goepfert et al., 2021; Jackson et al., 2020; Keech et al., 2020; Lee et al., 2021;Mercado et al., 2020; Polack et al.,

2020; Sadoff et al., 2021; Tian et al., 2021; Walsh et al., 2020; Vogel et al., 2021) and examples of non-OWS COVID-19 vaccine platforms, sponsors,

and vaccine candidates (Batty et al., 2021; Ella et al., 2021a, 2021b; Kremsner et al., 2020; Lee et al., 2021; Logunov et al., 2020; Rauch et al., 2021;

Wang et al., 2020; WHO, 2021a, 2021b; Zhang et al., 2021). The Pfizer/BioNTech, Moderna, AstraZeneca, Janssen, Novavax, and Sanofi/GSK vac-

cines are all based on theWuhan-Hu-1 spike protein sequence. The Sanofi product will include both amonovalent protein (Wuhan-Hu-1) and a bivalent

product (Wuhan-Hu-1 + protein based on the beta [B.1.351] sequence).
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partially stabilized, and the furin cleavage site could be retained

(e.g., Moderna, BioNTech/Pfizer mRNA, and AstraZeneca rAd

vector) or be mutated (e.g., Janssen’s rAd26 or the Novavax

candidate).
There are numerous options for formulation and modality of

vaccine antigen delivery, and a full discussion is beyond the

scope of this general review. The vaccine tracker and landscape

tables maintained by the World Health Organization (WHO) list
Immunity 54, August 10, 2021 1639
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more than 280 COVID-19 vaccine candidates (WHO, 2021c), of

which more than 100 have reached clinical evaluation and a

few of the most advanced have been approved for emergency

use listing (WHO, 2021d).

A new paradigm for rapid vaccine development
In early 2020, as the SARS-CoV-2 pandemic spread around the

globe, a USG scientific enterprise, which would eventually be

known asOWS, began developing a coordinated response strat-

egy to the outbreak. Scientists from the Biomedical Advanced

Research and Development Authority (BARDA) and the National

Institutes of Health (NIH), both part of the HHS, began to system-

atically evaluate over 70 potential SARS-CoV-2 candidate

vaccines and vaccine technologies. Key evaluation criteria

included robust preclinical data, experience with the vaccine

platform, evaluation of the vaccine design and prediction of

efficacy, dosing regimen, manufacturability, and anticipated

safety profile.

During these initial efforts, senior USG officials from BARDA

and NIH were planning a broad all-hands-on-deck approach to

the preclinical and clinical development, manufacturing, and dis-

tribution of medical countermeasures to address the COVID-19

pandemic. This culminated in recommendations to the Office

of the Assistant Secretary for Preparedness and Response

(ASPR) and HHS leadership to form a comprehensive integrated

response to this new pandemic pathogen and the formal

announcement of OWS on May 15, 2020 (HHS, 2020; Slaoui

and Hepburn, 2020). OWSwas formed as an integrated program

comprised of components of HHS, including ASPR, BARDA,

NIH, and the Centers for Disease Control and Prevention

(CDC), together with components of the Department of Defense

(DoD), including bothmedical research and logistics capabilities.

The OWS vaccine-development team down-selected leading

candidate vaccines for advanced development.

The selections included vaccine platforms such asmRNAwith

the potential for rapid advancement to the clinic, viral vector plat-

forms with substantial clinical history, and traditional adjuvanted

protein-based vaccines. This strategy reflected the recognition

that while speed of development was a key goal, there was un-

certainty about which vaccine designs and platform technolo-

gies would meet the key criteria of safety and clinical efficacy,

together with capacity for scaled-up manufacturing of millions

of product doses. By choosing both new and traditional vaccine

platforms and testing several vaccine designs, it was believed

that the likelihood of achieving one or more successful products

would be maximized. Importantly, the vaccine development ef-

forts of OWS relied on partnerships with pharmaceutical and

biotech companies who would be responsible for product

manufacturing, advanced development, and licensure. The

OWS-funded program did not include a traditional inactivated

whole virus (IWV) vaccine approach, but IWV vaccines have

been developed by other experienced vaccine-development

teams, such as the Chinese national pharmaceuticals groups Si-

novac and Sinopharm and India’s Covaxin from Bharat Biotech.

In addition, the Russian Gamaleya National Research Centre

developed a rAd vaccine based on rAd26 prime and rAd5 boost,

and CureVac is currently conducting a phase 3 trial for their

mRNA candidate (Table 1). This perspective will focus on the

advanced development of the USG-supported vaccines.
1640 Immunity 54, August 10, 2021
After selecting vaccine candidates for funding and advanced

development, OWS scientists were confronted with fundamental

operational decisions: (1) how to form public-private partner-

ships to safely accelerate the clinical development of these can-

didates, (2) how to efficiently design and conduct placebo-

controlled efficacy trials, ensuring measurement of key end-

points and adherence to FDA guidance (FDA, 2020a) at clinical

sites with active community transmission, and (3) how to facili-

tate management and oversight of simultaneous efficacy trials

and ensure that OWS could effectively assess efficacy and im-

mune correlates across multiple vaccine candidates. To accom-

plish these goals, while maintaining industry-sponsor control of

the product and regulatory process, OWS established a para-

digm for independent but harmonized phase 3 vaccine trials

(Corey et al., 2020). Harmonized trials would be randomized pla-

cebo-controlled trials with closely aligned primary endpoints

(e.g., prevention of symptomatic COVID-19) and powered to

be able to establish a point estimate of vaccine efficacy (VE) of

>50% with the lower bound of the 95% confidence interval (CI)

above 30%, as indicated by FDA guidance. Further, study size

was adjusted to obtain final analysis within 6months. In addition,

NIH established a common independent data safety and moni-

toring board (DSMB) staffed with expert clinicians and statisti-

cians from government and academia to oversee the trials

(Corey et al., 2020). OWS also began a process to establish a

core set of validated assays to measure vaccine-induced bind-

ing and neutralizing antibody responses as well as a biostatis-

tical group to evaluate the data (R. Koup, personal communica-

tion). Thus, each trial would have a common set of immune

measurements from which to assess potential immune corre-

lates of protection and to facilitate cross-protocol comparisons.

The independent harmonized-clinical-trial approach was

favored over a master protocol with a common placebo for

several reasons: (1) the phase 3 trials would not run concurrently,

as each sponsor would potentially launch phase 3 efficacy trials

on a timeline dictated by its product developmental timelines,

(2) the required vaccine trials were large, requiring between

30,000–60,000 participants, and it was not feasible for OWS to

manage all operational aspects of such trials with 3 to 5 arms of

that size, and (3) in the setting of vaccine efficacy, the application

for licensure or emergency use must be submitted by the phar-

maceutical sponsor of the product (as defined by FDA regula-

tions), and this is most efficient if the critical safety and clinical

outcome data reside with the product sponsor who also holds

the necessary manufacturing data for a given product. Thus, a

key tenet of the OWS approach was that each company would

be the regulatory sponsor responsible for the conduct of their

own phase 3 trial but that the trial would be done in collaboration

withOWSandNIHand overseen by the commonDSMB. Tomeet

theneed for vast study enrollment, theNational Institute ofAllergy

and Infectious Diseases (NIAID), part of NIH, merged its existing

Division of AIDS (DAIDS) and Division of Microbiology and Infec-

tious Diseases (DMID) clinical research networks with additional

DoD sites and some from the Veterans Affairs clinical network

into a combined network called the COVID-19 Prevention

Network (CoVPN; https://www.coronaviruspreventionnetwork.

org). The CoVPN was made up of academic and hospital-based

research sites that would enroll study volunteers along with con-

tract research organization sites selected by each vaccine

https://www.coronaviruspreventionnetwork.org
https://www.coronaviruspreventionnetwork.org
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sponsor. Thus, with the exception of the Pfizer trial, which was

conducted by the company without OWS support, the conduct

of eachphase3 trialwasa close collaborationbetween the indus-

try sponsor and the NIH and OWS teams.

To design and implement the phase 3 protocols and ensure

enrollment of racially and ethnically diverse populations and those

disproportionally affected byCOVID-19, clinical research special-

ists from OWS worked side by side with clinical trial- and partici-

pant-recruitment experts from the CoVPN and each sponsor. Re-

porting providing real-time indicators and projected COVID-19

incidencewas developed to informdecisionmaking for site selec-

tion and prioritization. Materials included US-county-level demo-

graphics, cases, hospitalizations, testing rates, anddeathsamong

other data points as well as the CDC case-forecasting ensemble

model and extended time horizon epidemiological modeling

tailored to prospective trial site selections from sponsors. To

further support diverse participant enrollment, senior scientific

leadership participated in community forums to raise awareness

for study participation and utilized public and social media to

engage communities (https://covid19community.nih.gov). In

addition, the CoVPN and NIH launched a web-based partici-

pant-screening registrywhereby individuals could self-report rele-

vant household, social, and health status indicators in order to

facilitate participant screening by trial site recruiters.

A key accelerator of vaccine deployment was the USG invest-

ment in commercial-scale manufacturing of candidate products

from very early in the clinical development process—prior to the

availability of phase 3 results. Commercial scale manufacturing

is an intricate fastidious process, and this investment ensured

that a successful vaccine efficacy trial could translate promptly

into a public-health intervention. While generally successful,

there have been challenges in the manufacturing of some vac-

cine products, including availability of reagents, analytical

assessment of the product, and final fill/finish, which is the pro-

cess of filling vials with vaccine and finishing the process of

packaging the medicine for distribution. This suggests that opti-

mization of emergency manufacturing capacity should be a part

of future preparedness priorities.

Efficacy trials and study results
On July 27, 2020, just over 6 months after the first sequence of

SARS-CoV-2 was released, both Moderna and Pfizer/BioNTech

enrolled the first volunteers in their investigational COVID-19 effi-

cacy trial studies (Figure 1). Moderna conducted their phase 3

study in 99 US clinical-trial sites and enrolled a diverse cohort

of volunteers (Baden et al., 2021; Moderna, 2020a, 2020b).

Pfizer/BioNTech conducted their phase 3 efficacy trial in 150 sites

around the world, including those in the United States, Argentina,

Brazil, South Africa, Germany, and Turkey (Pfizer, 2020a, 2020b;

Polack et al., 2020). AstraZeneca launched a phase 3 efficacy

trial, which included 88 clinical trial sites in the United States,

Peru, and Chile, to evaluate their investigational COVID-19 vac-

cine product on August 31, 2020 (AstraZeneca, 2020, 2021).

Janssen began enrollment in an international phase 3 trial of their

Ad26.COV.S product in Argentina, Brazil, Chile, Colombia,

Mexico, Peru, South Africa, and the United States on September

21, 2020 (Janssen, 2021; Johnson & Johnson, 2020a; Sadoff

et al., 2021). To evaluate their COVID-19 vaccine product, Nova-

vax initiated an efficacy trial on December 28, 2020 with clinical
sites in the United States and Mexico (Novavax, 2020, 2021a,

2021b). On May 27, 2021, Sanofi, in partnership with GSK,

launched a two-stage global efficacy trial (Sanofi, 2021). Stage

one is currently evaluating their adjuvanted recombinant spike

protein based on the ancestral (Wuhan-Hu-1) SARS-CoV-2 strain,

and stage two will include a bivalent product that is a co-formu-

lated mixture of the ancestral strain protein plus a protein based

on the variant of concern (VOC) beta (B.1.351) strain.

As a testament to the remarkably effective conduct of these

phase 3 trials and the unfortunate surge in COVID-19 infections

inmid- to late 2020, the number of endpoints needed to establish

vaccine efficacy accumulated over the course of less than

6 months. Hence, the first efficacy data emerged in November

2020 with the remarkable announcements by Pfizer and Mod-

erna of 94%–95% efficacy in preventing symptomatic COVID-

19 infection (Baden et al., 2021; Polack et al., 2020). Based on

these efficacy results and a robust safety profile, Pfizer/Bio-

NTech submitted an EUA application to the FDA on November

20, 2020, which was granted on December 11, 2020 (FDA,

2020c). On November 30, 2020, Moderna submitted an EUA

request, which was issued by the FDA on December 18, 2020

(FDA, 2020b). On February 4, 2021, Janssen submitted a request

for EUA, which was issued on February 27, 2021 (FDA, 2021b).

While AstraZeneca and Novavax have yet to submit for EUA in

the United States based on results from their pivotal efficacy tri-

als, independently reviewed readouts provide indications of vac-

cine candidate efficacy (Table 2). In addition, the AstraZeneca

vaccine has received authorization for use from multiple regula-

tory authorities, including the UK Medicines and Healthcare

products Regulatory Agency (MHRA) and the European Medi-

cines Agency (EMA). Enrollment in Sanofi’s efficacy trial remains

ongoing. An important aspect of the phase 3 data is the consis-

tently high levels of efficacy against severe COVID-19 (Table 2).

As an example, in theModerna phase 3 dataset of 170COVID-19

cases, 30 were severe—and all occurred in the placebo group.

Importantly, the evaluation of vaccine efficacy has not ended

with EUA submissions. At the time of full biologic license applica-

tion (BLA), there will be many more COVID-19 cases from which

to assess vaccine efficacy in real-world settings and to evaluate

breakthrough cases by sequencing isolates to infer protection

against variants circulating in study populations. In addition,

the FDA requires continued monitoring of vaccine participants

for a minimum of 2 years. Once efficacy is established, placebo

recipients are offered vaccine and asked to remain in the study

for follow up. This provides additional opportunities to assess

the duration of protection in the context of these studies while

continuing to monitor volunteer safety, albeit without the

contemporaneous control group.

Of note, recently reported results of the CureVac mRNA

vaccine encoding a transmembrane-anchored stabilized spike

protein indicate a rather disappointing 47% efficacy against

symptomatic COVID-19 (CureVac, 2021). This vaccine was re-

ported to have relatively high levels of systemic reactogenicity

despite a relatively low dose of 12 mg, as compared to Moderna

(100 mg dose) and Pfizer-BioNTech (30 mg dose) (Jackson et al.,

2020; Kremsner et al., 2020; Walsh et al., 2020). We do not know

what accounts for this lower efficacy, but in addition to the

lower dose, there may be differences in the modification of

nucleotides, codon optimization of sequences, and other
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Table 2. Randomized, placebo-controlled efficacy trial outcomes

Sponsor Vaccine

Trial

name Dose/regimen Trial launch

Number of

volunteers

Case

accrual

Distribution

of cases

(vaccine/

placebo)

Overall

VE

Severe

cases

(vaccine/

placebo)

VE agaist

severe

disease

VE in

older age

groups VE against SARS-CoV-2 variants

Alpha

(B.1.1.7)

Beta

(B.1.351)

Zeta

(P.2)

Pfizer/

BioNTech

BNT162b2 C4591001 2 doses of

30 mg/21

days apart

July 27,

2020

43,548 170 8/162 95.0%

(95%

CI 90.3;

97.6)

1/4 75.0%

(95% CI

�152.6,

99.5)

94.7% (95%

CI 66.7–99.9)

(population >65)

– 100% (9 cases

placebo group

out of 800 trial

participants)

–

Moderna mRNA-

1273

COVE Study 2 doses of

100 mg/28

days apart

July 27,

2020

30,420 196 11/185 94.1%

(95%

CI 89.3;

96.8)

0/30 100% 86.4% (95%

CI 61.4; 95.5)

(population >65)

– – –

Astra

Zeneca

AZD1222 D8110

C00001

2 doses of

5 3 1010 viral

particles/28

days apart

August

31, 2020

32,249 190 – 76%

(95%

CI 68;

82)

0/8 100% 85% (95%

CI 58; 95)

(population >65)

70$4%a

(95% CI

43$6; 84$5)

10.4%a

(95% CI �
76.8; 54.8)

–

Janssen Ad26.

COV2.S

ENSEMBLE 1 dose of

5 3 1010

viral particles

September

21, 2020

44,325 259 66/193 66.1%

(95%

CI 55.0;

74.8)

5/34 85.4%

(95% CI

54.2; 96.9)

66.2% (95%

CI 36.7; 83.0)

(population >60)

– 64.0%

(95% CI

41.2; 78.7)

– 81.7% (95%

CI 46.2; 95.4)

(severe/critical)

68.1%

(95% CI

48.8; 80.7)

– 87.6%

(95% CI

7.8; 99.7)

(severe/

critical)

Novavax NVX-

CoV2372

PREVENT-

19

2 doses of

5 mg SARS-

CoV-2 rS

adjuvanted

with 50 mg

Matrix-M1/21

days apart

December

28, 2020

29,960 77 1/63 90.4%

(95%

CI 82.9;

94.6)

0/4 100% 91.0% (95% CI

83.6; 95.0)

(population >65,

<65 with

comorbidities;

population with

frequent

COVID-19

exposure)

86.3%a

(95% CI

71.3; 93.5)

51.0%a (95%

CI �0.6; 76.2)

(HIV-negative

participants)

43.0%a (95%

CI �9.8; 70.4)

(combined HIV-

negative and -

positive

population)

–

Randomized, placebo-controlled efficacy trial outcomes with point estimate and 95% CI shown as reported by Pfizer/BioNTech, Moderna, and Janssen in study result publications (Baden et al.,

2021; Polack et al., 2020; Sadoff et al., 2021) and as announced by AstraZeneca and Novavax by press release (AstraZeneca, 2021; Novavax, 2021b). Dashes indicate unknown or undetermined as

of yet.
aVE against SARS-CoV-2 variants demonstrated in additional phase 2, 2b, and 3 RCTs from individual sponsors (Emary et al., 2021; Heath et al., 2021; Madhi et al., 2021; Shinde et al., 2021).
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characteristics of the mRNA formulation or the lipid nanoparticle

used to encapsulate the mRNA (Dolgin, 2021).

Vaccine safety: The challenge of real-time safety
surveillance at a massive scale
Because preventive vaccines are predominantly evaluated in

healthy population cohorts and distributed among the general

population, a high standard of safety is required. To meet this

requirement, the CDC and FDA developed large comprehensive

passive and active vaccine-safety surveillance systems, collect-

ing reported outcomes as well as surveying hundreds of millions

of healthcare or insurance records in a given period of time

(Destefano et al., 2018). But the coronavirus pandemic posed

an unusual new scenario, calling for real-time safety surveillance

of potentially all US adults receiving a vaccine during a

limited period of time. The CDC quickly adapted their proven

post-licensuremonitoring systems by creating a new post-autho-

rization safety surveillance tool, V-safe (https://www.cdc.gov/

coronavirus/2019-ncov/vaccines/safety/vsafe.html), designed

and deployed specifically to actively follow vaccinated individ-

uals, including pregnant populations who were also surveyed

via a custom registry, in real time. Although safety is monitored

throughout the development cycle and deployment of a vaccine,

certain rare adverse events associatedwith immunizations (or any

medication) can only be detected once millions of individuals

have received the intervention. During the past year, it was reas-

suring to observe safety systems in action, detecting potential

adverse event signals in real time, either during the evaluation

phase or during deployment, and enabling health experts to

quickly investigate and publicly discuss the probability of associ-

ation with the individual vaccines authorized for emergency use.

Safety checks were evident when Janssen was able to quickly

institute a pause in dosing during their phase 3 trial after observing

a serious adverse event and work with the DSMB and FDA to

review data and resume the trial safely (Johnson & Johnson,

2020b). CDC safety systems also effectively contributed to the

rapid benefit and risk analysis for rare adverse events, such as

anaphylaxis and thrombosis-thrombocytopenia outcomes

associated with mRNA and vector vaccines, respectively, and

more recently, a possible association between mRNA vaccines

with myocarditis in younger individuals. These immunization

safety systems will continue to survey coronavirus vaccines, of-

fering reassurance for the public for years to come. The ability

to access data, analyze results, and issue recommendations

based on scientific evidence in the midst of a crisis required

unparalleled coordination and effort to ensure the public’s trust.

It is also important to highlight that incentivizing transparency to

gain public trust was a priority during the entire USG-led opera-

tion. This was evident by the unprecedented public sharing,

including publication of phase 3 efficacy trial protocols, release

of EUA submission materials to be discussed at each FDA Vac-

cines and Related Biological Products Advisory Committee

(VRBPAC) meeting, and open review of safety data at the CDC

Advisory Committee on Immunization Practices (ACIP) meetings.

Real-world vaccine effectiveness and duration of
protection
Once vaccines are authorized or licensed for use, real-world vac-

cine effectiveness (RWE) can be assessed using case control
and observational studies. These inform how well the vaccines

perform in broader populations after authorization, including in

those with a wider range of underlying health conditions, greater

age distribution, and in less-controlled clinical settings. RWE

data are continuing to accumulate and have confirmed and

augmented the randomized controlled trial results showing

high efficacy against symptomatic COVID-19 and even higher ef-

ficacy against severe disease, hospitalization, and death

(Figure 2; Table 3). Understanding the duration of vaccine effi-

cacy beyond the initial 6 months of observation will require

continued monitoring. As a potential surrogate of vaccine effec-

tiveness, the level of vaccine-induced antibodies among volun-

teers from the initial phase 1 clinical trials conducted over a

year ago have been monitored. Recent studies show that vacci-

nated individuals maintain detectable levels of neutralizing anti-

bodies for at least 6 months after immunization when measured

against the prototype SARS-CoV-2 strain (Barouch et al., 2021;

Widge et al., 2021). However, when measured against antigeni-

cally divergent VOCs, such as beta or delta, the serum neutrali-

zation titers of individuals decrease to varying degrees, as dis-

cussed below, and may be less durable (Moriyama et al., 2021;

Pegu et al., 2021). These data do not necessarily indicate that

vaccine-mediated protection will be lost against some VOCs,

as a brisk anamnestic response can still confer clinical protec-

tion, particularly against severe disease. However, it will be

important to continue tomonitor the duration of vaccine-induced

immune responses and pair this analysis with what is learned

from correlates of protection (CoP) analysis. Most importantly,

we need continued clinical monitoring of those vaccinated to

assess duration and level of protection, including in populations

such as the elderly or those on immune-modulating medications

who may respond less vigorously to vaccination. Such clinical

data can be augmented by sequence-based surveillance of vac-

cine breakthrough infections.

Vaccine effectiveness and variants of concern
As expected for a single-stranded RNA virus, random mutations

occur over time throughout the SARS-CoV-2 genome (Callaway,

2020). As the COVID-19 pandemic continues, mutations result-

ing in advantageous amino-acid substitutions are accumulating

and can impact the efficiency of viral spread and can facilitate

immune escape. Such VOCs have arisen and spread with

remarkable speed—likely driven by the large number of world-

wide infections due to sustained transmission and in some cases

by SARS-CoV-2 selection during prolonged viral replication and

shedding in immunocompromised individuals (Karim et al., 2021;

Tegally et al., 2021). In particular, antigenic variation of the spike

protein can result in reduced recognition by neutralizing anti-

bodies generated by natural infection or vaccination (Krause

et al., 2021; Mascola et al., 2021; Walensky et al., 2021). As an

example, vaccine-induced neutralizing antibody titers against

the most antigenically diverse VOC beta are often 5- to 8-fold

lower than against the original strain of SARS-CoV-2 (Choi

et al., 2021; Jongeneelen et al., 2021; Liu et al., 2021; Pegu

et al., 2021). This has raised concern that current vaccines based

on the prototype isolate of SARS-CoV-2 may be less effective

against some VOCs. Fortunately, both phase 3 data and

emerging RWE data are, so far, reassuring (Table 3). Vaccine ef-

ficacy—for protection against both symptomatic and severe
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Figure 2. Graphical timeline of COVID-19
cases and hospitalizations and percentage of
population receiving vaccine
(A) Adult population age 18 and over.
(B) Age-specific reported cases (age R65), hospital
admissions (>60 and <60), and percentage of pop-
ulation vaccinated (R65). Source: Aggregate met-
rics sourced from HHS Protect. Jurisdictions not
reporting age-specific vaccine administration infor-
mation omitted from population percentages. Totals
may not represent full values.

ll
OPEN ACCESS Perspective
disease—remains high, including against VOCs (Table 3). It is

important to note, however, that maintaining high levels of

neutralizing antibodies against all circulating variants is most

likely necessary to promote protection in the upper respiratory

tract and also minimize viral transmission (Corbett et al., 2021).

As the delta variant is becoming dominant in many parts of the

world, it will be essential to monitor vaccine effectiveness

against this variant. Fortunately, based on serum neutralization

data, current vaccines appear to induce higher levels of neutral-

izing antibodies against this variant as compared to the beta

variant (Choi et al., 2021; Jongeneelen et al., 2021).

Special populations: Children, pregnant women, and
immune-compromised individuals
As phase 3 studies proceeded, US-funded manufacturers and

agencies have systematically addressed the safety and immuno-

genicity of vaccines in special populations, including younger age

groups; pregnant and lactating women; immunocompromised

subjects; and thosewith autoimmunedisease, asthma, andother

conditions that may affect vaccine efficacy or disease severity.

Pfizer recently amended their indication for EUA to immunize

adolescent populations ages 12–15 (FDA, 2021a).Moderna, hav-

ing demonstrated efficacy, safety, and immunogenicity for their
1644 Immunity 54, August 10, 2021
mRNA-1273 vaccine in adolescents (Mod-

erna, 2021), submitted an EUA request for

adolescent designation on June 10, 2021.

Pediatric cohorts are currently being

enrolled in dose-finding, age-deescalating

studies, which are closely monitored for re-

actogenicity and safety signals and are ex-

pected to be authorized by year’s end.

Vaccination is recommended during

pregnancy not only to protect the newborn

during the first months of life via active

placental transfer of antibodies, but also

to protect the mother (and the fetus) from

life-threatening outcomes if infection oc-

curs during pregnancy (Allotey et al.,

2020). The CDC ACIP recommended that

pregnant women receive a SARS-CoV-2

vaccine in consultation with their provider

(CDC, 2021a) based on a number of fac-

tors, including data demonstrating the

increased risk of severe COVID-19 disease

for pregnant women as compared to their

non-pregnant counterparts (Villar et al.,

2021; Zambrano et al., 2020). Additionally,
the CDC established new surveillance tools, registries, and

studies to closely follow and study pregnant and lactating

women receiving COVID-19 vaccines (Collier et al., 2021; Shima-

bukuro et al., 2021). With data rapidly accumulating and

observational prospective studies enrolling tens of thousands

of pregnant women choosing to be vaccinated (Gray et al.,

2021), it is unlikely that formal placebo-controlled studies will

be conducted with EUA vaccines because of the considerable

body of evidence demonstrating safety and efficacy of vaccina-

tion while pregnant.

Studies to understand the impact of COVID-19 vaccination in

immunocompromised patients are underway, and initial results

suggest variable responses, depending on the specific popula-

tion (Boyarsky et al., 2021; Haidar et al., 2021; Monin et al.,

2021; Werbel et al., 2021). Additional studies will enroll patients

with specific conditions, such as rheumatologic disorders, can-

cers, organ transplantation, and immunosuppressive treatment.

These studies aim to characterize the safety and immune

response to vaccines in individuals with different levels and char-

acteristics of immune suppression, as well as testing modified

vaccination schedules that will inform the steps needed to pro-

tect these patients against severe disease. While most immuno-

compromised individuals were ineligible for the phase 3 efficacy



Table 3. Real world vaccine effectiveness data

Sponsor

Real-world vaccine

effectiveness against

prototype SARS-

CoV-2 strain Real-world vaccine effectiveness against SARS-CoV-2 variants

Alpha (B.1.1.7) Beta (B.1.351) Gamma (P.1) Delta (B.1.617.2)

I/SI SD I/SI SD I/SI SD I/SI SD

Pfizer/BioNTech 64%–99% 65%–100% 84%–100% 75%–88% 95%–100% 79%–88% 95%–100% 79%–88% 96%

Moderna 68%–99% 79%–100% 90%–96% 88%–96% 96%–100% 79%–88% 100% – –

AstraZeneca – 66%–100% 86%–92% – – – – 60%–61% 92%

Janssen 77% – – – – – – – –

Real-world vaccine effectiveness (RWE) as assessed by case-control and observational studies of authorized two-dose regimens for Pfizer/BioNTech,

Moderna, and AstraZeneca products (Abu-Raddad et al., 2021; Andrejko et al., 2021; Angel et al., 2021; Aran, 2021; Bahl et al., 2021; Bernal et al.,

2021; Björk et al., 2021; Butt et al., 2021; Cavanaugh et al., 2021; CDC, 2021b; Chemaitelly et al., 2021; Chodick et al., 2021; Chung et al., 2021; Corch-

ado-Garcia et al., 2021; Dagan et al., 2021; Fabiani et al., 2021; Goldberg et al., 2021; Haas et al., 2021; Hall et al., 2021; Lopez Bernal et al., 2021;

Lumley et al., 2021; Martı́nez-Baz et al., 2021; Menni et al., 2021; Moustsen-Helms et al., 2021; Nasreen et al., 2021; Pawlowski et al., 2021; PHE,

2021; Pilishvili et al., 2021; Pritchard et al., 2021; Regev-Yochay et al., 2021; Sheikh et al., 2021; Stowe et al., 2021; Swift et al., 2021; Tande et al.,

2021; Tang et al., 2021; Tenforde et al., 2021a, 2021b; Thompson et al., 2021a, 2021b; Vahidy et al., 2021; Vasileiou et al., 2021; Yassi et al., 2021;

Young-Xu et al., 2021; Zacay et al., 2021) and 1-dose for Janssen (Corchado-Garcia et al., 2021). Value ranges for SARS-CoV-2 variants include vac-

cine effectiveness against infection/symptomatic infection (I/SI) and severe disease (SD), including hospitalization and death. Dashes indicate un-

known or undetermined as of yet.
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studies, people living with HIV (PLWH) who are well controlled on

stable treatment were included. Ultimately, the numbers of

PLWH in each study were too small to comprehensively deter-

mine efficacy.

Pandemic preparedness—Successes, gaps, and
lessons learned
The United States is slowly emerging from a devastating public-

health crisis (Cutler and Summers, 2020). While this infectious

disease outbreak has contributed to improving our understand-

ing of immunity, virus biology and accelerated pathways to first-

in-human studies, gaps in diagnostic and manufacturing capac-

ity and in designing medical countermeasures with distribution

and access goals inmind, and the need for pre-established inter-

agency systems to coordinate the response to pandemic threats

have become evident. The key lessons from the SARS-CoV-2

pandemic need to be captured and used to inform how we can

systematically prepare for future as-of-yet-unrecognized infec-

tious disease pathogens (pathogen X). Having authorized vac-

cines available for widespread immunization less than a year af-

ter a novel virus was identified was possible, in this case, due to

more than a decade of basic research, planning, and preparation

for a betacoronavirus emergence motivated by the episodes of

SARS-CoV-1 and MERS-CoV (Graham, 2020). Scientists and

public-health officials now need to answer two key questions:

(1) what else could have been done in anticipation or during

the course of this pandemic to have immunized the population

more rapidly, and (2) what would be needed to be fully prepared

against pathogen X that may arise from one of the other 25 viral

families (other than Coronaviridae) known to infect humans? This

would require a comprehensive pandemic preparedness plan

implemented across government agencies and academic insti-

tutions, and in collaboration with pharmaceutical partners, to

proactively manage emerging viral threats. This includes the im-

plementation or expansion of global surveillance and identifica-

tion of new viruses; basic and translational research to establish
the knowledge and reagents needed for rapid response; early-

stage product development for select prototypic viral patho-

gens; continuous support of a strong international clinical-trial

infrastructure and deployment capacity; pre-established agree-

ments and alignment between international regulatory agencies;

and pre-existing public-private partnerships, academic collabo-

rations, and government accords to manage the cooperation

and communication needed for an effective global response

(Graham and Corbett, 2020).

The events of the last 18 months have highlighted the impor-

tance of proactive pandemic preparedness and the capability

for rapid response and have helped clarify the different types

of activities and competencies needed for both. Preparedness

requires a long-term investment in basic research and knowl-

edge accumulation for pathogens of concern. For viruses, this

would mean generating detailed information on structural

biology of key antigenic targets, protein engineering for antigen

design, pathogenesis, animal-model development, mechanisms

of immunity, generation of reagents, and early-phase clinical

evaluation for prototypes from each of the viral families or

genera. Ideally this would include advancing some products

through phases 1 and 2 and having some vaccine and mono-

clonal antibody prototypes on-the-shelf ready for efficacy testing

in future outbreaks (Graham and Sullivan, 2018). For entirely new

pathogens, a rapid pandemic response would mean having a

generalizable vaccine design strategy for eliciting optimal B

and T cell responses, including knowledge of neutralizing anti-

body epitopes based on the prototypic viruses with shared

phenotypic properties. Another element of pandemic-response

readiness, beyond having interventional products maintained

in a stockpile and knowledge for rapid design, is to have the

physical infrastructure and clinical networks available to conduct

advanced clinical testing. The surge capacity for response could

be in part derived from the complementary activities needed for

preparedness. Sites that utilize molecular tools for surveillance

could become centers for assay and diagnostics development.
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The basic and translational research activities of preparedness

could be turned to the preclinical research needed for product

development and response. Prospective cohorts and networks

established for serosurveys and routine development programs

could pivot to be clinical-trial sites for testing newmedical coun-

termeasures (MCMs).

The complex operational and logistical aspects of delivering

preventive vaccines and therapeutic agents have been revealed

by COVID-19. Establishing supply chains for nucleotides, lipids,

cell-culture media, vials, syringes, and many other necessities

has been challenging. The difficulty of maintaining cold chains

and equitable distribution of products to rural or low-income or

historically disenfranchised populations and many other ele-

ments of managing a pandemic have been brought to the fore

this year. We have also learned that pandemic response requires

a global view. Applying solutions predominantly in high-income

countries (HICs) during a pandemic will not control worldwide

transmission or stop the emergence of variants elsewhere that

may escape otherwise effective MCMs. Instead, there should

be a coordinated global effort to solve regional problems before

they become pandemic threats. This will require a new way of

organizing and managing global resources and would be facili-

tated by establishing technical expertise and manufacturing ca-

pacity in low- and middle-income countries (LMICs). Ideally, we

should improve and expand on themany successful examples of

collaboration aiming to solve international infectious-disease cri-

ses. Such was the case with recent Ebola virus outbreaks, which

culminated in the approval of both preventive and therapeutic

MCMs made possible by closely collaborating with scientific ex-

perts from affected countries. There is clearly mutual benefit for

HICs to support the distribution of resources for surveillance,

product development, and manufacturing. Limited resources

have been directed to this type of approach in the past, in part

because developing MCMs for problems restricted to LMICs

may not have immediate commercial value. However, after

losing tens of trillions of dollars from the global economy during

the last 1.5 years, the cost-benefit analysis for spending a few

billion dollars a year on basic research for pandemic prepared-

ness and for extending the research and development capacity

of LMICs for improved pandemic response has changed.

Fortunately, the advent of new nimbler platform technologies

such as mRNA and rAd have not only been highly effective, but

also made it possible to accelerate manufacturing timelines of

clinical grade vaccines and are compatible with regional

manufacturing. These features can streamline commercial

manufacturing and deployment of MCMs and may be suitable

for establishingmanufacturing sites in LMICs to address regional

diseases. For the United States, there is the opportunity to

strengthen our national emergency response via sustained

funding for pandemic preparedness and increasing national

manufacturing and fill-finish capacity while providing necessary

funding to US agencies that support advanced development of

MCMs, including facilitating advanced market commitments. In

parallel, it is incumbent on the United States and other HICs to

learn from the successes and remaining challenges of the

ongoing pandemic and recognize the opportunity to extend

research and development capacity to LMICs and establish

the global agreements and coordination needed to solve

regional problems before they become pandemic threats.
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Concluding remarks
The sudden emergence of a previously unknown, highly conta-

gious respiratory pathogen as the cause of a global pandemic

necessitated the rapid development and testing of vaccines.

This effort benefited from more than a decade of advances in

vaccine antigen design and new vaccine platform technologies.

The rapid development and high protective efficacy of these

initial COVID-19 vaccines was not based on chance. This suc-

cess was driven both by strategic investments in new vaccine

technologies and by advances in immunogen design, such as

the stabilizing of class I viral fusion proteins in their prefusion

conformation. For COVID-19, this structure-based vaccine

design resulted in levels of neutralizing antibodies that can sur-

pass levels generated by natural COVID-19 infection. In retro-

spect, the road to success highlights the importance of investing

in basic virology and vaccinology research and leveraging the

prototype pathogen approach, having access to nimble

manufacturing platforms ready for mass-scale use, and being

able to rapidly design and launch pivotal efficacy studies with

experienced trialists. The United States and international pub-

lic-health experts now need to analyze lessons learned and insist

on global agreements and commitment to pandemic prepared-

ness, thereby increasing capacity for pandemic response,

including the transfer of technology and manufacturing capa-

bility to LMICs, and intensifying surveillance efforts to identify

potential pathogens and prevent or control future zoonotic

spillover.
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