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Abstract: An on-line multi-frequency electrical resistance tomography (mf ERT) device with a melt-
resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging
in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of
platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al2O3) to
prevent an electrical short. The noise reduction hardware has been designed by two approaches:
(1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency
pair: low f L and high f H , for thermal noise compensation. THD is determined by a percentage
evaluation of k-th harmonic distortions of ZnO at f = 0.1~10,000 Hz. The f L and f H are determined
by the thermal noise behavior estimation at different temperatures. At f < 100 Hz, the THD
percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching
zero. At the determined f L ≥ 10,000 Hz and f H ≈ 1,000,000 Hz, thermal noise is significantly
compensated. The on-line mf ERT was tested in the experiments of a non-conductive Al2O3 rod
dipped into conductive molten zinc-borate (60ZnO-40B2O3) at 1000~1200 ◦C. As a result, the on-line
mf ERT is able to reconstruct the Al2O3 rod inclusion images in the high-temperature fields with low
error, ς f L , T = 5.99%, at 1000 ◦C, and an average error 〈ς f L 〉 = 9.2%.

Keywords: multi-frequency electrical resistance tomography; total harmonic distortion; thermal
noise; molten oxide; crystalline phase imaging

1. Introduction

In steel industries, new functional steel materials are being developed for next-
generation car and aerospace materials. One of the critical points of developing new
functional steel materials is the crystalline phase behaviors in high-temperature molten
oxide, which influences steel material quality [1]. Particularly, the spatio-temporal dis-
tribution of the oxide crystal volume ratio, ϕ, in the crystalline phase behaviors is an
advantageous key parameter to observe the crystallinity in a high-temperature molten
oxide. To observe the product quality control of new steel materials, a reliable measure-
ment method of the spatio-temporal distribution of oxide crystal ϕ is highly demanded.
Several conventional off-line measurement methods were used to observe the crystalline
behaviors, which are scanning electron microscopy (SEM) [2], X-ray diffraction (XRD) [3],

Sensors 2022, 22, 1025. https://doi.org/10.3390/s22031025 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0509-841X
https://orcid.org/0000-0002-5167-6727
https://doi.org/10.3390/s22031025
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031025?type=check_update&version=3


Sensors 2022, 22, 1025 2 of 16

differential scanning calorimetry (DSC), and differential thermal analysis (DTA) [4]. These
measurement methods are able to observe the crystalline behaviors, but they are limited for
observing its morphology and distribution. In order to enhance the measurement quality,
thermogravimetric and differential thermal analysis (TG-DTA) was introduced for the
recent steel industry application as a high-standard comprehensive measurement method.
TG-DTA is mainly able to measure the mass and thermal change in the high-temperature
heated materials during the melting, solidification, crystallization hardening, or transi-
tion. Still, TG-DTA as an off-line measurement method is not able to achieve the on-line
spatio-temporal distribution of oxide crystal ϕ of the high industrial demands.

In order to achieve the on-line measurement methods in molten oxide, previously,
several electrical fundamental phenomena were reported. For instance, the oxide crys-
tallization phase in molten CaO-SiO2-TiO2 slag shows the dramatic change of electrical
conductivity, σ, due to temperature drops [5]. Besides, an electrical permittivity, ε, which
is inversely proportional to reactance, also shows a strong relationship to the changes in
oxide crystal ϕ during the temperature drops [6]. Based on this potential, both electrical
properties reflecting in the real and imaginary parts of complex resistance are essential for
detecting the crystalline phase in molten oxide. However, a conventional electrical resis-
tance measurement does not provide adequate imaging of the spatio-temporal distribution
of oxide crystal ϕ in high-temperature molten oxide.

In order to perform the adequate imaging of the spatio-temporal distribution of oxide
crystal ϕ in high-temperature molten oxide, electrical impedance tomography (EIT) [7] was
proposed. Recently, EIT was improved as frequency difference EIT (fdEIT) [8], also known
as multi-frequency EIT (mf EIT) [9], which has high potential as a measurement device for
the on-line spatio-temporal distribution. The mf EIT can be simplified as multi-frequency
electrical resistance tomography (mf ERT) by focusing on the real part of the impedance for
interpreting the σ distribution of the measured objects for reconstructing the images using
a comprehensive image reconstruction algorithm. Although the mf ERT application is able
to reconstruct the images of the measured objects in various temperature differences, using
mf ERT it is difficult to achieve the image reconstruction of the spatio-temporal distribution
of oxide crystal ϕ in high temperatures due to the limitation of mf ERT, which is designed
only for room temperature application.

In the case of higher room temperature applications, several mf ERTs were imple-
mented at intermediate temperatures. For instance, mf ERT as a thermal estimator during
hyperthermia at 27~41 ◦C [10] and the plastic inclusion imaging in the plastic extruder
at 27~100 ◦C [11]. Even though mf ERT is able to perform in higher room temperature
applications, it is difficult to apply mf ERT in high-temperature fields of 1000~1200 ◦C.
The challenges for high-temperature field applications are related to the complexity of the
sensor’s material selection, especially for selecting the sensor’s material with a sufficient
melting point, and the design of noise reduction hardware, which is able to avoid the
harmonic distortion due to the non-linearity of high-temperature molten oxide. Therefore,
in this paper, we propose a new concept of an on-line multi-frequency electrical resistance
tomography (mf ERT) device for the high-temperature spatio-temporal distribution of oxide
crystal ϕ with two original aspects, which are: (1) the architecture of the melt-resistive
sensor and (2) the design of noise reduction hardware, which consists of the specified
total harmonic distortion (THD) for the robust multiplexer, and current injection frequency
determination: low f L and high f H frequencies, for compensating the thermal noise.
Three objectives to clarify the on-line mf ERT are presented as: (1) current injection fre-
quencies determined by estimating the thermal noise behavior at different temperatures,
(2) experimental evaluation of the on-line mf ERT for mimicking the spatio-temporal distri-
bution of oxide crystal ϕ by an Al2O3 rod as an inclusion at different temperatures, and
(3) accuracy evaluation of the on-line mf ERT reconstructed images.
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2. Melt-Resistive Sensor and Noise Reduction Hardware under High-Temperature Fields
2.1. Melt-Resistive Sensor

The first original aspect of the material selection in high-temperature fields is proposed
by a melt-resistive platinum-rhodium electrode (Pt-Rh) attached to a crucible. Pt-Rh is a
metallic material that possesses great physical properties, such as very high conductivity,
σPt = 1.02× 107 S/m, and a high melting point at 1773.55 ◦C [12], which is an ideal material
for the melt-resistive electrodes under high-temperature fields in a crucible. In this study,
the experimental setup was composed of the melt-resistive sensor attached to the Al2O3
crucible furnace, as shown in the orange dashed-line box in Figure 1a. The melt-resistive
sensor consists of eight cylindrical electrodes made of platinum-rhodium (Pt-20mass%Rh)
alloy with a diameter ∅Pt = 2 mm, which is shielded by non-conductive hollow cylinders
made of aluminum oxide (Al2O3) with a diameter ∅Al2O3 = 3 mm, which are dipped into
the crucible at regular circumference. In order to prevent an electrical short, the Pt-Rh
electrode and the Al2O3 shield are set and maintained with no gap.
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Figure 1. Schematic view of (a) the overall on-line mf ERT device and (b) the resistance measurement
of molten oxide.

2.2. Noise Reduction Hardware under High-Temperature Fields

The second original aspect of the resistance measurement under high-temperature
fields is the noise reduction hardware. The schematic view of the overall on-line mf ERT
device under high-temperature fields is shown in Figure 1a. To develop the noise reduction
hardware, two strategic concepts are considered, which are: (1) total harmonic distortion
(THD) for the robust multiplexer design, and (2) the current injection frequency pair: low
f L and high f H frequencies, for compensating the thermal noise.

2.2.1. Total Harmonic Distortion for Robust Multiplexer

THD is expressed as the ratio of the signal component to its harmonic signal response
caused by the non-linearity of the multiplexer. By applying THD, the aggregated signal-to-
noise ratio (SNR) of hardware during non-linear measurement is obtained. Since zinc oxide
(ZnO) is the common inorganic compound used as a background in the molten oxide, the
electrical properties of ZnO are selected as the assumption under the defined resistivity [13],
RZnO, as shown in Table 1. Here, the THD percentage is estimated by a simulation study.
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Figure 2 shows a ten k-th harmonic THD plot in the case of ZnO material at I = 1 mA
under the range of f = 0.1~10,000 Hz. Evidently, at the lower frequency f < 100 Hz,
the percentage of THD is relatively high and fluctuates. Otherwise, THD at f ≥ 100 Hz
declines dramatically, even nearly reaching zero.
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Figure 2. A ten k-th harmonic THD plot in the case of ZnO material at I = 1 mA under the range of
f = 0.1~10,000 Hz.

In terms of resistance measurement by current injection as the signal component in
THD, the THD represents the residual measured voltage by only removing the fundamental
frequency in the frequency domain [14],

THD =

√
∑+∞

k=2 U2
k

U1
100% (1)

where U1 is the root-mean-square (RMS) of the measured fundamental voltage, and Uk
is the measured RMS voltage at k-th harmonic voltage. Using Ohm’s law, the measured
resistance is then expressed as R =F|u1(t)|/F|i(t)|, where F is the Fourier transform
of the given fundamental voltage signal, u1(t), and current signal, i(t), in the time
domain [15].

As shown in Figure 1b, the measured resistance, R , of the on-line mf ERT device
consists of the hardware resistance, Rh, and the sensor resistance, Rs , which is defined
as R = Rh+Rs. Mainly, Rh consists of coaxial cable resistance and the switching device’s
resistance, which contains four multiplexer (MUX) chips to switch the measurement point
required by the LCR meter: high current (HC), high potential (HP), low potential (LP),
and low current (LC). In the case of ideal hardware, Rh is considered to be neglected by
proper design due to the high-temperature molten oxide non-linear measurement, and
hence, the main component of R only depends on Rs. We specified the multiplexer of
on-line mf ERT in a 4 × 8-channel ADG1408 [16] with very low THD, 0.025% (tested at
load resistance RL = 110 Ω under 15 Vp-p power supply in the range of f = 20~20,000 Hz).
In addition, the SNR of our mf ERT device is 55 dB at f = 1,000,000 Hz, which meets the
standard requirement of an ERT-based device for image reconstruction [17].

2.2.2. Current Injection Frequency Pair: Low f L and High f H Frequencies, to Compensate
the Thermal Noise

To compensate the thermal noise, the relevant frequency pair is determined. Under
high-temperature fields, thermal noise known as Johnson–Nyquist noise is unavoidable.
Figure 3a–c show the plots of the estimated contact resistance, Rc, and material resistance,
RΩ, thermal noise (at Rc), Rcn, and thermal noise (at RΩ), RΩn, and the estimated R and
thermal noise to R ratio, η , under Table 1 assumptions. The measured R in Figure 3a
contains both Rcn and RΩn, each of which has the thermal noise component, as shown in
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Figure 3b. It is shown that the thermal noise is significantly elevated due to the changes of
absolute temperature, T, in the low- and high-frequency regions. In contrast, the thermal
noise is compensated on certain frequency pairs, as shown in Figure 3c.
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Here, Rcn and RΩn depend on T, and are expressed as:

Rcn =

√
4RqkBT∆ f L

I
(2)

and

RΩn =

√
4RbkBT∆ f H

I
(3)

where Rq is the charge transfer resistance, Rb is the bulk resistance, kB is the Boltzmann’s
constant, ∆ f L is the frequency bandwidth at the lower cut-off frequency, f L, and ∆ f H

is the frequency bandwidth at the high-frequency limit, f H . Generally, the frequency
bandwidth is defined as ∆ f = 1/4RsysCsys [18], where Rsys is the resistance and Csys is
the capacitance of the system, respectively. In terms of ∆ f L and ∆ f H bandwidth in the
thermal noise, f L is dominated by Rq. At this point, Rq declines and the capacitance of the
electric double layer (EDL), CD, enlarges at the f increment. This phenomenon continues
until the resistance of EDL is yielded in a lower value than Rq [19]. At the highest point,
f H is dominated by Rb, which is also influenced by bulk reactance at f H . Hence, f L is
expressed as:

f L ≥ 1
4RqCD (4)

and f H is limited at:

f H ≈ 1
4RbXb

(5)

Under the range of the determined f L and f H , the measured resistance in the on-line
mf ERT device is evaluated as R = Rc+RΩ. In the case of current injection through the
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electrode, Rc arises in the EDL and is expressed as a parallel circuit between Rq and CD [20]
which is influenced by Rcn , defined as Rc = (Rq+Rcn)||C D. As the component of Rcn, Rq

is interpreted as:

Rq =
kGT
vFI

(6)

where kG is the gas constant, v is the electron valence, and F is the Faraday constant.
Then, CD is established as ions and other charged species from the molten oxide attached
to the electrode surface in the stern and the diffusion layers as a dielectric capacitor,
CD= Aεoεr/k−1 [21], where A is the surface area of the electrode and k−1 is the Debye
length approximated by [22]:

k−1 =

√
εoεrkBT

2F2
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exciting alternating current. At different temperatures, Rb changes linearly and is expressed
by the general equation of Rb= Rb0(1 + µ∆T), where Rb0 is calculated as Rb in Equation (8)
at room temperature and µ is the temperature coefficient of RZnO.

Based on Equations (2) and (3), one of the thermal noise factors comes from the
resistance, which affects the measured resistance, R. In order to interpret the thermal noise
effect on the resistance measurement, the correlation between Rcn+RΩn and R is calculated
based on the proposed Equations (2)–(9) using Table 1 assumptions. The values above the
double lines in Table 1 are the common constants; otherwise, below the double lines are
our assumptions. The thermal noise is important to be compensated by determining the
proper f L and f H in the real R measurement in the case of unknown Rq, CD, Rb, and Xb.
The determined f L and f H are divided into four sub-steps, which are the calculation of
(2-1) the thermal noise to R ratio at the j-th temperature sequence, ηj, (2-2) the spatial mean
of thermal noise to R ratio 〈η〉, (2-3) deviation of thermal noise to R ratio 〈η〉′, and (2-4) f L

is determined at the first percentile of 〈η〉′, Q1〈η〉 ′ and f H at the third percentile of 〈η〉′,
Q3〈η〉 ′. In step (2-1), ηj is calculated by:

ηj =
Rcn

j +RΩn
j

Rj
100% (10)

where j is the temperature sequence defined as 1, 2, . . . , j, . . . , J. Then, in step (2-2),
the average ratio for all temperatures in each frequency is calculated for 〈η〉, which is
expressed as:

〈η〉 = 1
J

J

∑
j=1

ηj (11)
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Thus, the resistance distribution among ηj is obtained by calculating the deviation of
the resistance at each different temperature in step (2-3) by:

〈η〉′ =

√√√√1
J

J

∑
j=1

(
ηj − 〈η〉

)2 (12)

Finally, in step (2-4), the determined f L and f H are obtained by analyzing the quartile
of the 〈η〉′. Quartile analysis is adopted as an indicator to determine the threshold for
region-merging as it showed less sensitivity to variations of the data distribution [26]. The
limit of f H frequency is determined at the third quartile of the deviation Q3〈η〉 ′ and the
lower cut-off frequency is determined at the first quartile of the deviation Q1〈η〉 ′:

f H ≈ Q3〈η〉 ′ (13)

f L ≥ Q1〈η〉 ′ (14)

By solving Equations (2)–(14), the thermal noise is compensated at the determined
f L ≥ 10,000 Hz and f H =1,000,000 Hz, as shown in Figure 3c. Here, under the deter-
mined f L and f H , R tends to be a non-frequency-dependent region, which is suitable for
visualizing the molten oxide under high-temperature fields.

Table 1. Assumption values for each variable to estimate R and thermal noise to R ratio, η, in the
case of molten ZnO material at T = 1000~1200 ◦C.

Symbol Definition Value Unit

ε0 Vacuum permittivity 8.854 × 10−12 (F/m)
kB Boltzmann’s constant 1.38 × 10−23 (J/K)
kG Gas constant 8.31 (J/(K mol))
z Elementary charge 1.60 × 10−19 (C)
F Faraday constant 96,500 (J/mol)

RZnO Resistivity of ZnO 1 (Ωm)
Cb Bulk capacitance of ZnO 5 (nF)
v Valence of ZnO 14 (-)

µ
Temperature coefficient of

RZnO 0.01 (-)

d Electrode distance 34 (mm)
r Electrode radius 1.5 (mm)

I Current injection
amplitude 1 (mA)

3. Experiments
3.1. Experimental Setup

Figure 4 shows the experimental setup composed of a crucible furnace, a MUX,
an LCR meter, and a personal computer (PC). The Al2O3 crucible with a melt-resistive
sensor was placed inside the crucible furnace held by a crucible supporter. Then, the
temperature inside the crucible was controlled by the MoSi2 heating element, while the
temperature was monitored by a B-type thermocouple. The melt-resistive sensor was
connected to an 8-channel MUX with Pt wires which were then spliced to a coaxial cable.
The MUX was used as a switching unit to control the melt-resistive sensor electrodes during
resistance measurement by the LCR meter. The LCR meter had a resistance measurement
accuracy of 0.08% and an excitation frequency range from fmin 4 Hz to f max 5,000,000 Hz.
All measurement data were transmitted to the PC equipped with image reconstruction
algorithm software which was adopted from our previous research [27].
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3.2. Experimental Methods
3.2.1. Measurement Pattern

Figure 5 shows the Kelvin-clip measurement pattern. The measurement pattern
conducted in this study was modified from the Quasi adjacent technique [28] by Kelvin-clip
as a two-wire measurement mode [29,30]. In this mode, the measurement was conducted by
constant current injection and voltage measurements [31]. Then, the number of resistance
measurement patterns, M, was calculated by E(E− 1)/2, where E is the number of the
electrodes, and solved as M = 28.
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3.2.2. Image Reconstruction

To reconstruct the inclusion image of Al2O3 among the molten oxide background in
high-temperature fields, the conductivity distribution images, σ, were reconstructed
based on the standard sensitivity matrix σ = STR, where R ε <M is the M-dimensional
measured resistances, R, σ ε <N is the N-dimensional vector of conductivity dis-
tribution, and S ε <MN is the general sensitivity matrix. σ was represented as
[σ1(r1), σ2(r2), . . . , σn(rn), . . . , σN(rN)]

T ε <N , where σn(rn) is the conductivity distribution
on the cross-section and rn= (x n, yn) is the Cartesian coordinate of the n-th pixel of con-
ductivity distribution. N is the pixel number in a two-dimensional image. Further, the
reconstructed σ from R utilizes the iterative Landweber image reconstruction algorithm
(ILBP) [32]:

i+1σ = iσ +α(S)T(R − S)iσ ) (15)
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where i+1σ is the reconstructed image at i + 1 iteration and α is the relaxation factor.
Here, α was chosen based on the error reflected in the L-Curve’s elbow [33] by heuris-
tic observation to qualitatively obtain the image reconstruction [34]. The R vector
at the determined ∆ f at every temperature, T, which was defined as ∆R∆ f , T,m =[

∆R∆ f ,T,1, . . . , ∆R∆ f ,T,m, . . . , ∆R∆ f ,T,M

]
ε <M, which was expressed as the resistance dif-

ference between one measured resistance, R f H ,T,m , at the determined f H and another

measured resistance, R f L ,T,m, at the determined f L in mf ERT. Thus, the determined resis-
tance difference at each m was calculated based on:

∆R∆ f , T,m =

∣∣∣∣∣∣
(R obj

f L ,T,m−Rref
f L ,T,m)− (R obj

f H ,T,m−Rref
f H ,T,m

)
(R obj

f H ,T,m−Rref
f H ,T,m

)
∣∣∣∣∣∣ (16)

where ref was the reference condition without the Al2O3 rod as an inclusion and obj were
the Al2O3 rod inclusions inside the crucible in different conditions.

3.3. Experimental Condition

Figure 6 shows the experimental condition: the melting background materials inside
the Al2O3 crucible were composed of 60ZnO-40B2O3 (mol %), which had a liquidus tem-
perature of 988 ◦C. Meanwhile, the inclusion material was an Al2O3 rod with ∅rod = 8 mm.
The crucible temperature was conducted at T = 1000, 1050, 1100, and 1200 ◦C, respectively.
The resistance measurement for each electrode pair was conducted for each temperature
without inclusions as Rref

∆ f , T and with inclusions as Robj
∆ f , T by the LCR meter’s current

injection setting at 1 mA, within the frequency range of 100~5,000,000 Hz.
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4. Results
4.1. Single-Pair Measurement Results at Different Temperatures

Figure 7 shows the measurements of the spatial and temporal distribution of oxide crys-
tal ϕ at T = 1000 ◦C in the crucible furnace mimicked by (a) liquid phase of 60ZnO-40B2O3
as a background and (b) with an Al2O3 rod of ∅rod = 8 mm as an inclusion. Then, Figure 8
shows the resistance plot of single-pair measurements at different frequencies and temper-
atures at (a) m = 13 and the opposite position (b) m = 20. From this result, it can be seen
that our on-line mf ERT is capable of measuring the presence of the Al2O3 rod inclusion
at specific electrode pairs. In the case of the absence of the Al2O3 rod at m = 13, as shown
in Figure 8a, the resistance difference between the reference and the object, Robj

f , T – Rref
f , T ,

among all temperatures is very small. In contrast, on the opposite electrode pair at m = 20,
as shown in Figure 8b, the Robj

f , T – Rref
f , T value is relatively large.

Moreover, the resistance difference is significantly decreased during the increasing
frequency and relaxed at a specific point, as shown in Figure 8b. Hence, it is confirmed that
f H is determined at the smallest distribution of resistance difference, which occurred at
f H ≈ 1,000,000 Hz. On the other hand, f L, which is determined at ≥10,000 Hz, provides
the biggest distribution of resistance difference, as shown in Figure 8b. Heuristically, it is
shown that the resistance ranges from f L to f H are the non-frequency-dependent ranges,
which meet the requirement explained in Section 2.
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Sensors 2022, 22, x FOR PEER REVIEW 11 of 17 
 

 

  

(a) (b) 

Figure 8. Resistance plot of single-pair measurements at different frequencies and temperatures at 

(a) m = 13 and (b) at the opposite position, m = 20. 

Moreover, the resistance difference is significantly decreased during the increasing 

frequency and relaxed at a specific point, as shown in Figure 8b. Hence, it is confirmed 

that fH is determined at the smallest distribution of resistance difference, which occurred 

at fH ≈ 1,000,000 Hz. On the other hand, fL,  which is determined at ≥10,000 Hz, provides 

the biggest distribution of resistance difference, as shown in Figure 8b. Heuristically, it is 

shown that the resistance ranges from fL to fH are the non-frequency-dependent ranges, 

which meet the requirement explained in Section 2. 

4.2. All-Pair Resistance Measurement Results at Different Temperatures 

Figure 9 shows the resistance plots of all measurement pairs in the case of T = 1000, 

1050, 1100, and 1200 °C at the determined (a) 𝑓𝐿 = 10,485 Hz, (b) 𝑓𝐻 = 1,041,400 Hz, and 

(c) determined resistance difference, ΔRΔf, T, between the object and the reference. As de-

scribed in Section 4.1, we calculated the ΔRΔf, T,m distribution of all measurement pairs 

under the determined fLfH using Equation (16). It is clear that since σAl2O3  < σ60ZnO-40B2O3, 

the measurement results clearly show that RΔf, T,m
obj

 > RΔf, T,m
ref

 at every temperature. On the 

other hand, the resistance difference level between RΔf, T,m
obj

  and RΔf, T,m
ref

  is relatively mi-

nor at higher temperatures. Thus, the resistance differences are almost invisible, especially 

at 1100 and 1200 °C. To perform a better data visualization, the image is reconstructed by 

Equations (15) and (16) under the determined fL  and fH.  

  

(a) (b) 
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4.2. All-Pair Resistance Measurement Results at Different Temperatures

Figure 9 shows the resistance plots of all measurement pairs in the case of T = 1000,
1050, 1100, and 1200 ◦C at the determined (a) f L = 10,485 Hz, (b) f H = 1,041,400 Hz, and
(c) determined resistance difference, ∆R∆ f , T , between the object and the reference. As de-
scribed in Section 4.1, we calculated the ∆R∆ f , T,m distribution of all measurement pairs un-
der the determined f L f H using Equation (16). It is clear that since σAl2O3 < σ60ZnO-40B2O3 ,
the measurement results clearly show that Robj

∆ f , T,m > Rref
∆ f , T,m at every temperature. On

the other hand, the resistance difference level between Robj
∆ f , T,m and Rref

∆ f , T,m is relatively
minor at higher temperatures. Thus, the resistance differences are almost invisible, espe-
cially at 1100 and 1200 ◦C. To perform a better data visualization, the image is reconstructed
by Equations (15) and (16) under the determined f L and f H .

4.3. Image Reconstruction Result

Figure 10 shows the image reconstruction result of σ in the case of the determined
f H = 1,041,400 Hz with several f L frequencies at 1000~1200 ◦C based on Equation (15). The
determined f H frequency remained fixed at 1,041,400 Hz, with f L trialled at 100 (mini-
mum), 295, 871, 1081, 2569, 7579, 10,485, 22,361, 65,975, 107,360, 194,660, and 574,350 Hz
(maximum), respectively. As shown in Figure 10, the satisfactory result qualitatively oc-
curred at f L ≥ 10,485 Hz. The noisy result is shown at T = 1050 ◦C at f L < 10,485 Hz.
In summary, the determined f L ≥ 10,485 Hz (or approximately f L ≥ 10,000 Hz) and
f H = 1,041,400 Hz (≈1,000,000 Hz) provided the best image reconstruction at all con-
ducted temperatures.
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Figure 10. Image reconstruction result of σ in the case of the determined f H = 1,041,400 Hz with sev-
eral f L frequencies at 1000~1200 ◦ C. Qualitatively, the satisfactory result occurred at f L ≥ 10,485 Hz.

5. Discussion

In order to evaluate the image reconstruction accuracy for each temperature, the
image reconstruction result shown in Figure 10 is compared with the experiment condition
shown in Figure 6 as a true value in three steps, which are: (1) image edge detection by the
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Chan-Vese segmentation algorithm, (2) image binarization, and (3) area error calculation,
as shown in Figure 11.
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Figure 11. Image reconstruction accuracy evaluation flow chart.

As the first evaluation in step (1), Figure 12 shows the reconstructed image edge
detection using the Chan-Vese segmentation algorithm. This algorithm is based on level
sets that are iteratively evolved to minimize the representative image energy. The image
energy is defined by weighted values corresponding to the sum of differences intensity
from the average value outside, inside, and a term which is dependent on the length of the
boundary of the segmented region [35]. Step (1) is divided into two sub-steps, starting with,
(1.a) the general image grayscale conversion of σ in Equation (15) under the determined
f L and fixed f H at each temperature, σ f L , T . The gray image output, σgray

f L , T , in step (1.a) is
then processed in step (1.b), the morphological Chan-Vese segmentation algorithm under
iteration,
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Finally, in step (3), the image reconstruction accuracy is defined as area error, ς f L , T , at

the determined f H = 1,041,400 Hz in several f L, which is expressed as [36]:
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∣∣∣A∗f L , T−Atrue
f L , T

∣∣∣
Atrue

f L , T
× 100[%] (17)

where Atrue
f L , T is the true area of molten zinc borate glass with Al2O3 inclusion composition

and A∗f L , T is the inclusion area of the image reconstruction result. Figure 14 shows the
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image reconstruction accuracy result as calculated by Equation (17). Here, in order to
obtain the best image detection result as shown in Figure 12, we set the iteration
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