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Abstract

In this study, multilayer perception neural network (MLPNN) was employed to predict ther-

mal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nano-

tubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on

the application of MLPNN with prey predator algorithm for the prediction of thermal conduc-

tivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to

train the neural networks to find the best models. The best models have the minimal of sum

squared error between the experimental testing data and the corresponding models results.

The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites

model. The predicted artificial neural networks (ANNs) responses were analyzed statistically

using z-test, correlation coefficient, and the error functions for both inclusions. The predicted

ANN responses for PVP electrospun nanocomposite fibers were compared with the experi-

mental data and were found in good agreement.

Introduction

PVP is a water-soluble chemically inert amorphous polymer (-CH2CHC4H6NO-) n made from

the monomer N-vinylpyrrolidone, used chiefly in medicine as a vehicle for drugs. In dry state,

it is a light flaky powder, which readily absorbs up to 40% of its weight in atmospheric water. It

can be used as a binder in many pharmaceutical tablets and capsules. In solution form, it has

excellent wetting properties and quickly form film, which makes it a very good additive to

coatings. That is why; it is used in glue stick, inkjet papers and inks. The chemical structure of

PVP is shown in Fig 1 PVP possess good adhesion, good complexation, and low toxicity, high

solubility in both polar and non-polar solvents biocompatibility, good spinnability and capa-

bility to interact with many hydrophilic materials [1–3]. PVP has a wide range of industrial

applications such as food, cosmetic, pharmaceutical, adhesives, paints, detergents and energy

storage [1,4].
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Fig 1. Chemical structure of PVP.

https://doi.org/10.1371/journal.pone.0183920.g001
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Recently, electrospinning has gained much interest in research community because not

only it can generate polymeric fibers with nano diameter by employing an electrically driven

jet of polymeric solution or melts, but it has the principal advantages of being a very simple

and cost-effective process, compared to conventional fibers forming processes [5].

Electrospun nanofibers with their huge surface areas to volume ratio, about a thousand

times, higher than that of a human hair, have the potential to significantly improve current

technology and find various applications in new areas due to their fascinating properties [5].

Nanofibers possess unique features, such as a nanoscaled dimension in the cross-sectional

area, a macroscopic length on the axis of fibers, high surface area, and a porous structure, and

are generally referred to as ultrafine fibers [6]. Electrospinning is an electrostatically-driven

process that produces fibers in nanometer to micrometer diameters [7]. Specifically, when a

high voltage is applied to polymeric solution or melt, electrostatic repulsion overcomes surface

tension, which repeatedly stretch and split longitudinally into ultrafine fibers [7,8]. If the

molecular cohesion or chain entanglement in the polymeric solution is sufficiently high, the

droplet would not break-up, but continue to stretch thousands of time to form very fine fibers

on the collector screen, which is the primary mechanism for the generation of nanosized fibers

[9,10]. Fig 2 shows a schematic illustration of an electrospinning process.

Fig 2. Schematic view of electrospinning process.

https://doi.org/10.1371/journal.pone.0183920.g002
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In this study, Ni-Zn ferrite and Multiwalled carbon nanotubes (MWCNTs) were incorpo-

rated in PVP matrix to fabricate electrospun nanocomposite fibers. Ni-Zn ferrite is a single-

phase powder having spinel structure. Ni-Zn ferrite is a semi-conductor material. Ni-Zn fer-

rites have nearly three orders of magnitude lower thermal and electrical conductivity values

than MWCNTs. Generally, polymers are considered as non-conductive materials due to their

low conductivities; however, conductive polymeric composites can be fabricated by embed-

ding additives/fillers, such as CNTs, C60, graphene, carbon blacks, as well as indium tin oxide

(ITO), and other metallic and ceramic structured particles/inclusions into the polymeric

matrices [11]. Ni-Zn ferrites possess high thermal conductivity due to the nature and structure

of these particles. These nanoparticles have a higher number of phonons vibrational modes

and higher mean free path, as well due to their crystalline nature [12]. It is well-known that the

thermal conductivity of multiwalled carbon nanotubes (MWCNTs) is 3 to 4 times higher than

many metals such as copper and silver. Carbon nanotubes offer unique properties such as high

strength, lightweight, high thermal and air stability, elasticity, high thermal and electrical con-

ductivities and high aspect ratio. Therefore, they possess tremendous advantages over other

filler materials in composite fabrication. The outstanding properties of carbon nanotubes

make them an ideal filler material for advanced nanocomposite applications.

Artificial neural networks (ANNs) are a mathematical or computational model which is

constructed employing inspiration from the functional aspects of biological neural network

[13–15]. In this study, a neural network approach was used to predict the thermal conductivity

of PVP electrospun nanocomposite fibers as function of weight % of MWCNTs and Ni-Zn fer-

rites. Experiments were performed on PVP nanocomposite fibers. In developing the ANN

model, several configurations were evaluated. Optimal neural network was selected with one

input layer, one hidden layer and one output layer. The networks were trained using prey

predator algorithm (PPA) and then tested with untrained values. PPA is a new metaheuristic

algorithm, introduced by Tilahun and Ong [16]. It is inspired by the interaction between a

predator and prey of animals in the ecosystem [17,18]. PPA Predicted thermal conductivity

values obtained from network were examined statistically and compared with actual values

obtained from experiments. Several error functions were also used to check the goodness of fit

of the models.

Experimental

Materials

PVP (130,000g/mol) and ethanol were purchased from Sigma-Aldrich and used without any

further purification. Multiwalled carbon nanotubes (MWCNTs) with a diameter of 140 (± 30)

nm and a length of 7 (± 2) μm were purchased from Fisher Scientific. Ni0.6Zn0.4Fe2O4 (Ni-Zn

ferrite) nanoparticles (21.5 nm) were prepared using a co-precipitation technique. In this pro-

cess, Ni-, Zn-, and Fe-sulfates (NiSO4, ZnSO4, and Fe2 (SO4)3) were dissolved in deionized

water, and heated to 80˚C with constant stirring at 700 rpm for 2–3 hours. NaOH solution was

added slowly in the solution in order to initiate chemical reaction. After about 2 hours of agita-

tion under magnetic stirrer, the ferrite particles (Ni0.6Zn0.4Fe2O4) were formed and began to

precipitate. After washing with DI water several times, fine ferrite (nanosize) particles were

produced. The powder sample was then dried at room temperature.

Method

Different wt. % of MWCNTs (0%, 1%, 2%, 4% and 8%) and Ni0.6Zn0.4Fe2O4 (0%, 1%, 2%, 4%,

8% and 16%) were separately dispersed in ethanol and sonicated for 30 minutes, and then cal-

culated amount of PVP was added to the solution. The solution was then stirred on a hot plate
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at 60˚C (700 rpm) overnight, to make a homogeneous blend of PVP polymeric solution. The

well-dispersed solution was electrospun to produce consistent electrospun nanocomposite

fibers for the thermal conductivity testing. The polymeric solutions containing different wt. %

of MWCNTs and ferrite particle (Ni0.6Zn0.4Fe2O4) were transferred to a 10 ml plastic syringe

connected to a capillary needle having an inside diameter of 0.5 mm. A platinum electrode

around 0.25 mm diameter was provided at the syringe and connected to a High DC supply.

The applied voltage, pump speed and capillary tip to collector screen distance was maintained

at, 25kV, 1 ml/hr. and 25cm, respectively. The collector screen was grounded. Electrospun

fibers were then collected on a grounded screen and dried in an oven at 60˚C for 6 to 8 hours

to remove all residual solvents. The thermal conductivities of PVP samples with different

weigh percentages of MWCNTs and Ni-Zn ferrites were measured by comparative method.

The experimental procedure and data, has been reported elsewhere [19]. The experimental

arrangement for thermal conductivity testing is depicted in Fig 3.

Artificial neural networks

ANNs are computational models which are constructed to employ inspiration from the func-

tional aspects of biological neural network [20–23]. ANNs are composed of countless neurons

known as processing units. These processing units are generally categorized in a series of layers

such as input, hidden and output layers. Multilayer perception (MLP) is termed as architecture

of ANNs [14]. Several algorithms have been available for training ANNs, prey predator algo-

rithm was found to be the most effective algorithm to be used in this study. The purpose of

this study was to study the effects of nanoinclusions such as Ni-Zn ferrite and MWCNTs on

the thermal conductivity of PVP polymer using ANN modeling and statistical analysis.

Fig 3. Experimental arrangement of thermal conductivity measurement.

https://doi.org/10.1371/journal.pone.0183920.g003
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The structure has three layers; input layer, hidden layers, and output layer. Fig 4 is a struc-

ture of the MLPNN, with one hidden layer. Each neuron possesses three unique characteristics

in the network. MLPNN is termed as the architecture of ANNs. By using input vectors and

corresponding output vectors, it is possible to train a network, so that it can determine a

model to an arbitrary degree of accuracy.

The activation function in the hidden layer is assumed to be the sigmoid function, which

can be given by Eq (1):

Y ¼
1

1þ ex
ð1Þ

There are two important areas in neural network, i.e. optimization and validation. In optimiza-

tion, efforts are directed towards building networks that are efficient and fast. The validation

means that the network need to function correctly. The adaptive neural approach was amena-

ble to rule expression. Note that, learning in a neural network is called training. Training

methods can be applied to the MLPNN parameters in order to improve the performance of

the network. In this study, we have used the sum of squared error (SSE) to test the

Fig 4. A structure of multilayer neural network.

https://doi.org/10.1371/journal.pone.0183920.g004
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performance of the neural networks. It is given by

SEE ¼
X
ðActual output � target outputÞ2 ð2Þ

We have used prey predator algorithm as neural learning algorithm to estimate the parameters

which are the input weights and the output weights.

Actual output ðykÞ ¼
Xm

j¼1

Xn

i¼1

wjk

Xs

k¼1

w0ki
1

1þ e� xj
ð3Þ

where,

N: Number of hidden nouns

M: Number of input data

S: Number of input neurons

K: Number of output neurons

wjk: Input weight which is between the input neuron j and hidden neuron k
w0ki: Output weight which is between the hidden neuron k and hidden neuron i

Prey predator algorithm

Prey predator algorithm is one of the new metaheuristic algorithms for optimization problems

[17]. It has better exploration properties compared to other algorithms, such as particle swarm

optimization algorithm and genetic algorithm. It is inspired by the interaction between a pred-

ator and preys of animals in the ecosystem. Randomly generated solutions were assigned as a

predator and preys depending on their performance on the objective function. A solution with

least performance will be assigned as a predator and the others preys. A prey with better per-

formance in the objective function will be called best prey. After the assignment of predator

and preys, the preys will run away from the predator and follow preys with better performance.

The predator does the exploration by running randomly and chasing the prey with least per-

formance. The best prey in the other hand does only a local search for exploitation purpose.

The main steps of the prey predictor algorithm for training experimental data are as follows

(see Fig 5) [16, 17].

i. Generate random solutions.

ii. Calculate the performance of the solutions in the objective function and assign the solu-

tion with least performance as a predator, the solution with best performance as best

prey and the rest as preys.

iii. Move the predator randomly towards the prey with least performance.

iv. Generate random directions around the best prey and if there is any direction which

increases the performance of the best prey, move the best prey in that direction, other-

wise keep the best prey in its current position.

v. If probability of follow-up is met, then move the preys towards better preys and also with

a local search. If probability of follow-up is not met, then move the preys randomly away

from the predator.

vi. Update the list of preys, best prey and predator.

vii. If a termination criterion is met, then stop else go to step (iii).
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Statistical study

Hypothesis testing

The effects of nanoinclusions on the thermal conductivity of PVP polymers can be examined

by applying statistical hypotheses using z-test and one-way ANOVA. It is assumed that the

nanoinclusions have no effect on the thermal conductivity of PVP polymers which is equiva-

lent to test H0 : �D ¼ 0. The alternate hypothesis Ha:μ1 > μ2 will confirm that the inclusions

are effective and increase the thermal conductivity of PVP polymers. The results infer that, in

each case, z> zcrit and F> Fcrit, hence the null hypothesis can be rejected and concluded that

the inclusion of MWCNTs and Ni-Zn ferrites is effective and increases the thermal conductiv-

ity of PVP polymers. Furthermore, p< 0.05 indicates that the null hypothesis must be rejected.

Fig 5. Pseudo code of PPA for a minimization problem.

https://doi.org/10.1371/journal.pone.0183920.g005
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T-test (Eq 4) is also one of most common statistical tests for testing data [24].

t ¼
r
ffiffiffiffiffiffiffi
1� r2

n� 2

q ð4Þ

Error functions

In addition to the sum of squared error function, which is mentioned in Section 3, the follow-

ing error functions can be used to determine the best fit between experimental and ANN pre-

dicted results.

1. The average relative error function (ARE)

This error function minimizes the fractional error distribution across the entire concentra-

tion range [25]. It is given by:

ARE ¼
100

n

X kexp t � kpred

kexp t

�
�
�
�
�

�
�
�
�
�

ð5Þ

Where kexp t is the experimentally measured thermal conductivity and kpred is the thermal

conductivity predicted by ANN.

2. The sum of the absolute errors (EABS)

This approach is similar to the “ERRSQ” function and it gives a better fit as the magnitude

of the errors increase. It is given by [26]:

EABS ¼
X

kexp t � kpred

�
�
�

�
�
� ð6Þ

3. Nonlinear Chi-square test

This statistical tool is necessary for the best fit of experimental data. The value of chi-square

is given by [24,26]:

w2 ¼
X ðkexp t � kpredÞ

2

kexp t
ð7Þ

4. The hybrid fractional error function (HYBRID)

This function is used to improve ERRSQ fit at low wt. % nanoinclusion concentrations. It

considers both the number of data points and the number of parameters. The expression of

this error function is given by [20]:

HYBRID ¼
100

n � p

X ðkexp t � kpredÞ
2

kexp t
ð8Þ

Results and discussion

In this study, the thermal conductivities of PVP Polymer with different weigh percentages of

MWCNTs and Ni-Zn ferrite were predicted using the neural networks and prey predator algo-

rithm. The architecture of the neural networks which we used is two input neurons- one
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hidden layer with several neurons, and two output neurons. The trial and error method was

employed to select the best number of the hidden neurons to improve the performance of the

network. For that, we used the prey predator algorithm in the training process to determine

the input weights and output weights to minimize the error of the neural networks. The con-

sidered PPA applied in this study has 100 local search directions, with 120 solutions and 9

predators. The MATLAB software has been used to implement the PPA and ANNs. Once

trained, the neural network predicts the output values from given input values, and therefore

acts as a “prediction model”. To train the neural network, we used 60% data as training data.

PPA is executed 50 times with 500 iterations in order to find best model that has minimum

error. As mentioned above, the error is the difference between the actual values and the pre-

dicted values in training data.

In the first experiment, we trained the neural network with PVP Polymer data (wt. % of

MWCNTs was used as input data and thermal conductivity as output data). The best conver-

gence speed of PPA in terms of SSE in MLPNN is depicted in Fig 6 with SSE = 0.0029. Fig 7

shows the thermal conductivity of PVP fibers (actual and ANN data) incorporated with differ-

ent wt. % of MWCNTs. In these experiments, 0, 2, 4 and 8wt. % of MWCNTs were added in

the PVP polymeric matrices prior to the electrospinning process. MWCNTs have excellent

thermal (1500–3000 W/m.˚K) and electrical (104 S/cm) conductivity values; however, most of

the polymers are thermally and electrically insulators [19,22,27]. The experimental results indi-

cated that the addition of MWCNTs to the polymer matrices showed a significant increase in

the thermal conductivity values of PVP nanocomposite fibers. The test results revealed that the

thermal conductivity was increased from 0.105 to 0.12 W/m˚K when the concentration was

increased from 0% to 8% of MWCNTs. After the 8% MWCNTs in PVP, the electrospinning

process was drastically deteriorated, due to high viscosity of PVP polymeric solution. As is

seen, the overall thermal conductivities of the nanocomposite fibers are still at lower level. The

Fig 6. Best performance of prey predator algorithm in terms of sum of squared error for PVP with different wt. % (MWCNTs)

SSE = 0.0029.

https://doi.org/10.1371/journal.pone.0183920.g006
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reason for this low level of increase in thermal conductivity may be the interfacial resistance

among MWCNTS, air packets in the fiber film, and interfacial resistance between polymeric

chains and the surfaces of MWCNTs. The literature reviews showed that the thermal conduc-

tivity of MWCNTs/composite fibers depends upon the characteristic of nanotubes, their align-

ment, and dispersion techniques. The other possible reason for this low increase in the

thermal conductivity is the amorphous nature of PVP polymer. The crystalline polymers gen-

erally have high thermal conductivity than amorphous polymers.

To examine the untrained experimental PVP Polymer data (wt. % of MWCNTs) (testing

data) with the corresponding predicted model values, several statistical tests and error func-

tions are available. The linear correlation coefficient R is a numerical measure of the strength

of the relationship between two variables representing quantitative data. We used the linear

correlation coefficient to test the relation between testing data with the corresponding of the

ANN’ model results. The p-value (or probability value) is the probability of getting a value of

the test statistic that is at least as extreme as the one representing the sample data, if the claim

is true (whether there is correlation coefficient R). If the computed p-value is less than or equal

to the significance level, it concludes that there is a linear correlation. Otherwise, there is no

sufficient evidence to support the conclusion of a linear correlation. In addition, |R|> critical

value = 0.811, concludes that there is sufficient evidence to support the claim of a linear

correlation.

With correlation coefficient R = 0.96< critical value of R = 0.811, see Fig 8, n = 25 (testing

samples size), α = 0.05 (significance level), we found that the t-value = 16.44, degree of free-

dom = 23, and then p-value is less than 0.00001[24]. So, the p-value is less than the significance

level of 0.05. Accordingly, we conclude that there is sufficient evidence to support the claim of

a linear correlation between the testing data and the corresponding of the ANN’ model results.

In addition, the sum of squared error of testing samples with the predicted values is 4.68E-04.

Accordingly, the ANN’s predictions can be used successfully to represent the PVP Polymer

data with different wt. % (MWCNTs).

Fig 7. All values of PVP polymer data (wt. % of MWCNTs) with the corresponding predicted model values.

https://doi.org/10.1371/journal.pone.0183920.g007
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We repeated the same experiment with PVP data having different wt. % of Ni-Zn ferrites as

input data and the thermal conductivity as output data and found the best model with mini-

mum error, with the minimal SSE = 0.00199 (Fig 9). We found that the best model has 2 input

neurons-8 hidden neurons- 2 output neurons. Fig 10 presents all experimental values of PVP

Polymer data Wt. % (Ni-Zn Ferrites) with the corresponding predicted model values. The

parameters of the best models in both cases are listed in Table 1.

Fig 10 shows the thermal conductivities of PVP fibers incorporated with different wt. % of

Ni-Zn ferrite nanoparticles. No significant improvement in thermal conductivity of PVP

nanocomposite fibers was noticed. Initially, it was expected that the filling of polymer PVP

with ferrites would considerably enhance their thermal conductivity, but the results revealed

that the thermal conductivity was increased slightly compared to the MWCNTs based fibers.

Ni-Zn Ferrite has nearly three orders of magnitude lower thermal and electrical conductivity

values than MWCNTs, which could be the reason of having lower thermal conductivity in

PVP nanocomposite fibers. The thermal conductivity of semi-crystalline polymer increases

with crystallinity. PVP is an amorphous polymer and in amorphous polymer the mean free

path is very small due to the phonon scattering caused by a number of defects in the amor-

phous structure, resulting in low values of a thermal conductivity [23,27–30].

With R = 0.92< critical value of R = 0.811 (Fig 11), n = 28 (testing samples size), α = 0.05

(significance level), we found that the t-value = 11.969, degree of freedom = 26, and then p-val-

ues is less than 0.00001. So, the p-value is less than the significance level of 0.05.

Accordingly, we conclude that there is sufficient evidence to support the claim of a linear

correlation between the testing data and the corresponding of the ANN’ model results.

Fig 8. scatter plot of the testing data with the corresponding of the ANN’ model results, with (R = 0.96,

and SSE = 4.68E-04).

https://doi.org/10.1371/journal.pone.0183920.g008
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Fig 9. Best performance of prey predator algorithm in terms of sum of squared error for PVP with different Wt. %

(NiZn Ferrites) SSE = 0.00199.

https://doi.org/10.1371/journal.pone.0183920.g009

Fig 10. Experimental values of PVP polymer data Wt. % (NiZn Ferrites) with the corresponding predicted model

values.

https://doi.org/10.1371/journal.pone.0183920.g010
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Moreover, the ANN model is used successfully to represent the PVP with different Wt. % (Ni-

Zn Ferrites).

The results of the error functions are reported in Table 2 for each nanoinclusion. The com-

parison of error function reveals that ANN predictions are much better for Ni-Zn Ferrites

than MWCNTs. In addition, the results of z-test and one-way ANOVA are reported in Tables

3 and 4 respectively for both nanoinclusions. The results infer that, in each case, z> zcrit and
F> Fcrit, hence the null hypothesis can be rejected and concluded that the inclusion of

Table 1. The model’ parameters for PVP with different wt. % of MWCNTs and wt. % of Ni-Zn ferrites.

Model

parameters

PVP with

MWCNTs

Model

parameters

PVP with

MWCNTs

w011 3.21E-02 w11 7.86E-02

w021 1.88E-01 w12 5.17E-01

w031 6.56E-01 w13 1.24E-01

w041 -1.03E-01 w14 6.51E-01

w051 7.29E-01 w15 -1.40E-01

w061 4.03E-01 w16 1.38E-01

Bais 0 w_bais 0

https://doi.org/10.1371/journal.pone.0183920.t001

Fig 11. scatter plot of the testing data with the corresponding of the ANN’ model results, with

(R = 0.92, and SSE = 7.19E-05).

https://doi.org/10.1371/journal.pone.0183920.g011
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MWCNTs and Ni-Zn ferrites is effective and increases the thermal conductivity of PVP poly-

mers. Furthermore, p< 0.05 indicates that there is a linear correlation.

Conclusions

Prey predator algorithm was used to build neural networks models. The best models have the

minimal errors. The neural networks’ models are non-liner regression models. Multilayer per-

ception neural network (MLPNN) models was employed successfully to predict the thermal

conductivity of PVP Polymer with MWCNTs and Ni-Zn ferrites and the predictions have

been validated statistically using statistic tests and error functions. Nonlinear regression analy-

sis was used to minimize the error distribution between the experimental data and the neural

networks data. The computed p-value is less than the significance level, and the computed cor-

relation coefficients > critical value = 0.811; conclude that there is a strong linear correlation

between the experimental data and the neural networks data. The increase in the thermal con-

ductivity of PVP polymer incorporated with MWCNTs or Ni-Zn ferrites was not found as per

our expectations. The predicted ANN responses for PVP polymer were compared with the

experimental data and were found in good agreement.

Table 2. Results of error functions for each inclusion.

Error Functions PVP Polymers

MWCNTs Ni-Zn Ferrites

ARE 3.75E-01 8.14E-01

EABS 0.01881 0.03849

Chi-square 1.12E-04 3.74E-04

HYBRID 2.48E-04 6.14E-04

https://doi.org/10.1371/journal.pone.0183920.t002

Table 3. Results of z-test.

wt%. MWCNTs Experimental

k

wt%. Ni-Zn Ferrites Experimental

k

Mean 3.698 0.108507246 7.212 0.102

Variance 6.759 1.23124E-05 23 9.03E-06

Observations 69 69 79 79

Hypothesized Mean Difference 0 0 0 0

Z-value 11.468 13.178

P(Z< = z) one-tail 0 0

Z Critical one-tail 1.645 1.645

P(Z< = z) two-tail 0 0

Z Critical two-tail 1.960 1.960

https://doi.org/10.1371/journal.pone.0183920.t003

Table 4. ANOVA results for both nanoinclusions.

Source of Variation PVP Polymers

MWCNTs Ni-Zn Ferrites

F 131.53 173.54

p-value 1.01E-21 4.06E-27

Fcrit 3.91 3.90

https://doi.org/10.1371/journal.pone.0183920.t004
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