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Simple Summary: Despite advances in cancer research in recent years, efficient predictive biomarkers
of tumor progression and metastatic spread for ovarian cancer are still missing. Therefore, we
critically address recent findings in the field of non-coding RNAs (microRNAs and long non-coding
RNAs) and DNA methylation in ovarian cancer patients as promising novel biomarkers of ovarian
cancer progression.

Abstract: Ovarian cancer is one of the most common causes of death among gynecological malignan-
cies. Molecular changes occurring in the primary tumor lead to metastatic spread into the peritoneum
and the formation of distant metastases. Identification of these changes helps to reveal the nature
of metastases development and decipher early biomarkers of prognosis and disease progression.
Comparing differences in gene expression profiles between primary tumors and metastases, together
with disclosing their epigenetic regulation, provides interesting associations with progression and
metastasizing. Regulatory elements from the non-coding RNA families such as microRNAs and
long non-coding RNAs seem to participate in these processes and represent potential molecular
biomarkers of patient prognosis. Progress in therapy individualization and its proper targeting also
rely upon a better understanding of interactions among the above-listed factors. This review aims to
summarize currently available findings of microRNAs and long non-coding RNAs linked with tumor
progression and metastatic process in ovarian cancer. These biomolecules provide promising tools
for monitoring the patient’s response to treatment, and further they serve as potential therapeutic
targets of this deadly disease.
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1. Introduction

Ovarian cancer (OC) is a complex heterogeneous malignant disease and the sec-
ond cause of female cancer deaths attributed to gynecological tumors. According to
GLOBOCAN 2018, OC is the eighth most common cancer (both in incidence and mortality)
worldwide among women [1]. Tumors of epithelial origin represent the most frequently
diagnosed OC type (90%) and comprise type I (endometrioid, mucinous, clear cell, and
low-grade serous ovarian carcinomas) and type II that includes carcinosarcomas, undiffer-
entiated carcinomas, and high-grade serous ovarian carcinomas (HGSCs), accounting for
70% of OC cases [2,3]. The disease is usually diagnosed at an advanced stage (FIGO III and
IV) when the 5-year survival rate is approximately 20–45%, while it is 40–70% for stage I.
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While localized disease exhibits a 5-year survival rate of 80%, the advanced disease has a
5-year survival rate of only 30% [4,5].

Most of the OC patients undergo chemotherapy combining platinum derivatives
(carboplatin and cisplatin) and taxanes (paclitaxel and docetaxel) [6]. New therapeutic
approaches have been introduced to the therapy of OC recently, e.g., poly(ADP-ribose) poly-
merase inhibitors (PARPi), such as olaparib, or antiangiogenic agents such as bevacizumab
or pazopanib [7,8].

Nowadays, among the main diagnostic tools, we count physical examination, serum
level of oncomarker CA125 (or HE4 in some cases), computed tomography, and transvagi-
nal ultrasonography [9,10]. The lack of reliable biomarkers for early OC detection enables
diagnosis only due to non-specific symptoms when the disease is already in progress. Late
diagnosis at advanced stages of OC is related to chemotherapy resistance and the develop-
ment of metastases. Progression of OC and metastatic spread involves the dissemination
of tumor cells from primary tumors.

Molecular characteristics of OC subtypes, based on genetic variability, have been
described a few years ago. Rojas et al. summarized specific gene mutation profiles for Type
I OC (mutations in the MAPK pathway—KRAS, BRAF, PTEN, CTNNB1, etc.) and Type II
OC (TP53, BRCA1, BRCA2, KIT, and EGFR) that could represent novel therapeutic targets or
biomarkers of therapeutic efficacy [3]. Clinicopathological and molecular characteristics of
Type I and Type II OC subtypes correspond with prognosis and response to treatment [11].
As recently overviewed, DNA repair machinery also plays an important role in the OC
development risk, prognosis, and therapeutic outcome [12].

Although the importance of genetic variation and mRNA expression profiles was
already well characterized [3,10], the roles of regulatory elements as non-coding RNAs
(ncRNAs) and epigenetic regulation (including DNA methylation and histone or chromatin
post-translational modifications) became recently broadly studied thanks to the advent of
new experimental techniques. Over 98% of the human transcriptome lacks protein-coding
capacity. Despite this fact, the non-protein-coding transcriptome has an important role
in cellular processes, including chromatin remodeling, transcription, post-transcriptional
modifications, and signal transduction [13]. Non-coding RNAs, referred to as ncRNAs, are
a part of networks influencing cell proliferation, invasion, migration, EMT, angiogenesis,
DNA repair, cell signaling, and, finally, diverse physiological programs with developmental
and oncological contexts. ncRNAs (miRNAs, circular RNAs-circRNAs, siRNAs, piRNAs,
and lncRNAs) regulate the expression of protein-coding genes or interact with other species
of ncRNA and regulate their stability. ncRNA may interact with other non-coding elements
through mechanisms, including sequestration. Figure 1 represents a simplified scheme of
general ncRNAs functional properties.

In this review, we focus our attention on regulatory elements belonging to ncRNAs
(particularly microRNA (miRNAs) and long non-coding RNAs (lncRNAs)) and their
associations with the progression and development of OC metastases investigated using
both in vitro models and patient tumor tissue specimens.
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Figure 1. Simplified overview of lncRNA and miRNA functional properties. This figure shows 
possible interacting molecular determinants for lncRNA and miRNA as well as a wide range of 
cellular processes influenced by lncRNA/miRNA interactions with target binding partners. 
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The metastatic process consists of the following steps: (i) separation of tumor cells 
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evasion from the circulatory system and formation of the new tumor loci; and (iv) prolif-
eration and tumor growth of metastatic cells in a new location. OC metastases disseminate 
throughout the body via peritoneal, hematogenous, and lymphatic routes. Most meta-
static lesions affect the peritoneum/omentum or abdominal organs by the most prevalent 
peritoneal route. Tumor cells also often infiltrate pelvic lymphatic nodes with subsequent 
metastatic spread to the liver or lungs (Figure 2). Essential steps of the metastatic process 
have been in detail reviewed in several reviews, see, for example, in [14–16]. In a study by 
Deng et al. on 1481 OC patients, the liver was identified as the most common distant site 
of metastases development, followed by lymph nodes, lungs, bones, and brain [17]. Mo-
lecular determinants of individual steps in the metastatic development and spread are 
linked with the following genes. First step—metastasis initiation of transcoelomic route is 
defined by loss of cell adhesion, characterized by key genes (CDH1, CDH2, and UPAR) 
[18,19], epithelial–mesenchymal transition (EMT) (ZEB1, ZEB2, SNAI1, and SNAI2) [20], 
migration (UPA) [21], and spheroid formation (HGF) [22]. The next step is metastasis pro-
gression characterized by dissemination in the peritoneal cavity (VEGFA, MMP2, MMP9, 
CXCRL4, CXCL12, and CD44) [23–25], resistance to anoikis (RAB25) [26], and evading 
apoptosis/immunity. The last step—metastasis spread, starts with attachment to the peri-
toneal surface (MMP2, MMP9, MMP14, CDH1, and LPA) [27–29], formation of metastases 
(UPAR and SPINK13) [30], and subsequent invasion (DNMT1, MAPK1, MAPK3, and 
ETS1) [31,32], and angiogenesis (VEGFA, IL1, and IL6) [33,34]. The hematogenous route of 
metastases development is more prevalent than formerly estimated [35]. 

Figure 1. Simplified overview of lncRNA and miRNA functional properties. This figure shows
possible interacting molecular determinants for lncRNA and miRNA as well as a wide range of
cellular processes influenced by lncRNA/miRNA interactions with target binding partners.

2. Progression of Ovarian Carcinoma and Development of Metastases

The metastatic process consists of the following steps: (i) separation of tumor cells
from the primary tumor site; (ii) escape of tumor cells to the circulatory system (blood,
lymph); (iii) adhesion of tumor cells to the endothelium of a vessel wall, followed by
their evasion from the circulatory system and formation of the new tumor loci; and (iv)
proliferation and tumor growth of metastatic cells in a new location. OC metastases
disseminate throughout the body via peritoneal, hematogenous, and lymphatic routes.
Most metastatic lesions affect the peritoneum/omentum or abdominal organs by the
most prevalent peritoneal route. Tumor cells also often infiltrate pelvic lymphatic nodes
with subsequent metastatic spread to the liver or lungs (Figure 2). Essential steps of
the metastatic process have been in detail reviewed in several reviews, see, for example,
in [14–16]. In a study by Deng et al. on 1481 OC patients, the liver was identified as
the most common distant site of metastases development, followed by lymph nodes,
lungs, bones, and brain [17]. Molecular determinants of individual steps in the metastatic
development and spread are linked with the following genes. First step—metastasis
initiation of transcoelomic route is defined by loss of cell adhesion, characterized by
key genes (CDH1, CDH2, and UPAR) [18,19], epithelial–mesenchymal transition (EMT)
(ZEB1, ZEB2, SNAI1, and SNAI2) [20], migration (UPA) [21], and spheroid formation
(HGF) [22]. The next step is metastasis progression characterized by dissemination in the
peritoneal cavity (VEGFA, MMP2, MMP9, CXCRL4, CXCL12, and CD44) [23–25], resistance
to anoikis (RAB25) [26], and evading apoptosis/immunity. The last step—metastasis
spread, starts with attachment to the peritoneal surface (MMP2, MMP9, MMP14, CDH1,
and LPA) [27–29], formation of metastases (UPAR and SPINK13) [30], and subsequent
invasion (DNMT1, MAPK1, MAPK3, and ETS1) [31,32], and angiogenesis (VEGFA, IL1, and
IL6) [33,34]. The hematogenous route of metastases development is more prevalent than
formerly estimated [35].
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Figure 2. Metastatic routes of ovarian cancer (OC) metastasis. This scheme shows different metastatic
scenarios in OC. The transcoelomic/peritoneal route is the main route in OC metastases development,
especially into the peritoneum/omentum. During the subsequent progression, metastases in distant
lymph nodes and organs (lungs or liver) are developed.

Adherent epithelial cells are transformed into invasive mesenchymal cells during
EMT, which leads to the separation and spread of tumor cells from primary tumors. In
general, three types of EMT are recognized: type I—embryogenic EMT, type II—EMT
associated with inflammation and tissue damage, and type III—EMT involved in tumor
progression [36]. Deregulation of E-cadherin, N-cadherin, and vimentin expression are
characteristic EMT markers. Vimentin, encoded by the VIM gene, is a filament protein with
structural functions and vital importance for cell migration and proliferation [37,38], and
cadherins are transmembrane proteins that mediate cell–cell adhesion and play a crucial
role in tissue morphogenesis and homeostasis [39]. Expressions of the above EMT markers
are regulated by transcription factors from ZEB (ZEB1 and ZEB2), SNAIL (SNAI1 and
SNAI2), and TWIST families [40–43]. Expression of these factors, and other EMT markers,
is regulated by epigenetic modifications (DNA methylation and histone modifications) and
by non-coding transcript elements [44–49].

The tumor microenvironment strongly impacts the metastatic process. It concerns
particularly cancer-associated fibroblasts (CAFs), which produce several growth factors,
e.g., EGF (epidermal growth factor) and HFG (hepatocyte growth factor) that promote
tumor growth and progression [22,50]. Vascular endothelial growth factor (VEGF) is a
cytokine essential for angiogenesis and lymphangiogenesis. The interaction between tumor
and stromal cells can result in an increased VEGF expression [51,52]. Matrix metallopro-
teinases (MMPs) [53] and hypoxia-inducing factor-1 (HIF-1), inducing EMT in a hypoxic
tumor environment, represent additional important factors in metastasis [54–56]. In the
current chapter, we briefly described individual steps of EMT and thus metastases devel-
opment. Many other molecules/signaling pathways are involved in this complex and
crucial process.

An increasing number of molecular factors are is important for tumor progression, and
the metastatic process is currently subject to discovery and further validation. Among these
factors, regulatory non-coding elements, as microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs), seem to arise as potential biomarkers of metastases development.
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3. The Role of Non-Protein-Coding Transcripts and Their Role in the Development of
Ovarian Cancer Metastasis

ncRNAs play substantial roles in the regulation of gene expression at both transcrip-
tional and post-transcriptional levels. Due to this large functional importance, ncRNAs
represent a promising potential as clinically relevant cancer biomarkers and therapeutic
targets in OC [13,57–60]. The role of ncRNAs in the regulation of the EMT process seems
especially crucial in the context of OC progression and the development of metastases.
miRNAs, particularly the miR-200 family—miR-101 [45,61], miR-219-5p [62], and miR-
506 [63]—were demonstrated as effective regulators of EMT in OC through targeting and
subsequent regulation of EMT-transcription factors (SNAIL, TWIST, and ZEB families).
The roles of other non-coding entities such as, e.g., lncRNAs, are not yet fully understood
due to publication of the first data in the last few years. lncARSR and CCAT1 seem to
regulate the expression of the ZEB family [64,65]; HOXA11-AS and CCAT2 rule the TWIST
family [46,47]; and PTAF, CCAT2, and MALAT1 the SNAIL family [66,67]. The schematic
representation of ncRNAs implicated in the OC EMT process is in Figure 3. Taken to-
gether, out of all the ncRNA elements recognized to date that are important for the whole
process of OC progression and metastases development, miRNAs and lncRNAs are the
most attractive.
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Figure 3. Schematic representation of ncRNA influencing epithelial–mesenchymal transition (EMT)
process in OC. This chart shows ncRNAs elements—miRNAs and lncRNAs, which associate with
EMT regulation. During EMT, adherent epithelial cells are changed to highly motile mesenchymal
cells, capable of invading other places in human body. Few key molecules, i.e., E-cadherin, N-
cadherin, and vimentin, whose expression is regulated by miRNAs and lncRNAs, characterize this
process. Several ncRNAs regulate/interact with EMT-transcription factors (Snail, Twist, and ZEB
families) and thus affect the EMT process. Other key players in EMT regulated by ncRNA are
metalloproteinases (MMPs) and TGF-β.

3.1. microRNA (miRNA) in Ovarian Cancer Progression

miRNAs are 19–25-nucleotide-long RNAs interacting with target mRNA based on
sequence complementarity between them. The binding of miRNAs to their target gene
sequences in the 3′-untranslated region (3′UTR) leads to the mRNA degradation or re-
pression of mRNA translation (reviewed in [68]). miRNAs are functionally involved in
proliferation pathways, apoptosis machinery, EMT process, or angiogenesis, and their
expression is often deregulated in a variety of diseases, including cancer [68–71]. In cancer,
miRNAs can act as tumor suppressors (e.g., miR-1299 and miR-506) or oncogenes (e.g.,
miR-125b), based on their binding partners [63,70,72].

More specifically, the well-known miRNA-200 family consisting of miR-200a, miR-
200b, miR-200c, miR-141, and miR-429 regulates the EMT process, critical for OC progres-
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sion via governing the expression of EMT transcription factors such as ZEB1, ZEB2, and
EMT markers; E-cadherin; and vimentin in ovarian cancer cells [45,73,74]. Upregulation of
miR-200a led to the silencing of important tumor suppressor gene PTEN in the OVCAR3
cell line in vitro [75]. Additionally, miR-506, interacting with transcription factors SNAI1
(indirectly) and SNAI2 (directly) or vimentin and N-cadherin, led to the inhibition of the
EMT process. On the other hand, the interaction of miR-506 with TGF-β, another regulator
of the EMT process, resulted in a TGF-β-induced EMT [63,76]. Another miRNA with a
possible role in EMT regulation, miR-122, was related to expression changes of major EMT
markers, i.e., E-cadherin, vimentin, and metalloproteinases (MMP2 and MMP14) [77].

Only a few studies comparing global miRNA expression profiles (miRNOM) of pri-
mary OC tumors and metastatic tissues are available. The expression profiles of overall
miRNOM using microarray technologies revealed cassette of upregulated (miR-210, miR-
182, miR-200c, miR-23a, and let-7f) and downregulated (miR-145 and miR-214) miRNAs
in OC effusions in comparison to OC primary tumors [73]. Another study, comparing
nine pairs of primary serous OC tumors and omental metastases, reported seventeen
differentially expressed miRNAs. Particularly miR-21, miR-150, and miR-146a were upreg-
ulated in omental metastases, suggesting the role in their metastases and chemotherapy
resistance [78]. Using RNA-seq technology, Bachmayer-Heyda et al. [79] identified a profile
of other 11 miRNAs associated with the metastatic spread of the HGSC OC tumor sub-
type (miR-706, miR-804, miR-1003, miR-1254, miR-1628, miR-1927, miR-2353, miR-2503,
miR-2916, miR-3475, and miR-3784). Nevertheless, most studies focused on individual
miRNAs, as summarized in Table 1. Concerning OC blood samples, miRNAs belong
to the most studied entities in plasma or serum samples of patients. A higher level of
miR-590-3p in OC plasma samples compared to control ones was observed [80], and lower
expression of miR-145 in serum samples from OC patients (n = 70) was associated with
disease progression [81]. Zuberi et al. observed an association between high expression of
miR-125b in serum and the presence of OC lymph node and distant metastases [82]. Thus,
based on the recently deciphered role of miRNAs in OC progression, future research in this
direction is highly encouraged.

The role of miRNAs is further modulated by genetic variability, e.g., single nucleotide
polymorphisms (SNPs) in miRNAs or target genes, and especially, changes in miRNA
binding sites, which may have a pathological impact. SNP in the 3′UTR region of the
MDM4 gene (rs4245736, A > C) results in the creation of a new binding site for miR-191,
and the presence of a C allele reduces the risk of OC development and suppresses its
progression [83]. Another SNP rs11614913 (CC genotype) in miR-196a-2 increases the
risk of OC and promotes cell migration and invasion [84]. Nevertheless, in a large study
conducted on 3973 patients with invasive OC and 3276 control subjects, the authors have
selected previously identified SNPs with OC risk association. The authors studied 226 SNPs
localized within 15 kb of miRNAs processing genes DDX20, DROSHA, GEMIN4, or XPO5
and 23 SNPs in binding sites of miRNA targets (CAV1, COL18A1, E2F2, IL1R1, KRAS, and
UGT2A3). No association between these SNPs and OC risk was observed after adjustment
for European ancestry. This study shows the need for result validation on large study
cohorts, not only in genetic variability studies [85]. As shown above, genetic variability in
sequences crucial for the function of particular miRNAs should also be considered in the
study of OC development and progression.

In recent years, functional in vitro and in vivo studies suggested a function of miRNAs
in OC progression. The investigators observed the effects of particular miRNAs on the
proliferation, migration, and invasive potential of tumor cells. For example, overexpression
of miR-542-3p, miR-219-5p, miR-532, and miR-3064 suppressed the proliferation of OC
cell line models in vitro [62,86–88]. The expression of miRNAs seems to be associated
with cell migration. For example, overexpression of miR-222 and miR-205 enhances cell
migration [89,90]. miRNAs can modulate the invasive behavior of OC cells, e.g., miR-106
inhibition suppresses cells invasion, miR-376a overexpression stimulates cell invasion, and,
on the other hand, miR-145 overexpression suppresses cell invasion [91–93]. More miRNAs
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with an implicated role in OC are summarized in Table 1, including observed deregulation
and predicted targets. More detailed information on miRNAs and their possible functions
and roles in cellular processes, such as cancer cell proliferation, migration, and invasion,
including experimental models and interactions with other molecules and target genes, is
summarized in Table S1.

Table 1. miRNAs and their implication in ovarian cancer progression.

Experimental Model

miRNA Patient
Samples

Cell Lines,
Xenografts Deregulation Target Reference

miR-9 3 3 ↓ NF-κB * [94]
miR-23b 3 3 ↓ RUNX2 * [95]

miR-30b-3p - 3 ↓ E-cadherin, β-catenin, vimentin **, CTHRC1 * [44]
miR-101 - 3 - ZEB1, ZEB2 * [61]

miR-106a 3 3 ↑ PTEN ** [92]
miR-106b 3 3 ↓ RhoC ** [96]
miR-122 - 3 - P4HA1 * [77]
miR-138 3 3 ↓ SOX4, HIF-1α * [97]
miR-141 3 3 ↑ KLF12 * [98]
miR-145 3 3 ↓ MTDH * [93]

miR-193b 3 3 ↓ uPA * [31]
miR-199a-5p - 3 ↓ NF-κB1 * [99]

miR-200a 3 3 ↑ PTEN * [75]
miR-200c - 3 ↓ ZEB1, vimentin, E-cadherin ** [45]

- 3 - HOTAIR, Snail, E-cadherin ** [100]
miR-204 3 3 - BDNF * [101]
miR-205 3 3 ↑ SMAD4, PTEN * [90]

miR-219-5p - 3 - HMGA2 * [87]
3 3 ↓ Twist * [62]

miR-222 3 3 ↑ PTEN * [89]
miR-337-3p 3 3 ↓ PIK3CA, PIK3CB * [102]
miR-376a 3 3 ↑ KLF15, Caspase-8 * [91]
miR-506 3 3 ↑ SNAIL2 * [63]
miR-532 3 3 ↓ hTERT * [88]

miR-3064
miR-542-3p 3 3 ↓ CDK14 * [86]

miR-718 3 3 ↓ VEGF * [103]
miR-1299 3 3 ↓ TUG1, NOTCH3 * [70]
miR-4443 3 - ↓ -

miR-5159-3p [104]

* target (connection) predicted by bioinformatics tools like TargetScan, DIANA-MicroT-CDS, miRWALK, miRDB, RNA22, PicTar, mi-
croRNA.org, PITA, miRNAnda, Starbase, etc. and/or dual-luciferase assay; ** connection predicted by expression correlation, - not
part of the study; ↓ expression downregulation between compared specimens; ↑ expression upregulation between compared specimens;
3 included in the study.

3.2. Long Non-Coding RNA (lncRNA) in Ovarian Cancer Progression

lncRNAs, defined as transcripts longer than 200 nucleotides without protein-coding
function, also have predominantly regulatory functions and exhibit highly tissue- and
organ-specific expression patterns. The main mechanisms of function include regulation
of transcription by interaction with coding and non-coding RNAs, proteins, chromatin,
or recruitment of transcription factors. Moreover, lncRNAs affect mRNA stability, splic-
ing, and translation processes. By interaction with protein partners, they influence their
function and localization [105–109]. Besides interactions with protein-coding genes or pro-
teins, lncRNAs interact with miRNAs as competing endogenous RNA (ceRNA) or “RNA
sponges” and thus impose their regulatory effect on specific targets [110]. The regulatory
function of lncRNAs influences many cellular processes such as proliferation, cell growth,
viability, immortality or angiogenesis, and metastatic process.



Cancers 2021, 13, 1839 8 of 24

Cancer progression markers of OC, including lncRNAs, are identified mainly by com-
paring their expression in primary ovarian tumors and non-tumor tissues (summarized
in Table 2, Table S2). Only a few studies have compared lncRNA expression profiles
in primary OC tumors and metastatic tissues. The authors observed higher expression
of CTD-2020K17.1 and LEF-AS1 and lower MEG3 expression in metastatic tissues of
OC compared to primary tumor tissue. Knockdown of LEF1-AS1 in vitro suppressed
the proliferation, migration, and invasive potential of SKOV3, OVCAR3 ovarian cancer
cells [111–113]. The lncRNA profile, estimated by microarray analysis of expression of
4956 lncRNAs, revealed 583 upregulated and 578 downregulated lncRNAs between pri-
mary parental SKOV3 and metastatic (SKOV3.ip1EOC) sublines. The following seven
lncRNAs were validated: MALAT1, H19, UCA1, CCAT1, LOC645249, LOC100128881,
and LOC100292680 [114]. These lncRNAs could exert a role in OC metastatic progression.
lncRNAs RP11-284N8.3.1 and AC104699.1 in the TCGA-OV dataset were differentially
expressed during malignant OC progression, and functional analysis suggested their role
in the tumor microenvironment and immune system [115].

In a search for new noninvasive tumor biomarkers, lncRNAs have also been studied
in plasma or serum samples of OC patients. Expression of MALAT1 in plasma was
significantly increased in metastatic OC patients compared with non-metastatic and healthy
control samples. Moreover, OC patients with increased plasma MALAT1 had a poorer
disease-free survival time [116]. lncRNA LINK-A was upregulated in OC tissue and serum
samples compared to control ones. Besides, OC patients with metastases had a higher
LINK-A expression in serum than patients without metastases [117]. The next study
showed higher plasma LINK-A expression in OC patients with distant metastases [118].
Identification of new biomarkers in serum/plasma samples is also a part of clinical trials at
present, e.g., the clinical trial NCT03738319 focused on ncRNA profile in exosomes of OC
patients, last updated status showing patients recruitment [119].

The variability in genes encoding lncRNAs also plays an important role in the function
of these non-coding elements. GWAS of approximately 18,000 invasive OC and 34,000 con-
trol samples of European ancestry revealed that invasive OC behavior was associated with
5294 SNPs, of which 1464 SNPs were mapped to 53 lncRNA genes [120]. Among particular
genetic variants, SNP rs17427875 (minor T allele) in lncRNA HOXA11-AS1 is associated
with reduced tumor growth in an in vivo mouse xenograft model based on the OC C13
cell line [121]. An association of the SNP rs920778 in HOTAIR with OC progression was
reported in a case–control study of 329 OC patients and 680 controls from the Chinese
population [122]. In this population, associations of other SNPs in HOTAIR (rs4759314
and 7958904) with a higher risk of OC progression were observed in 1000 OC patients and
1000 controls [123], demonstrating the potential of lncRNA genetic variability for the OC
risk prediction.

The majority of studies on OC metastatic progression address the effect of lncRNAs on
the EMT process through their interaction with specific EMT transcription factors and other
molecules representing EMT. Association between the expression of EMT-related genes
(specifically MMP2 and MMP9) and lncRNAs MALAT1 (study performed on OC tumor
tissue samples (n = 64) and reference tissue (n = 30)) and TP73-AS1 (study done on 60 pairs
of OC tumor/control tissue) was observed. For MALAT1, it was the downregulation of
MMP2 and MMP9, while for TP73-AS1, the effect was opposite [66,124]. lncRNA CCAT2
was associated with EMT inhibition and regulation of expression of EMT markers, namely,
E-/N-cadherin and/or vimentin [46]. Expression of lncRNA HOXA11-AS1 is associated
with downregulation of expression of EMT-related markers MMP2, MMP9, VEGF, N-
cadherin, β-catenin, and vimentin and with upregulation of E-cadherin [47]. lncRNAs
ANRIL and UCA1 downregulated expression of MMPs [125,126], and lncRNA AP000695.4
regulated transcription factor ZEB1 [127].

lncRNAs are thought to indirectly change the expression of EMT-related genes by
interacting with miRNAs (as ceRNA or sponge, Table 2, Table S2) targeting these genes. For
example, the above-described CCAT1 interacts with miR-152, miR-130b, and miR-490-3p,
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which regulate the expression of ADAM17, WNT1, STAT3, and ZEB1 genes [65,128,129].
MALAT1, NEAT1, and DQ786243 interact with miR-506, a well-known interaction partner
of EMT transcription factors [130–132] (summarized in Table 2, Table S2).

Finally, lncRNAs also seem to be involved in specific signaling pathways related to dif-
ferent cellular processes important for proliferation. SNHG20 affected the Wnt/β-catenin
signaling pathway [133]. Other lncRNAs (MALAT1, HOXD-AS1, Linc-ROR, and HOTAIR)
were associated with β-catenin inhibition [134–137], and, in contrast, this pathway was ac-
tivated by lncRNA JPX inhibition [138]. The biologically relevant p53 pathway is regulated
by lncRNA MEG3 through interaction of MEG3 with MDM2, leading to its suppression
resulting in an increased level of p53 protein [139].

Table 2. lncRNAs and their implication in ovarian cancer progression.

Experimental Model

lncRNA Patient
Samples

Cell Lines,
Xenografts Deregulation Target Reference

ADAMTS9-AS2 3 3 ↓ miR-182-5p * [140]
ANRIL 3 3 ↑ P15INK4b, Bcl-2 ** [141]

3 3 ↑ MET, MMP3 ** [125]
AOC4P 3 3 ↓ MMP9, COL1A2 ** [142]

AP000695.4 3 3 ↑ miR-101 ** [127]
ASAP1-IT1

3 - ↑ - [143]FAM215A
LINC00472
BLACAT1 3 3 ↑ miR-519d-3p * [144]

CASC9 3 3 ↑ miR-758-3p * [145]
CCAT1 3 3 ↑ miR-152, miR-130b * [65]

3 3 ↑ miR-490-3p * [128]
CCAT2 3 3 ↑ - [146]

- 3 ↑ E/N-cadherin, Snail, Twist, Slug [46]
CDKN2BAS 3 3 ↑ GAS6 ** [147]

CTD-2020K17.1 3 3 ↑ CARD11 * [111]
DANCR 3 3 ↑ miR-145 [148]

DNM3OS
3 3 ↑ - [149]MEG3

MIAT
DQ786243 3 3 ↑ miR-506 * [132]

DSCR8 - 3 ↑ miR-3192-5p/YY1 * [150]
EBIC 3 3 ↑ β-catenin, vimentin, E-cadherin ** [151]

EPB41L4A-AS2 3 3 ↓ miR-103a * [152]
FAL1 - 3 ↑ PTEN, Akt ** [153]

FAM83H-AS1 3 3 ↑ - [154]
3 3 - HuR * [155]

FEZF1-AS1 3 3 ↑ miR-130a-5p * [156]
FLVCR1-AS1 3 3 ↑ miR-513 * [157]

H19 - 3 ↑ miR-370-3p ** [158]
HAL 3 3 ↓ Twist1 ** [159]

HAND2-AS1 3 3 ↓ - [160]
HCP5 3 3 ↑ miR-525-5p * [161]

HOTAIR - 3 ↑ miR-214, miR-217 * [162]
3 3 ↑ - [163]

HOTAIRM1 3 3 ↓ miR-106a-5p * [164]
HOTTIP 3 3 ↑ β-catenin ** [165]

HOXA11-AS1 3 3 ↑ VEGF, MMP9, E-cadherin, Snail, Twist,
vimentin ** [47]

HOXD-AS1 3 3 ↑ miR-133-3p * [135]
3 3 ↑ miR-186-5p * [166]

JPX 3 3 ↑ PI3K/AKT/mTOR pathway ** [138]
KCNQ1OT1 - 3 ↑ miR-142-5p * [167]
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Table 2. Cont.

Experimental Model

lncRNA Patient
Samples

Cell Lines,
Xenografts Deregulation Target Reference

3 3 ↑ miR-212-3p * [168]
LEF1-AS1 3 3 ↑ miR-1285-3p * [112]

LINC00092 3 3 ↑ PFKFB2 ** [169]
LINC00176 3 3 ↑ BCL3 * [170]
LINC00339 3 3 ↑ miR-148a-3p * [171]
LINC00460 3 3 ↑ miR-338-3p * [172]
LINC00504 3 3 ↑ miR-1244 *, PKM2, HK2, PDK1 ** [173]

LINC00565 3 3 ↑ cyclin D1, cyclin E1, CDK4, p16, p21 **,
GAS6 * [174]

LINC00963 3 3 ↑ miR-378g [175]
Linc-ROR 3 3 ↑ Wnt/β-catenin ** [136]

lncARSR 3 3 ↑ HuR, β-catenin, ZEB1, ZEB2 **, miR-200
family * [64]

lncRNA-ATB - 3 - miR-204-3p * [176]
- 3 ↓ p-STAT3, E-cadherin ** [177]

LncSOX4 3 3 ↑ - [178]
LOC100288181 3 3 ↑ miR-34a, miR-34c * [179]

LOXL1-AS1 3 3 ↑ miR-18b-5p * [180]
LUCAT1 - 3 ↑ miR-199a-5p [181]
MALAT1 - 3 ↑ YAP * [182]

3 - ↑ - [116]
3 3 ↑ - [183]
3 3 ↑ PI3K/AKT pathway ** [66]
3 3 ↑ miR-506 ** [130]
3 3 ↑ MMP13, MMP19, ADAMTS1 ** [184]
3 3 ↑ miR-200c * [185]

MEG3 3 3 ↓ ATG3 ** [113]
3 3 ↑ PTEN ** [186]
3 3 ↓ miR-30e-3p [187]
- 3 ↓ PTEN ** [188]
3 3 ↓ miR-205-5p [189]

MIF-AS1 3 3 ↑ miR-31-5p [190]
MIR4435-2HG 3 3 ↑ miR-128-3p * [191]

3 3 ↑ ROCK2 ** [192]
MIR4697HG 3 3 ↑ MMP9, ERK, AKT ** [193]

NEAT1 3 3 ↑ miR-506 * [131]
3 3 ↑ miR-382-3p * [194]

NONHSAT076754 3 3 ↑ - [195]
PCA3 3 3 ↑ miR-106b-5p * [196]

PCAT-1 3 3 ↑ Cyclin D1, CDK3, p53, BAX, vimentin,
miR-124-5p ** [197]

PCGEM1 3 3 ↑ RhoA, YAP, MMP2, Bcl-xL, P70S6K ** [198]
PTAF 3 3 - miR-25, SNAIL2 ** [67]
PVT1 3 3 ↑ EZH2 ** [199]

3 3 ↑ miR-133a * [200]
RHPN1-AS1 3 3 ↑ miR-596 * [201]

3 3 ↑ miR-1299 * [202]
SNHG1 3 3 ↑ MMP2, MMP9 ** [203]
SNHG3 3 3 ↑ GSKβ/β-catenin signaling pathway ** [204]

SNHG16 3 3 ↑ p-AKT, MMP9 ** [205]
SNHG20 3 3 ↑ β-catenin ** [133]
SOCAR 3 3 ↑ Wnt/β-catenin, MMP9 ** [206]

SPRY4-IT1 3 3 ↓ E-cadherin, N-cadherin, vimentin ** [207]
TP73-AS1 3 3 ↑ MMP2, MMP9 ** [124]
TC0101441 3 3 ↑ KiSS1 * [208]
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Table 2. Cont.

Experimental Model

lncRNA Patient
Samples

Cell Lines,
Xenografts Deregulation Target Reference

TDRG1 3 3 ↑ RhoC, R70S6K, Bcl-xL, MMP2 ** [209]
THOR 3 3 ↑ IL-6/STAT3 ** [210]

TLR8-AS1 3 3 ↑ TLR8, NF-κB ** [211]
TONSL-AS1 3 3 ↑ miR-490-3p * [212]

TPT1-AS1 3 3 ↑ TPT1, PI3K/AKT ** [213]
TTN-AS1 3 3 ↑ miR-139-5p * [214]

3 3 ↓ miR-15b-5p * [215]
TUG1 3 3 ↑ E/N-cadherin, vimentin ** [216]

3 3 ↑ MDM2 **, miR-29b-3p * [217]
UCA1 3 3 ↑ miR-485-5p * [126]

UNC5B-AS1 3 3 ↑ EZH2 * [218]
WDFY3-AS2 3 3 ↓ miR-18a * [219]

XIST
3 3 ↑ - [220]

* target (connection) predicted by bioinformatics tools like TargetScan, DIANA-MicroT-CDS, miRWALK, miRDB, RNA22, PicTar, mi-
croRNA.org, PITA, miRNAnda, Starbase, etc. and/or dual-luciferase assay; ** connection predicted by expression correlation, not part of the
study; ↓ expression downregulation between compared specimens; ↑ expression upregulation between compared specimens; 3 included in
the study.

4. Interplay between Regulators ncRNA and DNA Methylation

The most typical epigenetic modifications involved in tumor transformation are DNA
methylation and histone modification (specifically acetylation and methylation).

DNA methylation is a covalent modification based on attaching a methyl group
to cytosine in a CG dinucleotide, often grouped into so-called CpG islands, localized
predominantly in gene promoters. Hypermethylation leads to gene silencing, whereas
hypomethylation is associated with disruption of genome stability. These changes are
involved in the development of primary tumors and their subsequent progression. Hyper-
methylation and hypomethylation contribute to the development and progression of OC
by altering the expression of a wide range of genes. In general, hypermethylation of genes
involved in cell cycle regulation (CDKN2A and CDKN2B), DNA repair pathways (MGMT,
MLH1, and BRCA1), and transcription factors alone (GATA4 and GATA5) are important
cancer-driver events. Methylation profile also interacts with other epigenetic regulatory
elements such as miRNAs and lncRNAs [221,222] (Figure 4).
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Expression of genes for non-coding elements is likewise affected by DNA methylation,
and, vice versa, ncRNA are also indicated as regulators of this epigenetic modification.

4.1. miRNA-DNA Methylation Interplay

Mutual regulation of miRNA and DNA methylation in carcinogenesis was already re-
viewed by Wang et al. for several solid cancer types. miRNA can regulate DNA methylation
by modulating the expression of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b)
or methylation-related proteins MeCP2 (methyl CpG binding protein 2) and MBD2/MBD4
(methyl-CpG binding domain proteins 2/4) [223]. DNA methylation is also important in
miRNA biogenesis and probably stands behind the higher cancer-driver phenotype of
miRNA. It was shown that regions encoding miRNA with higher DNA methylation have
higher cancer-driver-related phenotype than those from unmethylated DNA regions [224].

Regarding OC, downregulation of the miR-193a-3p expression caused by gene pro-
moter hypermethylation was reported during tumor progression with increasing methy-
lation level from low-grade (n = 50) to high-grade (n = 46). In this study, regulation of
GRB7, ERBB4, SOS2, and KRAS in the MAPK/ERK signaling pathway by miR-193a-3p
was observed. Based on this study, it seems that miR-193a-3p regulates the expression
of four members of the MAPK/ERK pathway, and miR-193a-3p hypermethylation led to
MAPK/ERK pathway upregulation [225]. Presence of OC metastases in the lymph nodes,
peritoneum, and distant organs was recorded in connection with hypermethylation of ten
miRNA genes (miR-121-4, -124-3, -125B-1, -127, -129-2, -137, -193A, -203A, -339, and -375).
In disseminated OC tumors, only miR-203a and miR-375 were hypermethylated. The study
was conducted on 76 pairs of OC tumor/control tissues, ten pairs of tumor/peritoneal
metastases, and three tumor/control/peritoneal metastases samples [226]. The miR-199a-
3p, with a putative tumor suppressor function, was hypermethylated in OC tissue and OC
SKOV3 cells, but not in ovarian epithelial cells IOSE386. Overexpression of this miRNA
in vitro impaired tumor cell proliferation, migration, and invasiveness [227]. Other possi-
ble progression markers are miR-9-1, miR-9-3, and miR-130b. Their methylation profile
associated with differentiation, tumor size, and presence of metastases of OC, as assayed
for on 54 pairs of OC tumor tissue (37 patients without metastases and 17 patients with
metastases) and control tissue [228]. During TGF-β1-induced EMT downregulation of TET3
in SKOV3/3AO, OC cell lines was detected. TET3 overexpression led to reverting of the
TGF-β1-induced EMT phenotype by demethylation of direct downstream target miR-30d
(possible EMT suppressor function) [229]. On the contrary, a negative correlation between
DNMT3A/3B expression with miR-29b in 15 OC tissue samples and in vitro was found.
Based on in vitro experiments (SKOV3, A2780 cell lines), a double-negative regulation
between DNMT3A/3B and miR-29b, was proposed—DNMT3A/3B are downregulated by
miR-29b binding to their 3′UTRs and knockdown of DNMT3A/3B lead to higher miR-29b
expression through miR-29b gene promoter hypomethylation [230]. Li et al. observed sup-
pression of miR-424-5p and miR-503-5p expression by their promoter hypermethylation in
44 OC tumors compared to ten controls and confirmed this observation also by analysis of
GEO datasets (GSE14407, GSE1520, GSE38666, and GSE40595). These miRNAs probably in-
hibit proliferation and migration by KIF23 suppression due to direct interaction in HO8910,
HO8910PM, and A2780 OC cell lines [231]. On the contrary, Let-7a-3-associated expression
changes were moderately affected by DNA methylation in a cohort of 214 OC patients, and
no statistically significant association with disease progression was noted [232]. Based on
studies with A2780/A2780CP OC cell lines, members of the miR-200 family (miR-200b and
miR-200c) are likely to modulate cell sensitivity to cisplatin by indirect interaction with
DNMT1 and direct interaction with DNMT3A/3B [233]. The study on the SKOV3 cell line
showed that miR-21, miR-203, and miR-205 were highly influenced by DNA methylation,
as documented by demethylation treatment with 5′-aza-2′-deoxycytidine [234].
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4.2. lncRNA-DNA Methylation Interplay

lncRNAs regulate epigenetic processes, DNA methylation, and histone acetylation
as well, and are themselves strongly affected by DNA methylation. Interactions with
methyltransferases/demethylases and acetyltransferases/deacetylases have been identified
for several lncRNAs [107]. HOTAIR induced NF-κB in response to DNA damage and
MMP6/IL6 expression (target NF-κB genes) after platinum treatment, in vitro in a panel
of sensitive (A2780, SKOV3, HEYC2, OV90, ISOE, OGROV, and OVMUNA) and resistant
(A2780_CR50) OC cell lines in vitro. These results were also confirmed in the TCGA-
OV dataset (higher expression in OC patients with the recurrent disease compared to
primary HGSC cases) [235]. The methylation status of 67 CpG islands linked to HOTAIR
was associated with poor survival of OC patients treated with platinum derivatives (six
different sample sets, together 108 patients) [236]. Interaction between H19 and SAHH
(S-adenosyl-L-homocysteine hydrolase) influenced the DNA methylation profile of several
genes across the whole genome. A possible mechanism was proposed based on in vitro
experiments on the HEK293 cell line. Knockdown of H19 activated SAHH, which increased
methylation by DNMT3b [237].

lncRNA LOC134466 (ZFN300P1) hypermethylation was observed in 81% of serous
OC tumors (from 27 samples) [238] and in cell lines SKOV3, OVCAR3, IGROV, OV90,
COLO316, A2780, CaOV3, TOV112D, TOV21G, and EFO27, where the knockdown of this
lncRNA reduced colony formation and proliferation. The ex vivo experiments demon-
strated the feasible role of LOC134466 in attaching OC cells to the peritoneal membrane
and enabling peritoneal expansion of OC metastatic lesions [239]. Based on TCGA data
for 17 cancer types, epigenetic silencing of lncRNA MORT (ZNF667-AS1) in epithelial
cells from 15 cancer types was extracted. Concerning OC, this was observed only for
a few patients in contrast to breast, uterine, or cervix cancer patients [240]. A study fo-
cusing on the characterization of cis-acting lncRNA and DNA methylation showed five
lncRNAs under strong methylation regulation (AC091814.2, AC141928.1, RP11-65J3.1-002,
BX641110, and AF198444). Experiments on sensitive cell lines A2780/OVCAR3 and their
platinum-resistant clones A2780-R/OVCAR3-R showed their possible involvement in
cisplatin resistance [241].

Mutual connections and inter-regulation between ncRNA and DNA methylation
are undeniable. However, it requires further clarification and mainly thorough in-depth
investigation. Many potential interesting genes or DNA methylation changes have been
discovered by robust high-throughput analyses and subsequently validated using in vitro
and in vivo experiments. These are tools that permit us to understand the role of these
targets in cell biology. The interplay between ncRNA–DNA methylation–gene expression
is worthy of exploration to dissect their roles in human pathology and carcinogenesis on
different levels of regulation.

5. Conclusions and Future Perspectives

This review addressed the involvement and mechanisms of action of non-coding RNA
elements and their interplay with DNA methylation in the context of OC progression.
Recognition of key players, being either lncRNAs or miRNAs, in OC progression may lead
to the identification of prognostic biomarkers and formulation of novel therapeutic targets
for individualized therapy.

Thanks to the advent of new robust techniques, researchers can now characterize the
roles of DNA, RNA coding elements, and non-coding elements in tumor development
and progression. In recent years, genomic research has brought the first useful biomarkers
for OC management, e.g., patients bearing BRCA1/BRCA2 mutations are sensitive to
PARP inhibitors treatment [242]. Other promising biomarkers and tailored therapies,
including the DNA repair system, are on the way (summarized in [12]). The field of
ncRNA or epigenetic modifications in this setting is now open for investigations of new
potential biomarkers.
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The role of miRNA in OC progression is more explored than that of lncRNA. Microar-
ray and RNA sequencing studies identified novel potential miRNAs strongly deregulated
in metastasis of ovarian carcinomas compared to primary tumors, e.g., the family miR-200,
which interacts with EMT-related transcription factors [45,100]. Nevertheless, despite
numerous other examples, the majority of findings were not replicated, and associations
scatter among different cancer types, clinical stages, or therapeutic settings. Robust clinical
trials designed to test the clinical validity and utility of these candidate prognostic and
predictive biomarkers are urgently needed.

Although lncRNAs are still much less explored than miRNAs, some entities were
found differentially expressed in pairs of primary tumors and metastatic samples. In gen-
eral, it seems that cancer progression is predominantly associated with the upregulation of
lncRNA expression. Experimental studies showed connections of lncRNAs with prolifera-
tion, invasion, migration, EMT, alterations of apoptosis, and metabolic pathways (Table 2,
Table S2). Recent studies focused on the identification of complex miRNA–mRNA–lncRNA
interactions increased our understanding of regulatory pathways in cancer progression (as
summarized in Tables 1 and 2, Tables S1 and S2). Such integration of different regulatory
levels may bring a much more solid picture of the molecular landscape of cancer and boost
further efforts towards precision oncology.

DNA methylation is another effective epigenetic mechanism involved in OC pro-
gression as CpG methylation accumulates during its progression. Description of mutual
interactions between miRNA/lncRNA and DNA methylation is important in the frame
of the epigenetic regulation of gene expression. The advantage of DNA methylation is
that its reversible character provides a promising therapeutic opportunity. This strategy is
nowadays under investigation, and in some types of leukemia, demethylation therapy is
already used. Uncovering these interactions may thus lead to novel therapeutic targets for
a broader spectrum of cancers.

The concept of liquid biopsy, i.e., noninvasive testing using analysis of biomolecules
in body fluids, mainly in serum and plasma specimens, represents the next key step to
introduce experimentally identified biomarkers into clinical practice. Clinical trials focusing
on the analysis of such biomarkers in body fluids are running. For example, the clinical
trial NCT03738319 focuses on the expression level of lncRNA in serum samples of OC
patients [119], and other clinical trials, e.g., NCT03742856, employ a multi-omics approach
for tumor characterization and classification of its intrinsic heterogeneity or prediction of
response to therapy [243].

On top of that, the search for biomarkers accelerated by clarifying their function
using mechanistic studies based on in vitro (2D, 3D cultures, or organoids) and in vivo
models (mainly mouse tumor cell xenografts or patient-derived xenografts). Patient-
derived xenograft models play an essential role in the determination of a specific patient’s
response to experimental therapy and the design of new drugs. Functional studies of
lncRNA/miRNA interactions and their cellular functions broaden, together with in silico
prediction and analysis tools, comprehension of regulatory networks in cancer progression.

We believe that additional and more robust studies on the interactive network of
miRNA, lncRNA, and DNA methylation together will help to identify new prognostic and
predictive biomarkers and therapeutic targets specific for OC and foster the present era of
precision oncology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13081839/s1, Supplementary Table S1: Detailed information about miRNA implica-
tion in ovarian cancer progression, Supplementary Table S2: Detailed information about lncRNA
implication in ovarian cancer progression.
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