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We study the nonlinear interaction between two non-collinear light beams that carry orbital angular
momentum (OAM). More specifically, two incident beams interact at an angle in a medium with a second
order nonlinearity and thus generate a third, non-collinear beam at the second harmonic frequency that
experiences a reduced conversion efficiency in comparison to that expected based on conventional
phase-matching theory. This reduction scales with the input beam OAM and, differently from previous
spiral bandwidth calculations, is due to a geometric effect whereby the input OAM is projected along the
non-collinear interaction direction. The effect is relevant even at small interaction angles and is further
complicated at large angles by a non-conservation of the total OAM in the nonlinear interaction.
Experiments are performed under different conditions and are in excellent agreement with the theory. Our
results have implications beyond the specific case studied here of second-harmonic generation, in particular
for parametric down-conversion of photons or in general for phase-matched non-collinear interactions
between beams with different OAM.

O
rbital angular momentum (OAM) is an important degree of freedom in the control of coherent light
beams. Of particular interest are nonlinear frequency conversion processes and in general photon-
photon interactions in nonlinear media in the presence of OAM. Beams with a spiralling phase front

have been used to demonstrate the spatiotemporal entanglement of light in both type-I1 and type-II2 parametric
down conversion, as well as having applications in quantum cryptography3, providing new imaging applications4

and improving communication and signal processing protocols5. There has also been a recent surge in interest in
using OAM beams for high harmonic generation6 in the extreme ultraviolet spectral region.

The simplest interaction geometries involve a single pump beam and a collinearly generated frequency con-
verted beam. The phase matching properties are not modified by the presence of OAM in the pump beam7,8 and
furthermore OAM is also conserved, e.g. second harmonic photons have an OAM that is twice the OAM of the
input pump photons9. However, many modern applications of nonlinear optics, e.g. coherent control of attose-
cond pulse generation10 or the generation of entangled photons, employ a non-collinear interaction. Entangled
photons are created in spontaneous parametric down conversion (PDC) and are, in general, emitted at an angle
with respect to the pump. The ‘‘spiral bandwidth’’, i.e. influence of OAM in the generation and quantum
entanglement of noncollinear PDC photons has been considered under the assumption that the phase-matching
properties are insensitive to the angle between the OAM beams11,12. Non-collinear interactions have also been
considered using fractional OAM beams and under the assumption that OAM is conserved so as to generate non-
trivial OAM states through input beam combination and frequency conversion13. However, very large interaction
PDC angle geometries have been shown to lead to a violation of the conventionally accepted OAM conservation
rule14. This violation has a purely geometric origin and can be understood by considering that for large angles, the
projection of the output beam onto the non-collinear input pump direction leads to non-integer OAM values, i.e.
to the superposition of multiple OAM states14.

Here we consider the reverse process of PDC, i.e. the case of non-collinear second harmonic generation (SHG)
and provide a generalised theory for non-collinear SHG involving OAM beams. From the perspective of testing
the phase-matching theory the SHG geometry considered here offers the benefit that the non-collinear inter-
action angle can be set at will whereas in PDC, phase-matching determines the emission angles thereby com-
plicating analysis. We show that when the interaction angle is properly accounted for, the oribital angular
momentum of the pump significantly modifies the phase matching relations and leads to a marked reduction
in the conversion efficiency. These results also apply to the PDC case and imply a significantly smaller spiral
bandwidth than may otherwise be expected, even for angles less than those required for non-conservation of
OAM.
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Results
Theory. For purposes of clarity in presentation, we have relegated the
detailed description of our phase-matching theory to the Supple-
mentary Information (SI) and the interested reader is referred
there. Instead, in this section our goal is to present the essence of
our theory in order to explore its experimental consequences for
non-collinear SHG with OAM beams. To proceed we describe the
basic geometry and equations used to treat the non-collinear
interaction of OAM beams in a crystal with second order (x(2))
nonlinearity. In particular, we consider type I, SHG in a BBO
crystal. Two fundamental fields of frequency v and wavelength l1,
traveling at small angles 6h with respect to the z-axis are labeled j 5

0, 1. These are (ordinary) o-waves in the crystal, with the generated
second-harmonic produced as an (extaordinary) e-wave, labeled j 5

2, which propagates along the z-axis. We employ the undepleted
pump beam and paraxial approximations. Each fundamental field
may be either a Gaussian or a field with a ring shaped intensity profile
of radius and thickness W, R ? W ? l1, that carries OAM with
winding number ,. The transverse spatial extent of both
fundamental beams is assumed so large that diffraction may be
neglected within the medium, that is, their Rayleigh ranges are
much larger than the medium length L.

We assume that the thickness W of the OAM beam is sufficiently
narrow compared to the ring radius R that we may evaluate the
properties of the beam around the peak of the ring. Then for an
OAM beam with azimuthal variation ei,w propagating along the z-
axis, the corresponding spiraling wave vector may be written as
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with ko the magnitude of the ordinary wave vector for the fun-
damental field, and w the azimuthal angle around the ring. For use
in our non-collinear geometry we rotate this wave vector by a small
angle hj j= 1 around an axis, that here we take as the y-axis, so that
the components of the wave vector become to leading order
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The rotated wave vector ~K ’ has an associated plane-wave

ei~K ’:~r?eiKz’ze{ik0hxei‘w: ð3Þ
So as a result of the rotation we have from left to right, a modification
to the z-component of the wave vector, a propagation component
along the x-axis, and finally the original OAM factor exp(i,w).
Consider now the non-collinear interaction between an OAM beam
as above and a Gaussian traveling at the opposite angle: we shall refer
to this as case (i).

Case (i). Here the second-order polarization P(2) that will drive the
SHG will be proportional to the product of the plane-waves as above
for the OAM beam, with , and h, and the Gaussian, with , 5 0 and
2h, giving
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where the Jacobi-Anger expansion of the term e
iz‘h

R cos wð Þ has been
employed in the bottom line. In contrast to previous work, here we

explore the Bessel function terms appearing in Eq. (4), which capture
the dependence of the nonlinear interaction on the angle between the
OAM beams. We note that although the input fields have OAM of ,
and zero (the Gaussian) in our example, the nonlinear polarization
for the SHG in Eq. (4) contains many OAM components of the form
ei(,1n)w weighted by the Bessel functions. This reflects the fact that
OAM need not be conserved during non-collinear interactions
between beams carrying OAM for large enough angles. Here we
confine our attention to the case n 5 0 corresponding to SHG
with the same winding number , as the input fundamental, giving
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which is justified if the argument z‘h=Rj j=1 remains small since
Jn(s) R 0 for n ? 0 and small jsj. In conventional small angle theories
of non-collinear phase matching only the exponential term in Eq. (4)
has been considered, and this leads to a variation of the SHG power
with crystal length L of the well known sinc2 form
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with no the ordinary refractive-index. We introduce the critical
winding number ‘C~4pR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
no=l1L

p
as that for which the SHG

power falls to zero according to Eq. (6). This result is closely
related to and follows the spiral bandwidth relations derived in
previous works11,15,16. In contrast, in the opposite extreme that we
retain only the Bessel term in Eq. (5) then the SHG output power
assumes the form
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and we introduce the critical winding number ‘c<
ffiffiffi
6
p

R
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at which the SHG power drops to zero according to Eq. (7) (see SI for
details). Then the ratio of the two critical winding numbers
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tells us whether the conventional exponential phase-matching term
is dominant (r = 1) or the new Bessel term (r ? 1). To illustrate the
differences that can arise from conventional exponential phase-
matching term versus the new Bessel term, in Fig. 1 we show a
comparison between these two regimes for a non-collinear angle of
h 5 5u. This example shows that the Bessel term dependence on the
OAM via , can greatly reduce the SHG power, and hence conversion
efficiency, thereby also greatly reducing the available spiral
bandwidth. We note that for increasing ,, the beam Rayleigh
length will decrease. Therefore the interaction length (i.e. the
crystal) should be kept sufficiently small in order to ensure that
diffraction effects may be neglected, as assumed in this work.

We consider three cases of phase-matching with vortex beams: (i)
one OAM beam with winding number , and a Gaussian (, 5 0)
beam, that we discussed above, (ii) two OAM beams with opposite
winding numbers , and 2, respectively, and (iii) two OAM beams,
both with the same winding number ,.

Case (ii). In this case two fundamental beams of opposite OAM
combine to make a SH field with zero winding number (to leading
order). This case is therefore the reverse process of degenerate
parametric down conversion so lessons learned here may also apply
to PDC11,12. In particular, we find that this case involves not only the
conventional phase-matching described by the exponential term but
also has the Bessel term, as seen in case (i). To the best of our
knowledge the Bessel term has not appeared in previous treatments
of PDC, perhaps justified by the fact that small angles are employed: In
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the limit h R 0 the Bessel term tends to unity and only the
conventional exponential term remains. In that limit, we assume the
SHG is phase-matched for , 5 0, which requires Dk 5 (2k0 2 ke) 5 0,
and the SHG power varies as Eq. (6), with an additional factor 4 in the
argument of the sinc function (see SI). For large r (see Eq. 8), we may
retain the Bessel term alone which can be represented in the form

P2 ‘ð Þ!
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2z‘h
R

� �����
����

2

: ð9Þ

This is of the same form as in case (i) but now with a factor 2 larger
argument of the Bessel function.

Case (iii). For a fixed medium length the SH power will vary with the
winding number , as

P2 ‘ð Þ!sinc2 Dk ‘ð ÞL
2
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If we assume that the SHG is phase-matched for , 5 0 which again
requires Dk 5 (2k0 2 ke) 5 0, then using ke 5 2ko we find Dk(,) 5 0.
This is in keeping with the known result for single beam SHG that if
the integration is phase-matched for a Gaussian beam it is also phase-
matched for vortex beams of varying winding number8 (or indeed
any superposition of Laguerre-Gauss beams). Thus the SHG power is
independent of the winding number ,.

Experiment. Experiments are performed in order to measure the
predicted change in the phase matching conditions when using
spiral beams. Specifically we look at cases (i) and (ii) described
above (case (iii) shows no dependency on ,). A standard non-
collinear second harmonic generation (SHG) geometry is
implemented in which two beams are overlapped onto a SHG
crystal. The experimental scheme for case (i) is shown in Fig. 2 (see
methods). The output of an amplified Ti:Sapphire pulsed laser,
producing ,90 fs pulses, centred at l0 5 785 nm with a repetition
rate of 100 Hz, is split into two equal components by a 50550
beamsplitter. A spiral phase is applied to one of the beams via a
spatial light modulator (SLM)4. The beams are loosely focussed to
form a spatial overlap on to the BBO crystal at an angle h 5 6 6 1u.
The input and output beam profiles are shown in Fig. 3. We note that
the size of the beams does not appreciably change over the
interaction length (Lint , 500 mm) i.e. the beam Rayleigh length is
larger than the BBO crystal length for all ,. Moreover the OAM mode
radius and ring width was kept constant for all , by adapting a similar

technique to that described in references17,18. An annular intensity
profile is impressed onto the OAM beam that does not vary with ,. In
reference17 this was accomplished using an axicon. Here we directly
impress the annular profile onto the SLM, therefore simplifying the
setup at the expense of a lower energy throughput. We calculate that
the interaction length is limited by group velocity mismatch (GVM)
and accordingly we use a BBO crystal of the same length. The beams
are detected after the BBO crystal by a photodetector with a blue filter
used to reject the fundamental and measure only the second
harmonic light. An aperture isolates the non-collinear beam and
the power is measured as the winding number is varied between ,
5 0 … 20, shown in Fig. 4 (a). The most obvious feature is that whilst
the collinear second harmonic power of the two beams do not change
with , (in agreement with previous work), there is a marked , 40%
decrease in the SH power of the non-collinear beam as the OAM is
tuned. The experimental data is also fitted very precisely using Eq. (7)
with no free parameters.

We extend this study using a similar experimental setup in order to
study case (ii) presented above. The filtered output of the SLM is now
split into two equal components by moving the 50550 beamsplitter,
S, after the telescope. Two oppositely spiralling OAM beams are
obtained by placing and even number and odd number of mirror
reflections on the two separate arms. The two beams are then over-
lapped non-collinearly onto the BBO sample at a non-collinear
incidence angle, h. Two different experiments were performed in
which we investigated the non-collinear conversion efficiency for
two different interaction angles, h 5 3 6 0.5u and h 5 1.8 6 0.2u.
We measure a ,50% decrease in SH power for an incidence angle of
h 5 3u and ,15% decrease for h 5 1.8u. The normalised SHG power
is plotted in Fig. 4 (b) as a function of the OAM winding number ,.
The fall-off in the generated second harmonic beam follows Eq. (9)
very precisely, for both interactions angles. It is worth noting that the
value of the parameter r 5 ,C/,c is much greater than 1 (rexp $ 5) for
all the experimental conditions used and thus we do indeed expect to
see the Bessel dependence as per Eq. (9).

Discussion
We have theoretically investigated non-collinear SHG with vortex
beams and shown that for small angles this can be accurately
described by a generalized phase-matching theory that yields Eqs.
(7) and (9) as limiting cases. Experiments performed in these two
limiting cases, dominated by a Bessel-like phase-matching function,
were in excellent agreement with the theory. However as alluded to
earlier, the full description of non-collinear phase matching is

Figure 1 | Theoretical plot of normalised second harmonic power as a function of the vortex beams winding number ,. The curves are plotted according

to the non-collinear interaction of a Gaussian and vortex beam using the phase-matching solutions given by Eq. 6 (black line) and Eq. 7 (red line).

The angle of incidence was chosen to be h 5 5u and all other parameters are the same as in experiments.
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described by a more complex set of equations (see SI). In particular,
the second-order nonlinear polarization is proportional to the product
of the two fundamental fields, and may be written for non-collinear
interaction between two fundamental fields E0 ~rð Þ and E1 ~rð Þ as (see SI)

E0 ~rð ÞE1 ~rð Þ~
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We find that in case (i) (Eq. 11), where AG(r) and A,(r) are
the electric field amplitudes of the Gaussian and vortex beam

respectively, that there is an additional phase imparted onto the
non-collinear field when n . 0. In the previous description we
assumed that for non-collinear angles between zero and a critical
angle hc, we use only the zero order terms (i.e. n 5 0). This critical
angle may be determined by considering the situation for which the
SH power goes to zero, corresponding to some critical winding num-
ber ,max. In our measurements we have a maximum value of , 5

,max 5 20 and we can then find the maximum value of h 5 hmax for
each case: these are the limiting interaction angles above which, we
should expect a relevant role of the n . 0 terms. Thus,

hmax~
ffiffiffi
6
p

L
.
‘maxR*70 and hmax~

ffiffiffi
6
p

L
.

2‘maxR*3:50 for cases

(i) and (ii), respectively. Including the full description of the non-
collinear phase matching for higher angles leads to fractional OAM
winding numbers appearing in the non-collinear beam. This will be
investigated in future work and is of critical importance when con-
sidering the generation of high order winding numbers or indeed

Figure 3 | Spatial intensity profiles of the (a) spiral (, 5 20) and (b) Gaussian beams at the overlap position (within the BBO crystal) measured with a

beam profiler. The spiral and Gaussian beams have diameters of ,0.5 mm and ,1.2 mm respectively. The size of the spiral beam is kept constant as the

OAM number , is varied. (c) a photograph of the second harmonic (SH) generated beams projected onto a surface shortly after the BBO crystal position,

from left to right the spiral SH, the non-collinear SH and Gaussian SH.

Figure 2 | Experimental layout for case (i), described in detail in the methods section. Input pulses are split by a beamsplitter (S), the reflected

component, with Gaussian profile (L 5 0), passes a tuneable delay stage while the second traverses a fixed optical path in which the pulse’s phase and

amplitude are corrected (by a series of half-wave plates (HWP) and a spatial light modulator (SLM)) to impart OAM onto the beam (L). A spatial filter (an

aperture (SF) in the fourier plane of a 151 telescope (T)) removes higher order OAM modes and the beams (L 5 0 and L) are loosely focussed (F) and

overlapped non-collinearly onto a BBO crystal. The non-collinear output is measured with a photodetector.
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PDC at large angles in entanglement experiments as it suggests that
OAM modes generated in these cases will not conserve the input
OAM14. Finally, we note that an expression for the SHG power of the
same form shown here will arise in the treatment of walk-off effects
and beam tilt due to the SLM but with h in the expression for
‘c~

ffiffiffi
6
p

R
�

hL
�� �� replaced by the walk-off angle or tilt angle.

Methods
The experimental scheme to measure the effect of OAM on phase matching in
BBO is presented in Fig. 2. The figure and the following paragraph describe the
experiment performed to explore case(i) outlined in the theory section. Ultrashort
pulses of Dt , 90 fs, centered at 785 nm are input at 100 Hz, the pulses are split
by a 50550 beamsplitter into two equal components with flat phase fronts. The
transmitted beam is polarised with respect to a spatial light modulator (SLM) by
rotation of a half-wave plate (HWP). The SLM imparts a phase and amplitude
correction to the beam in order to produce spiral pulses with , 5 220 … 20 with
equal diameter. In order to select the desired , value a diffraction grating is
superimposed onto the SLM to separate spatially the various , modes, which are
selected in the Fourier plane of a 4f telescope (T) using a spatial filter (SF). The
reflected beam of the beamsplitter is delayed with respect to the other beam by a
1-dimensional translation stage. Both beams (L and L50) are loosely focussed (f)
toward the BBO crystal in a non-collinear geometry at an angle of h 5 6u. The
OAM and Gaussian spot sizes were measured to be 500 mm and 1.2 mm
respectively. The output beams, including the generated resultant noncollinear
second harmonic (NC-SH) beam, are measured following the BBO with a
photodetector. For case (ii) the beamsplitter (S) is moved after the spatial filter
and an odd or even number of mirror reflections control the sign of the OAM
number (,, 2,) on the beams.
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Figure 4 | Non-collinear second harmonic power as a function of the winding number , of the OAM beam. (a) A Gaussian and vortex beam are

overlapped in a non-collinear geometry onto a BBO crystal (Case (i)). The angle of incidence between the two non-collinear beams was 6u. (b) Two vortex

beams of opposing winding numbers , and 2, respectively, are overlapped onto a BBO crystal (Case (ii)). The non-collinear second harmonic beam is

detected. The data are fit using Eq. (7) in (a) and Eq. (9) in (b) using only the experimental conditions. The dashed blue line shows the dependence

assuming collinear geometry according to Eq. (6). Note that the collinearly detected beams do not vary with winding number (only shown in (a)).
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