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Background
Single cell RNA sequencing (scRNA-seq) is a novel technology to uncover the heteroge-
neity of cells, which can overcome the limitations of traditional RNA sequencing tech-
nologies in detecting slight expression difference among cells  [1–3]. Major scRNA-seq 
data analysis tasks include de-noising [4], batch effect elimination [5], clustering analy-
sis  [6] and visualization  [7]. Among them, clustering analysis is particularly important 
for studying cell heterogeneity. The purpose of scRNA-seq data clustering is to partition 
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a set of cells into a certain number of homogeneous groups, each of which is referred 
to as a cluster. Clustering has been applied to solving many biological problems such as 
detecting new cell types  [8], cell lineage tracking  [9–11], studying pathogenic mecha-
nism [12], exploring drug responses and even disease diagnosis [13, 14].

Up to now, a number of clustering methods have been proposed specifically for 
scRNA-seq data, which exploit the unique characteristics of scRNA-seq data, including 
high sparsity, dimensionality and noise that seriously challenge the conventional cluster-
ing algorithms [15–17]. Recently, Li, Guan and Zhou conducted a comprehensive sur-
vey and comparison study on scRNA-seq data clustering algorithms [18], where existing 
scRNA-seq data clustering methods are classified into six types: distance-based, density-
based, graph-based, matrix-based, model-based and deep learning-based.

Distance-based methods use distance-based clustering algorithms, such as k-means 
and hierarchical clustering. The majority of scRNA-seq clustering methods in the litera-
ture such as SC3 [19], SINCERA [20], CIDR [21], RaceID [22] and pcaReduce [23] fall 
into this category. Out of which, SC3 is a consensus clustering method that applies three 
kinds of similarity measurements and two kinds of feature transformation techniques 
to integrate clustering results [19]. SINCERA is a package for scRNA-seq data analysis, 
where some pre-process steps such as normalization and quality control are performed 
before clustering, and hierarchical clustering is applied to the similarity matrix generated 
by centered Pearson’s correlation and average linkage [20]. CIDR performs hierarchical 
clustering on a few top principal coordinates obtained by principal coordinate analysis 
(PCoA) over the Euclidean distance matrix of samples [21]. pcaReduce is an agglomera-
tive clustering approach that integrates principal components analysis and hierarchical 
clustering [23].

Density-based methods employ density-based clustering mechanisms such as the 
DBSCAN algorithm  [24] and its variants  [25]. For example, Jiang et  al.  [26] proposed 
a method named giniClust to identify rare cell types in scRNA-seq data. They applied 
the DBSCAN algorithm after selecting significantly different genes based on the Gini 
index. Graph-based methods first transform the data to a graph, over which a graph 
clustering algorithm is applied. Two examples of this type are SNNCliq  [27] and Seu-
rat [28], both discover sub-graphs on the Shared Nearest Neighbors (SNN) graph. The 
probability model-based methods cluster data based on a certain probability distribution 
or process. For example, DIMM-SC [29] is specifically proposed for processing droplet-
based scRNA-seq data, based on the Dirichlet Mixture Model. Prabhakaran et al.  [30] 
proposed another probability model-based method to correct technical variations based 
on the Dirichlet Process. The matrix-based methods first derive a matrix from the origi-
nal scRNA-seq data, and then perform matrix splitting or decomposition to cluster data. 
Representative algorithms include the method based on nonnegative matrix factoriza-
tion (NMF)  [31] and the BackSPIN  [32] based on sorting points into neighborhoods 
(SPIN).

With the growth of scRNA-seq data, deep learning (DL) is applicable to scRNA-seq 
data clustering. For example, Eraslan et al. [4] proposed a deep count auto-encoder net-
work (DCA) to de-noise scRNA-seq data and then cluster the data with the features 
extracted by a multi-layer neural network. Lopez et al. [33] introduced the scVI method 
to derive probabilistic representations of scRNA-seq data from deep generative model 
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of variational auto-encoder. DL-based scRNA-seq data clustering methods try to learn 
representations of scRNA-seq data through deep neural networks. In essence, they are 
owned by a kind of nonlinear feature transformation techniques.

Actually, most existing methods exploit the similarity between cells to do scRNA-seq 
data clustering, while similarity evaluation relies on the selection of genes. Consequently, 
how many and which genes are used for clustering is particularly important. Currently, 
there are mainly two types of gene-filtering strategies: (1) threshold-based approaches 
that select genes whose expression values satisfy a certain threshold, and (2) variation 
index-based approaches that measure the variation of gene expression values in different 
cells and then select genes with large variations.

For instance, SC3 uses a threshold-based approach to filter genes before clustering. 
Specifically, it removes genes/transcripts that are either expressed (expression value > 
2) in less than X% of cells (rare genes/transcripts) or expressed (expression value > 0) in 
at least (100− X) % of cells (ubiquitous genes/transcripts), where the default value of X 
is 6 [19]. Some additional methods like NMF-based clustering methods and RaceID also 
remove genes of low expressions  [22, 31]. As for the second type, the GiniClust algo-
rithm selects high Gini-index genes by fitting the relationship between the Gini index 
and max gene expression level with LOESS regression  [26]. BackSPIN selects the top 
5000 genes as informative features based on coefficient of variation (CV), defined as the 
standard deviation divided by the mean  [32]. Generally, threshold-based approaches 
can be regarded as a kind of simplified denoising methods, while variation index-based 
methods select differentially expressed genes. However, neither of them takes the goal of 
clustering into account.

In this paper, we propose a clustering-aware feature weighting method CaFew for 
scRNA-seq data clustering. First, by resolving the optimization problem of clustering, a 
weight matrix indicating the importance of features in different clusters is derived. Then, 
we select genes based on the weight matrix. Concretely, we select those genes with a 
relatively large weight in at least one cluster or a large weight variation across different 
clusters. Experiments over several benchmark datasets show that CaFew can effectively 
boost clustering performance. What is more, by combining CaFew with SC3 (denoted as 
“CaFew+SC3”), we achieve the state of the art performance. Finally, CaFew is also help-
ful for scRNA-seq data visualization.

Results
In this section, we evaluate CaFew in clustering scRNA-seq data. First, we introduce 8 
publicly available scRNA-seq datasets and clustering evaluation metric. Then, we pre-
sent the experimental results of CaFew on these datasets, including selected features, 
clustering accuracy and visualization.

Datasets and performance metric

We collect 8 publicly available scRNA-seq datasets with ground-truth cell type infor-
mation. Table  1 presents the statistical information of these datasets, including the 
number of cells, clusters and genes and their sequencing protocols. We can note that 
these datasets range in size from dozens to thousands, with more than 15,000 genes/
transcripts. The number of cell types varies from 3 to 16. Units of gene/transcript 
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levels include FPKM (Fragments Per Kilobase of exon model per Million mapped 
reads), CPM (Counts of exon model per Million mapped reads) and UMI (Unique 
Molecule Identifier). Specifically, UMI uses a direct measurement of transcript copies 
for each transcript  [34], while the other two metrics normalize the raw read counts 
based on sequencing depth and gene length. In addition, these scRNA-seq data were 
generated from some representative sequencing platforms, such as Smart-Seq2 [35], 
Microwell-seq [36] and 10X [37] etc.

In our experiments, we use Adjusted Rand Index (ARI) to measure the clustering per-
formance. Given the ground truth class assignments labels_true and the predicted class 
assignments labels_predict , ARI measures the similarity of these two assignments [38]. 
Concretely, the overlapping between two assignments can be summarized as a contin-
gency table, which reports the intersection cardinality of each true-predicted cluster 
pair. ARI is calculated as follows:

where m is the number of cells totally in the dataset, tij is the value at the ith-row and 
the jth-column in the contingency table, ai is the sum of the ith-row of the contingency 
table, bj is the sum of the jth-column of the contingency table, and () denotes a binomial 
coefficient. ARI ranges from − 1 to 1, where a negative value means mismatch and ‘1’ 
indicates a perfect match.

Feature selection results

As there are two screening steps in the CaFew algorithm, we present the number of 
genes remained after the first and second screening steps respectively as “#Genes-S1” 
and “#Genes-S2” in Table 2, where we also present the ratio of selected genes over the 
total genes.

We can notice that more than half of the features are removed after the first fil-
tering step. For example, there are more than 20000 genes in GSE59892. Only 9894 
features are retained after the first filtering step, accounting for 38.4% of the total 
genes. After the secondary screening step, only a few hundred features remain, 
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Table 1 A summary of 8 sc‑RNAseq datasets

Datasets #Cells #Clusters #Genes Unit Sequencing protocol

GSE59892 [54] 49 3 25737 FPKM Smart‑seq [55]

GSE36552 [56] 90 7 19595 FPKM Tang et al [57]

E‑MTAB‑3321 [58] 124 5 28223 CPM Smart‑Seq2 [35]

GSE51372 [59] 187 7 15584 FPKM Tang et al [57]

E‑MTAB‑2600 [60] 704 3 21231 CPM Smart‑Seq2 [35]

GSE108097 [36] 2746 16 20670 UMI Microwell‑seq [36]

GSE60361 [32] 3005 9 19972 UMI Islam et al.[34]

SRP073767 [37] 4271 8 16449 UMI 10X [37]
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which is less than 5% of the total genes. In conclusion, CaFew can select much fewer 
genes that are conductive to clustering.

Effect of gene selection on clustering

Here, to check whether the selected genes are more effective in exposing the cluster 
structures in datasets, we apply the Davies–Bouldin index (DBI) to the 8 datasets, 
which is defined as follows [39]:

where di is the average distance between each sample and the centroid of cluster i, dij is 
the distance between the centroids of clusters i and j, and k is the number of clusters. 
Obviously, the smaller DBI is, the more compact the clusters.

Table 3 presents the DBI values before and after gene selection on the 8 datasets. 
We can see that after using CaFew for feature selection, the DBI for all the datasets 
is significantly lower than that when all features are used. This result indicates that 
after selecting features based on feature weighting, the cluster structure is clearer, 
which shows that our feature selection is helpful to cluster.
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k
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Table 2 Feature selection results of the 8 sc‑RNAseq datasets

Datasets #Genes #Genes‑S1 #Genes‑S2

GSE59892 25737 9894 (38.4%) 765 (3.0%)

GSE36552 19595 9786 (49.9%) 283 (1.4%)

E‑MTAB‑3321 28223 9948 (35.2%) 904 (3.2%)

E‑MTAB‑2600 30768 9897 (32.2%) 981 (3.2%)

GSE51372 29018 3922 (28.5%) 173 (0.7%)

GSE60361 19972 6740 (33.7%) 79 (0.4%)

GSE108097 20670 8814 (42.6%) 921 (4.5%)

SRP073767 16653 8997 (54.0%) 830 (5.0%)

Table 3 DBI values of datasets before and after feature selection

Datasets Genes‑all Genes‑S1 Genes‑S2

GSE59892 2.03 2.12 1.81

GSE36552 1.99 2.15 1.51

E‑MTAB‑3321 3.31 3.20 3.15

E‑MTAB‑2600 7.80 7.69 7.59

GSE51372 4.48 4.08 2.87

GSE60361 5.95 5.93 3.80

GSE108097 7.98 7.49 5.59

SRP073767 10.85 10.04 6.05
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Clustering performance

To demonstrate the effectiveness of CaFew, we compare the clustering performance 
before and after it is applied to different clustering methods, including traditional 
clustering algorithms and several high-performance clustering algorithms proposed 
specifically for scRNA-seq data.

Results of traditional clustering algorithms

We consider five traditional clustering algorithms, including k-means [40], PAM [41], 
DBSCAN [24], Hierarchical Clustering [42] and Gaussian mixture models [43]. After 
feature selection, these algorithms are applied to clustering the 8 datasets. Perfor-
mance results are shown in Fig. 1.

As shown in Fig. 1, most methods can get improved accuracy on some scRNA-seq 
datasets after using CaFew to select genes. Concretely, take dataset GSE59892 for 
example, four algorithms (k-means, PAM, Hierarchical Clustering and GMM) main-
tain their clustering accuracy after feature selection, while DBSCAN is improved. 
Especially, all methods’ clustering accuracy is significantly improved on two data-
sets: GSE36552 and E-MTAB-2600. The reason is that CaFew is able to remove some 
noise genes. However, some methods get degraded clustering accuracy on some data-
sets after feature selection. This is because that some datasets own relatively com-
plex cluster structures, and the traditional clustering algorithms cannot capture these 
structures when only hundreds of features are used.

Results of clustering methods specifically for scRNA‑seq data

Based on the previous comparative studies on clustering algorithms for scRNA-seq 
data  [44, 45], we choose several representative methods to test the performance of 
CaFew. Since SC3 and Seurat achieve the state of the art clustering performance, we 
mainly test the effect of CaFew on them, and we call them “CaFew+SC3” and “CaFew 
+Seurat” after using CaFew for gene selection. The results are presented in Fig. 2, where 
ARI values of different methods are represented by different color bars.

GSE51372 GSE60361 GSE108097 SRP073767

GSE59892 GSE36552 E−MTAB−3321 E−MTAB−2600

Genes−all Genes−CaFew Genes−all Genes−CaFew Genes−all Genes−CaFew Genes−all Genes−CaFew
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Fig. 1 Results of 5 traditional clustering algorithms on 8 scRNA‑seq datasets before (Genes-all) and after 
(Genes-CaFew) feature selection
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Fig. 3 Two‑dim visualization results of 4 scRNA‑seq datasets before (Genes-all) and after (Genes-CaFew) 
feature selection. a t‑SNE visualization, b UMAP visualization
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From Fig.  2, we can see that “CaFew+SC3” achieves better performance than other 
methods on most of the datasets. Its average ARI on the 8 datasets is 0.74, higher than 
that of the other methods. Concretely, SC3 gets an ARI of 0.94 on dataset GSE59892, 
while “CaFew+SC3” improves the ARI to 1. For the dataset GSE36552,“CaFew+SC3” 
performs best with an ARI of 0.89, which is higher than the AIR (0.64) of SC3 and the 
other six methods. Moreover, the dataset with the largest improvement on clustering 
accuracy is E-MTAB-2600, and the AIR is improved from 0.15 to 0.72. In general, except 
for GSE60361, the clustering accuracy of “CaFew+SC3” on the other datasets is better 
than that of SC3.

As for “CaFew +Seurat”, its clustering accuracy on three scRNA-seq datasets is the 
same as that of Seurat, gets higher ARI values on four datasets and a lower ARI on only 
one dataset. We notice that the improvement on ARI for Seurat is not as significant as 
that for SC3, this is because that CaFew adopts a distance based clustering mechanism 
like k-means, so it is more beneficial to distance-based clustering methods such as SC3.

Visualization

Here we investigate whether CaFew can help with visualization. In our experiments, we 
adopt t-SNE [46] and UMAP [47] for scRNA-seq data visualization. Figure 3 displays the 
visualization results of four datasets before and after feature selection. Here, points of 
similar color belong to the same cluster.

Fig. 4 The pipeline of CaFew
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From Fig. 3, we can see that after selecting genes by CaFew, both t-SNE and UMAP 
can separate different clusters more apart, while making cells from the same cluster 
closer. This shows that CaFew is beneficial to clustering.

Take the dataset GSE59892 for example, there are 49 samples in 3 clusters with 25,737 
features. When all features are utilized, some green and pink points mix with the orange 
points. After selecting genes by CaFew, the green, pink and orange points are clearly 
separated.

Discussion
It is well known that the clustering performance is heavily impacted by the character-
istics of input samples. For example, DBSCAN can find clusters of any shape, while 
k-means assumes that clusters are convex shaped. The distribution of samples in dif-
ferent classes may also impact the clustering performance. If the sample distribution is 
extremely uneven, it is hard for clustering algorithms to find very small clusters such as 
rare cell types and tumor cells etc. Since CaFew adopts similar idea of k-means in the 
process of weight matrix calculation, the clustering performance on non-convex/uneven 
distribution data cannot get so significantly improved as on convex/even distribution 
data. With CaFew, the clustering performance of distance-based methods like k-means 
and SC3 can be considerably improved, but its effectiveness is not so obvious on the 
other types of methods like Seurat. Additionally, the pre-defined cluster number also 
affects clustering result. The number of clusters can be determined with prior knowl-
edge or can be estimated by some specific computational approaches. CaFew does not 
address this issue, but directly uses the exact number of clusters in optimization.

For future work, on the one hand, we will explore alternative clustering optimization 
mechanism that is not restrict to distance-based clustering, and develop specific meth-
ods to determine the number of clusters in the framework of CaFew. On the other hand, 
we will try to integrate auxiliary biological information into CaFew, and extend this 
study to the field of differentially expressed gene analysis, especially the study of disease-
specific genes.

Conclusion
In this paper, we propose a novel algorithm CaFew to select features for scRNA-seq data 
clustering based on cluster-aware feature weighting. By solving the clustering optimiza-
tion problem, CaFew first obtains the weight matrix W of features with regard to differ-
ent clusters. Then, it filters out genes with small weight in all clusters or a small weight 
variation across all clusters. Extensive experiments on 8 real datasets show that selecting 
features with CaFew can boost clustering performance and the combination of CaFew 
and SC3 achieves the state of the art performance.
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Methods
In this section, we describe the CaFew method in detail. Figure 4 illustrates the pipeline 
of CaFew, which consists of three major steps: (1) Removing uninformative and redun-
dant genes; (2) Deriving the feature weight matrix by solving the clustering optimization 
problem; And (3) selecting genes based on the weight matrix.

Data preprocessing

In general, scRNA-seq data is extremely sparse, with some genes of zero expression in 
a large number of cells. The generation of these zero values is due to that these genes 
are not expressed in these cells, or their genetic products are not detected (also called 
“dropout events”  [17]). Therefore, raw scRNA-seq data are highly uncertain and noisy, 
which seriously impacts the downstream computational analysis. In the data preprocess-
ing step, we directly delete genes that are expressed only in a small number of cells (less 
than 2%) [19].

On the other hand, the expression patterns of some genes are very close. If all of them 
are used for clustering, it only incurs a large amount of calculation cost, but contributes 
little to clustering. Therefore, we remove the redundant genes. By calculating the Pear-
son Correlation Coefficient (PCC) between genes, only one gene is conserved as the rep-
resentative for genes with PCC greater than 0.99.

Cluster‑aware feature weighting

As the importance of each feature (gene) is different across different clusters, we assign 
different weight to each feature over different clusters, and formulate the clustering 
objective function as follows [48–50]:

where K means the number of clusters, n is the number of features (genes), χ =
⋃K

k=1 χk 
is the union of K clusters and χk indicates the kth cluster. W is a K ∗ n weight matrix and 
wkj indicates the weight of gene j in cluster k. A large wkj indicates that feature j is impor-
tant to cluster k. djki means the distance between sample i and the center of cluster k on 
feature j. Equation (3) consists of two parts: the first part indicates the sum of distance 
between samples within each cluster under feature weighting, the second part is the sum 
of squares of weights, and δk is a parameter to balance the two parts. By minimizing the 
first part, we can get compact clusters, and by minimizing the second part, we attempt 
to select as a small number of features as possible for each cluster.

To minimize J, according to Lagrange multiplier, we have

where � = [�1, �2, ..., �K ] is the Lagrange multipliers. Since the rows of W are inde-
pendent of each other, we can reduce the optimization problem into K independent 
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sub-problems. And by setting the derivatives of Jk with respect to wkj and �k to zero, we 
can derive

where the first part 1n is the initial weight (i.e., all features are treated equally), the second 
part reflects the intra-cluster distance difference between the average over all features 
and the feature j. A positive value of the second part means feature j can make the intra-
clusters distance smaller and its weight will be become larger than 1n . Conversely, a nega-
tive value of that part will reduce the weight of feature j in cluster k.
δk is evaluated in an iterative way as follows:

where Cδ is a constant, the superscripts (t) and (t − 1) indicate the current iteration t and 
the previous iteration (t − 1) , respectively.

Denote the weighted distance between sample i and cluster center k as Dik , we have

Each data point (cell) is assigned to the nearest cluster, that is,

After the assignment of samples, the cluster centers are updated as follows:

where xmj is the median value of feature j in cluster k. By using the median of samples 
(instead of the mean) to update the cluster center, clustering will be more robust to 
outliers [51].

Simply, we use Manhattan distance to evaluate djki , that is,

Gene selection based on feature weights

Different from previous feature selection methods, CaFew selects features from the per-
spective of clusters, instead of cells. On the one hand, feature weight reflects the importance 
of a feature to a cluster, so the features with large weights are more informative in clustering 
than those of small weight. On the other hand, a feature whose weight varies greatly among 
the clusters is usually a “marker” gene that is more conducive to distinguish cells. Based on 
these two observations, we propose the following strategies to select features.
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Weight based screening

To remove features with small weight, we first calculate the maximum value of each 
feature in the weight matrix W. Then we divide these features into N groups accord-
ing to their maximum values, where N=3.322 ∗ log10(n)− 1 , according to the Empirical 
Sturges’ formula  [52]. After arranging the groups of genes in ascending order of their 
maximum values, we remove the first group of genes, and iteratively use Sturges’ for-
mula to group the remaining features until the number of features is less than 10000. 
One advantage of this method is that the features of the same interval can be kept as far 
as possible, instead of some important features being omitted due to the “violent cut-
ting” like simply setting a threshold.

Weight‑deviation based screening

To further select the “marker” genes for clustering, we measure the variation of feature 
weights across clusters by CV (defined as the ratio of standard deviation over mean). 
Since there is strong correlation between mean and CV, we build a linear model to fit 
CV by mean: log(CV 2) = a ∗ log10(mean)+ b to choose the most significant features 
of variation. For each feature, we calculate the residual value d, which is defined as the 
difference between the true CV and the fitted value. Then, the residual value is normal-
ized as z-score: (d − d)/δ , where d and δ are the mean and the standard deviation of d. 
Finally, z-scores are converted into p-values with the assumption that all z-scores follow 
normal distribution. In our experiments, we select the features (genes) whose p ≤ 0.05.

The CaFew algorithm

The pseudo-code of CaFew is outlined in Algorithm 1. Lines 1–3 are for data preproc-
essing. Line 4 initializes the variables; Lines 5–12 are for deriving the weight matrix of 
genes; Lines 13–15 are for weight-based gene screening, which removes the genes of 
small weight; Lines 16-19 are for weight-deviation based screening, which filters genes 

with small weight variations across clusters.
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