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Unfolding innate mechanisms in the cancer
microenvironment: The emerging role of the
mesenchyme
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Innate mechanisms in the tumor stroma play a crucial role both in the initial rejection of tumors and in cancer promotion.
Here, we provide a concise overview of the innate system in cancer and recent advances in the field, including the activation and
functions of innate immune cells and the emerging innate properties and modulatory roles of the fibroblastic mesenchyme.
Novel insights into the diverse identities and functions of the innate immune and mesenchymal cells in the microenvironment
of tumors should lead to improved anticancer therapies.

Introduction
It is now well established that solid tumors are populated by a
variety of different cell types, which constitute the tumor mi-
croenvironment or stroma and play significant roles in cancer
initiation, progression, and metastasis (Hanahan and Coussens,
2012). These include cancer-associated fibroblasts (CAFs) and
endothelial and immune cells. The latter are important compo-
nents of the tumormicroenvironment and display both anti- and
protumorigenic roles, as they are responsible for the initial
immune-mediated rejection of tumors (Gajewski et al., 2013)
and chronic inflammation that enables carcinogenesis (Greten
and Grivennikov, 2019).

In this context, innate immunity plays a critical role in all
aspects of tumorigenesis, including cancer initiation, prolifera-
tion, angiogenesis, and immunosuppression. Supporting the
antitumor properties of immune cells and alleviating immuno-
suppression has been of particular interest as a therapeutic
target in recent years with the development of immunotherapies
(Mellman et al., 2011). However, it is now known that immu-
notherapeutic regimes are efficient only in a subset of patients,
and development of resistance is common (Chen and Mellman,
2017). Innate immunity plays an important role also in this set-
ting, as well as in the acquisition of resistance to other anticancer
therapies. It is thus of great importance to better understand the
cellular and molecular mechanisms underlying its functions in
cancer and how it can be manipulated for therapeutic purposes.

In this review, we provide a concise overview of the recent
literature on the relationship between the innate stroma and

cancer, including innate immune cell types, the stimuli that lead
to their recruitment and activation, and their functions. We
focus on recent data highlighting the innate properties of me-
senchymal cells and the heterogeneity of the innate tumor
microenvironment. Finally, we briefly discuss the potential
manipulation of innate mechanisms as a strategy for anticancer
therapy.

Innate immune cells in cancer
Innate immunity is mediated by myeloid cells, including mac-
rophages, neutrophils, myeloid-derived suppressor cells (MDSCs),
and dendritic cells (DCs), as well as innate lymphoid cells (ILCs).

Macrophages are the most abundant myeloid cells in the
tumor, and together with neutrophils, they can be found in
different polarization states, originally designated as anti-
tumorigenic M1/N1 and protumorigenic M2/N2, depending on
the cancer type, tumor stage, and microenvironmental milieu
(Noy and Pollard, 2014; Shaul and Fridlender, 2019), although
recent studies have shown that at least macrophage activation
actually presents a continuum of functional differentiation
states (Azizi et al., 2018; Chung et al., 2017; Müller et al., 2017b;
Wagner et al., 2019). Tumor-associated macrophages (TAMs)
and tumor-associated neutrophils (TANs) are consideredmostly
protumorigenic and have been associated with poor prognosis,
while the neutrophil/leukocyte ratio has been proposed as a
biomarker in cancer (Shen et al., 2014; Templeton et al., 2014;
Zhang et al., 2012). MDSCs are immature myeloid cells that
display immunosuppressive functions against T and natural
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killer (NK) cells (Gabrilovich, 2017). They are divided in mono-
cytic and polymorphonuclear MDSCs, which represent the ma-
jority of MDSCs in cancer (Peranzoni et al., 2010), and are
considered by many as the TANs (Shaul and Fridlender, 2019).
Their presence in human cancer is associated with tumor pro-
gression, metastasis, and recurrence (Zhang et al., 2016). DCs are
antigen-presenting cells that act as a bridge between innate and
adaptive immunity. Properly activated DCs are able to prime
T cells and thus their presence correlates with increased patient
survival (Broz et al., 2014; Böttcher and Reis E Sousa, 2018). After
tumor establishment, DCs are considered dysfunctional and be-
come tolerogenic, as they fail to elicit efficient antitumor immune
responses (Scarlett et al., 2012; Demoulin et al., 2013).

ILCs have emerged as a novel cell group with potent immu-
nomodulatory activities. They are considered as the innate
counterpart of T cells and include four subsets: NK cells and
ILC1s, ILC2s, and ILC3s as the equivalents to the T helper cell
subsets (Chiossone et al., 2018). NK cells are cytotoxic, display
antitumor properties, and are associated with good prognosis
(Cerwenka and Lanier, 2016; Iannello et al., 2016), while the role
of the other ILC populations is not clearly understood and seems
to vary greatly depending on the cytokine composition of the
tumor microenvironment (Chiossone et al., 2018; Simoni et al.,
2017; Wagner and Koyasu, 2019).

Innate immune recruitment and activation in the
tumor microenvironment
Recruitment of innate immune cells in tumors
Innate cells in tumors can originate either from the bone mar-
row or through the proliferation and activation of resident im-
mune cells. Myeloid cells, and especially macrophages and
neutrophils, are recruited and infiltrate the tumor site through
chemoattractants, mainly cytokines, chemokines, and growth
factors that are produced by both cancer cells and the sur-
rounding stroma, including CAFs (Fig. 1; Shalapour and Karin,
2019). Genetic deletion, cell-specific ablation, or chemical inhi-
bition of their respective receptors, as reported for example for
CCR2, CCR5, CXCR2, and CSFR1, results in reduced macrophage
and neutrophil/MDSC infiltration and reduced inflammation and
tumorigenesis in animal models of cancer (Ijichi et al., 2011;
Jamieson et al., 2012; Katoh et al., 2013; Pyonteck et al., 2013).

Innate immune sensing and activation
Both recruited and resident myeloid cells are influenced by
tumor-specific signals to undergo “reprogramming” or activa-
tion (Fig. 1). This innate immune activation usually occurs in
response to pathogen-associated molecular patterns or damage-
associated molecular patterns (DAMPs) that act through their
binding to pattern recognition receptors (PRRs) and down-
stream activation of adapter molecules and intracellular sig-
naling pathways to induce the expression of cytokines,
chemokines, and type I IFNs, as well as immunoregulatory
molecules, such as MHC class II, CD40, CD80, and CD86 on DCs
(Rakoff-Nahoum and Medzhitov, 2009). In cancer, PRR acti-
vation usually occurs by tumor-specific endogenous molecules,
which are the result of genetic and epigenetic changes in tumor
cells, can resemble DAMPs, and act as neoantigens (Woo et al.,

2015). These are either expressed by tumor cells or are more
frequently released upon cell death. Cancer cell death is com-
monly induced by therapeutics and is referred to as immuno-
genic cell death, as it can lead to antitumor immune responses
(Galluzzi et al., 2017). Major DAMPs in this case include the
translocation of calreticulin to the cell surface, the secretion of
ATP, and the release of high-mobility group box 1 (HMGB1)
protein (Elliott et al., 2009; Garg et al., 2012; He et al., 2017;
Obeid et al., 2007).

An important source of innate signals and DAMPs is the
extracellular matrix (ECM), which is composed of structural and
matricellular proteins, including collagens, glycoproteins, gly-
cosaminoglycans, and proteoglycans, and is capable of modu-
lating differentiation, migration, infiltration, and polarization of
immune cells. In addition, cleavage of matrisome proteins gen-
erates various bioactive peptides, called matrikines, which act
as chemokines, cytokines, or DAMPs (Eble and Niland, 2019;
Frevert et al., 2018). A representative example is versican, which
interacts with TLR2/6 to activate macrophages, leading to cy-
tokine production and increased metastatic potential in a Lewis
lung carcinoma model (Kim et al., 2009). Versikine, a versican-
derived matrikine, promotes differentiation of DCs, which are
critical for antitumor immunity (Hope et al., 2016, 2017). Besides
these mechanisms, the ECM also modulates innate immune
migration and function through mechanical forces (Huse, 2017).

Nucleic acids derived from tumor cells can also trigger innate
immune responses. In this case, necrotic or apoptotic cancer
cells are phagocytosed by macrophages and/or DCs, and the
released tumor DNA can induce intracellular DNA recognition
mechanisms. In recent years, the stimulator of IFN genes (STING)
has been recognized as an important innate immune cytoplasmic
DNA sensor that senses cyclic guanosinemonophosphate–adenosine
monophosphate (cGAMP) and, through IFN regulatory factor 3
(IRF3) activation and type I IFN production, leads to antitumor
immune responses (Corrales et al., 2015, 2016; Woo et al., 2014).
Type I IFNs, in general, are considered crucial for the activation,
migration, and cross-presentation of DCs (Diamond et al., 2011;
Fuertes et al., 2011), activation of NK cells (Müller et al., 2017a), and
polarization of neutrophils to an antitumor phenotype (Jablonska
et al., 2010; Wu et al., 2015).

Importantly, activation of PRRs can also be mediated by mi-
crobiota, at least in organs that are in direct contact with them,
such as the intestine. Excellent recent reviews describe how
microbes influence tumorigenesis and response to therapy
(Dzutsev et al., 2017; Helmink et al., 2019).

Other soluble mediators, such as cytokines and growth fac-
tors, produced by either cancer cells or the stroma, including
CAFs, also influence the activation of innate cells. The cytokines
IL-4 and IL-13, produced by immune cells, and CAF-secreted
chitinase-3-like-1 (Chi3L1) are important for the differentiation
of macrophages toward a tumor-promoting phenotype (Cohen
et al., 2017; DeNardo et al., 2009). IL-10 and TGF-β also affect
macrophage, neutrophil, and DC activation and functions
(Ruffell et al., 2014). TGF-β specifically promotes myeloid cell
survival and protumorigenic, immunosuppressive lineage
commitment (Fridlender et al., 2009; Gao et al., 2017; Gonzalez-
Junca et al., 2019). In addition to TAM recruitment, CSF1, along
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with CSF2 and CSF3, drives the survival and differentiation of
macrophages and granulocytes and the expansion and activa-
tion of MDSCs (Gabrilovich et al., 2012; Hagemann et al., 2006;
Strauss et al., 2015), while CSF2 and FMS-like tyrosine kinase 3
ligand (Flt3L) play an important role in DC differentiation (Liu
et al., 2009). MDSC generation is in general induced by the
continuous presence of proinflammatory signals that drive
myelopoiesis but are not adequate for complete differentiation
to activated neutrophils and monocytes. NKG2D ligands origi-
nating from tumor cells after DNA damage response, along with
cytokines like IL-12, IL-18, and IL-15 and the cell surface adhesion
molecule LFA-1, lead to activation of NK cells (Lakshmikanth et al.,
2009; Soriani et al., 2009). ILC1s are also activated in IL-15–
enriched environments, while TGF-β–rich environments convert
NK cells into ILC1-like cells with a reduced ability to control tumor
growth andmetastasis (Dadi et al., 2016; Gao et al., 2017). IL-12 and
IL-33 play an important role in ILC3 and ILC2 activation, respec-
tively (Jovanovic et al., 2014; Trabanelli et al., 2017).

Finally, besides soluble mediators, metabolic alterations
triggered by the tumor microenvironment also play an impor-
tant role in myeloid cell activation and effector properties (Buck
et al., 2017). For example, hypoxia and lactic acid regulate

macrophage function while, along with the accumulation of
adenosine and lipids and decreased pH, lead to impaired antigen
presentation and suppressed DC-mediated antitumor responses
(Colegio et al., 2014; Cubillos-Ruiz et al., 2015; Herber et al.,
2010; Veglia et al., 2017). Increased uptake of lipids by MDSCs
also leads to an increase in their immunosuppressive capacity
(Al-Khami et al., 2017).

Functions of innate immune responses in cancer
Innate immunity and antitumor effects
Innate immunity plays a crucial role in limiting initial cancer
growth through either direct cytotoxicity against cancer cells or
support of antitumor immune responses mediated predomi-
nantly by ILCs and DCs (Fig. 2).

NK cells are able to recognize and eliminate nascent trans-
formed cells through expression of perforin and granzyme, as
well as death ligands, such as TNF-regulated apoptosis-inducing
ligand (TRAIL) and Fas ligand (Finnberg et al., 2008; Glasner
et al., 2018; Smyth et al., 2000), while ILC1s also express gran-
zyme under specific conditions (Dadi et al., 2016). Both NK cells
and ILC1s activated in IL-15–rich environments produce TNF,
IFN-γ, or CSF2, which have antitumor activity by modulating

Figure 1. Innate immune recruitment and activation in the tumor microenvironment. Cytokines, chemokines, and growth factors produced by cancer
cells and the surrounding stroma lead to innate immune infiltration in tumors. DAMPs, uniquely expressed by cancer cells, secreted after cell death or found in
the ECM, DNA from apoptotic cells, microorganisms, cytokines, growth factors, and metabolic alterations can trigger activation of nnate immune cells in the
tumor stroma. PAMP, pathogen-associated molecular pattern; STING, stimulator of IFN genes.
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leukocyte function (Dadi et al., 2016). NK cells also express
chemokines, such as CCL5 and XCL1, that recruit DCs into the
tumor (Böttcher et al., 2018). ILC3s, similarly to NK cells and
ILC1s, contribute to antitumor immunity by releasing TNF, IL-8,
and IL-2 after IL-12 stimulation and promoting leukocyte recruit-
ment and proliferation (Carrega et al., 2015; Eisenring et al., 2010).

DCs activated by DAMPs are able to efficiently present tumor
antigens to naive antigen-specific T cells, leading to their
priming and generation of cytotoxic effector CD8+ T cells (Broz
et al., 2014; Roberts et al., 2016; Salmon et al., 2016). This is
mediated through expression of MHC class II, CD40, CD80, and
CD86 and production of proinflammatory cytokines and che-
mokines that are crucial for the recruitment and function of
CD8+ T cells, NK cells, and ILCs in tumors, as well as type I IFNs,
which serve as a link between innate and adaptive immune

responses (Mikucki et al., 2015; Ruffell et al., 2014; Tesone et al.,
2013; Wendel et al., 2008).

Finally, both macrophages and neutrophils can also have
antitumor functions. IFN-γ–activated M1 macrophages can di-
rectly kill tumor cells as well as recruit and activate cytotoxic
CD8+ and NK cells (Hanna et al., 2015). TANs have been shown
to recognize tumor cells through Cathepsin G or in an antibody-
dependent manner and produce H2O2 (Granot et al., 2011), TNF-
regulated apoptosis-inducing ligand (TRAIL), chemokines, IL-6, and
IFN-γ as well as express costimulatory molecules, especially during
the early stages of cancer (Eruslanov et al., 2014; Granot, 2019).

Regulation of adaptive responses: Immunosuppression
Despite their antitumor functions, innate cells and especially
myeloid cells are considered protumorigenic once the tumor is

Figure 2. Innate immune functions in the tumor stroma. Antitumor functions include direct cancer cell killing and immunomodulation, including immune
cell recruitment and activation of CD8+ cytotoxic T cells. Tumor-promoting functions include the promotion of cancer initiation and cancer cell proliferation,
remodeling of the ECM, induction of angiogenesis and metastasis, and support of immunosuppression in the tumor microenvironment. EMT, epithelial-to-
mesenchymal transition; NO, nitric oxide; NOS, nitric oxide synthase; RNI, ROS and nitrogen intermediate; TRAIL, TNF-regulated apoptosis-inducing ligand.
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established (Gajewski et al., 2013). This reversal is mediated by
either a phenotypic switch or an inhibition of their functions,
orchestrated by signals originating either from cancer cells or
the cancer-“educated” stroma. Typical examples are macro-
phages and neutrophils that acquire protumorigenic roles and
DCs, which are considered dysfunctional due to impaired acti-
vation (Demoulin et al., 2013). This most commonly leads to
overexpression of proinflammatory molecules that results in
increased tumor-promoting inflammation and modulation of
adaptive immune responses driving immunosuppression. The
effect of innate immune cells on immunosuppression is exten-
sively studied and involves the production of immunosuppres-
sive effectors, induction of regulatory T cells (T reg cells),
metabolic starvation of T cells, and expression of immune
checkpoint proteins (Fig. 2).

The production of immunosuppressive effectors involves
molecules produced primarily by TAMs and TANs/MDSCs, such
as IL-6, IL-10, TGF-β, PGE2, COX2, inducible nitric oxide syn-
thase, CD40, and galectin 1. TAMs and TANs/MDSCs also pro-
duce ROS, which induce T cell apoptosis, reduction of TCR-ζ
chain expression, and production of peroxynitrite, leading to
impaired T cell signaling and anergy (Gabrilovich, 2017;
Mantovani et al., 2017). ILC2s also have an immunosuppressive
role through the production of amphiregulin and type 2 cytokines,
such as IL-4, IL-5, IL-9, and IL-13 (Jovanovic et al., 2014; Trabanelli
et al., 2017). Defective activation of DCs results in reduced type I
IFN production along with lower costimulatory molecule expres-
sion, thus generating a tolerogenic phenotype (Sisirak et al., 2012).

Impaired IFN production by DCs, along with IL-10 and TGF-β
produced by TAMs and TANs, is also involved in increased T reg
cell expansion (Batlle and Massagué, 2019; Shalapour and Karin,
2019; Sisirak et al., 2012). Other important mediators that pro-
mote the recruitment or induction of T reg cells are inducible
T cell costimulatory ligand (ICOSL) and OX40L produced by DCs
(Aspord et al., 2013; Conrad et al., 2012; Faget et al., 2013), CCL22
produced by TAMs, and CCL17 produced by TANs (Maolake
et al., 2017; Mishalian et al., 2014).

Metabolic starvation involves the expression of enzymes that
catabolize essential metabolites or the release of toxic metabo-
lites by TAMs, TANs/MDSCs, and DCs. The most important
enzymes are arginase 1 (ARG1) and indoleamine 2,3-dioxygenase
(IDO). ARG1 converts L-arginine into L-ornithine and urea, thus
limiting the availability of L-arginine, which is necessary for
T cell proliferation and function (Geiger et al., 2016; Rodriguez
et al., 2007). ARG1 is also the substrate of nitric oxide synthase
2 (NOS2) and leads to production of nitric oxide, which sup-
presses T cell functions (Caldwell et al., 2018; Molon et al., 2011).
IDO expressed by MDSCs and DCs catabolizes L-tryptophan into
N-formylkynurenin, thus depleting tryptophan and leading
to cell cycle arrest and anergy in T cells, as well as T reg cell
differentiation. IDO activity also leads to TGF and 3-
hydroxykynurenine, which inhibits T and NK cell survival
and proliferation and drives differentiation to T reg cells (Munn
and Mellor, 2016; Pallotta et al., 2011).

TAMs, MDSCs, and DCs additionally up-regulate pro-
grammed death ligand 1 (PD-L1) and PD-L2, which provide a
negative costimulatory signal to T cells and promote T cell

anergy and apoptosis (Lu et al., 2016; Salmon et al., 2016; Wang
et al., 2017). In addition, B7-H4 and V-domain Ig suppressor of
T cell activation expression also have similar effects (Wang
et al., 2011; 2016b).

Tumor initiation and proliferation
Cancer cell proliferation is a hallmark of cancer, and deregulated
cell proliferation is a prerequisite for neoplastic cell transfor-
mation. Production of ROS and nitrogen intermediates by TAMs
and TANs/MDSCs promotes tumor initiation through their
contribution to genetic instability in preneoplastic cells (Canli
et al., 2017). Innate myeloid cells also produce proinflammatory
cytokines and growth factors, such as IL-6, IL-11, IL-1β, and EGF,
which play an important role in both the initiation and pro-
gression of tumorigenesis, especially in inflammation-induced
cancer (Greten and Grivennikov, 2019). IL-6 and IL-11 in par-
ticular have been shown to promote cancer cell proliferation and
survival and inhibit their apoptosis through activation of the
downstream STAT3 signaling pathway in tumors (Johnson et al.,
2018). TANs can also promote cancer cell growth and prolifer-
ation through production of elastase through activation of
phosphoinositide 3-kinase (PI3K) and/or MAPK signaling path-
ways (Gong et al., 2013; Houghton et al., 2010; Lerman et al.,
2017). ILC3s have been shown to induce abnormal epithelial
proliferation in a IL-22–dependent manner (Kirchberger et al.,
2013; Fig. 2).

Both TAMs and MDSCs can also affect cancer stem cells (CSCs).
TAMs are important components of the CSC niche and have been
found to directly interact with CSCs through binding to Thy1 and
ephrin type-A4 (EphA4) receptors (Lu et al., 2014), while MDSCs
have been shown to enhance stemness and epithelial-to-mesen-
chymal transition of CSCs through regulation of C-terminal–binding
protein-2 (CtBP2; Cui et al., 2013; Panni et al., 2014).

Angiogenesis
Angiogenesis is crucial for tumor progression, as it is both a
source of nutrients and oxygen and the route of waste disposal
and metastatic dissemination. Infiltrating TAMs and TANs/
MDSCs promote angiogenesis through the production of
proangiogenic factors, such as VEGF-A, VEGF-C, EGF, FGF, TGF-β,
CCL2, CXCL8, CXCL12, IL-8, and TNF (Bruno et al., 2014).
TGF-β–rich environments convert NK cells into ILC1-like cells,
which can also secrete proangiogenic factors (Gao et al., 2017).
TAMs and TANs/MDSCs also affect angiogenesis through the
production of matrix metalloproteinases (MMPs), and in par-
ticular MMP9, which mediates the release of VEGF-A from the
ECM (Deryugina et al., 2014; Kuang et al., 2011). TANs and
MDSCs also produce prokineticin1/Bv8, which promotes angi-
ogenesis through MAPK activation in endothelial cells (Shojaei
et al., 2007, 2008). Interestingly, lipocalin expressed by TAMs
in response to sphingosine 1-phosphate (S1P) was shown to
promote endothelial proliferation, leading to subsequent lym-
phagiogenesis and metastasis in mice (Jung et al., 2016; Fig. 2).

Metastasis
The ability of cancer cells to metastasize is a hallmark of cancer
and defines disease progression and patient survival. Innate
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immune cells, especially macrophages and neutrophils/MDSCs,
have been implicated in the promotion of metastasis (Swierczak
and Pollard, 2019; Fig. 2). As mentioned above, both TAMs and
TANs/MDSCs promote angiogenesis and tumor cell intra-
vasation, which are necessary for the initial steps of metastasis
(Arwert et al., 2018; Bald et al., 2014; Harney et al., 2015), while
chemokines, such as CXCL2 and CXCL8, and growth factors,
such as EGF, increase the invasiveness of cancer cells (DeNardo
et al., 2009). Inflammation-activated neutrophils have been
shown to drive dormant cancer cell awakening through the
formation of neutrophil extracellular traps, which cleave lami-
nin and activate integrin α3β1 signaling (Albrengues et al.,
2018). Both TAMs and MDSCs also promote epithelial-to-me-
senchymal transition through TGF-β, nitric oxide, and nitric
oxide synthase (NOS) production (Ouzounova et al., 2017). In
addition, they can increase tumor-cell dissemination through
the production of proteolytic enzymes such as MMPs that are
responsible for the digestion and remodeling of the ECM, a key
player in metastasis (Bausch et al., 2011; Kai et al., 2019; Yang
et al., 2008).

Besides these effects on primary tumors, innate immune cells
are also found in premetastatic sites, where they play an im-
portant role in cancer dissemination, survival, and growth
through a variety of mechanisms, including angiogenesis
(Mazzieri et al., 2011), extravasation of cancer cells (Qian and
Deng, 2009; Srivastava et al., 2014), support of the survival and
proliferation of metastatic cancer cells (Coffelt et al., 2015; Liang
et al., 2018; Steele et al., 2016; Wculek and Malanchi, 2015), and
immunosuppression (Kitamura et al., 2018). Notably, low-level
generalized inflammation also affects metastasis, as shown for
the increased lung metastasis associated with obesity-induced
neutrophilia (Quail et al., 2017; Fig. 2).

Innate functions of fibroblastic mesenchymal cells in cancer
Mesenchymal cells in tumors or CAFs are a heterogenous stro-
mal population present in most solid tumors. CAFs contribute to
a variety of protumorigenic functions, such as tumor growth,
angiogenesis, immunoregulation, ECM remodelling, cancer
stemness, invasion, metastasis, and chemoresistance, in an
organ-specific manner and have been associated with poor
prognosis (Kalluri, 2016; Öhlund et al., 2014; Turley et al., 2015).
In the last decade, their immunomodulatory roles have been of
particular interest and have been recently reviewed (Monteran and
Erez, 2019). Here, wewill focus on their functions in innate immune
sensing and response in the tumor microenvironment (Fig. 3).

CAFs originate from different cell types, but resident me-
senchymal cells are considered the major source (Kalluri, 2016).
TGF-β plays a crucial role in their activation and differentiation
to myofibroblastic CAFs and the concomitant production of
effector molecules, including chemokines, cytokines, growth
factors, ECM components, and remodeling enzymes. TGF-β
specificity and function on mesenchymal cells is regulated by its
availability, which depends on the location of mesenchymal
cells, as well as its efficient release from the ECM that is medi-
ated both by proteolysis and mechanical tension (Batlle and
Massagué, 2019; Öhlund et al., 2017; Pickup et al., 2013). Nota-
bly, a TGF-β signature in mesenchymal cells has been correlated

with poor prognosis, immune cell exclusion, and resistance to
immunotherapy (Calon et al., 2015; Mariathasan et al., 2018;
Tauriello et al., 2018). Besides TGF-β, a variety of stimuli, in-
cluding innate signals, have been shown to induce their
activation.

The activation of CAFs by DAMPs is indicative of their ability
to respond to innate immune stimuli. IL-1a is an important such
danger signal that is released by cancer cells and promotes the
activation of inflammatory CAFs in pancreatic ductal adeno-
carcinoma (PDAC) through the JAK/STAT pathway. Notably,
IL-1a is antagonized by TGF-β toward the differentiation of
myofibroblastic CAFs (Biffi et al., 2019). IL-1β has also been
shown to induce proinflammatory gene expression that affects
tumorigenesis (Erez et al., 2010). Recently, breast cancer CAFs
were shown to sense DAMPs through the NLRP3 inflammasome
and in response induce proinflammatory gene expression and
IL-1β release that promoted tumor growth and metastasis
(Ershaid et al., 2019). Interestingly, ECM matricellular proteins
and matrikines that can activate innate immunity could also
induce CAF activation and immunoregulation (Eble and Niland,

Figure 3. Innate immune properties of CAFs in the tumor microenvi-
ronment. CAFs express innate immune recognition and cytokine receptors
and respond to secrete cytokines, chemokines, and ECM-remodeling en-
zymes through pathways such as NF-κB, MAPKs, and the inflammasome.
They express MHC class I and II molecules, allowing them to act as antigen-
presenting cells and leading to the modulation of T cell responses. They also
exhibit metabolic changes that modulate both cancer cell proliferation and
immune responses.
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2019). One such example is osteopontin, which activates fibro-
blasts in breast cancer to promote inflammation and tumor
growth (Sharon et al., 2015).

In addition, CAFs express innate recognition (TLRs) and re-
spond to the relevant stimuli by secreting cytokines, chemo-
kines, MMPs, and ECM components. The prognostic value of
these expression patterns seems to be organ and cancer-type
specific; TLR7 and TLR9 expression in CAFs is associated with
enhanced survival in breast and esophageal squamous cell can-
cer (González-Reyes et al., 2010; Ni et al., 2015; Sheyhidin et al.,
2011), while TLR4 and TLR9 expression in colorectal and hepa-
tocellular carcinoma CAFs, respectively, is associated with poor
prognosis (Eiró et al., 2013, 2014). We recently provided direct
evidence for a pathophysiological role of innate sensing by CAFs
in intestinal cancer (Koliaraki et al., 2019). We showed that
deletion of either myeloid differentiation primary response 88
(MyD88) or TLR4 in intestinal mesenchymal cells and CAFs is
sufficient to reduce tumorigenesis in the Apcmin/+ model of in-
testinal cancer, similarly to MyD88’s complete deletion (Rakoff-
Nahoum and Medzhitov, 2007). Activation of CAFs by TLR4/
MyD88-mediated signals resulted in the production of effector
cytokines and chemokines capable of affecting both tumor
proliferation and the immune microenvironment to promote
intestinal cancer.

Besides TLR4, TLR9 activation has also been shown to induce
pancreatic stellate cells to become fibrogenic and secrete che-
mokines that promote epithelial cell proliferation and immune-
suppressive effects in PDAC (Zambirinis et al., 2015). Interestingly,
it has recently been shown, using single-cell transcriptomics and
functional assays, that there is an inflammatory CAF subtype in
both human and mouse PDAC tumors (Elyada et al., 2019; Öhlund
et al., 2017). In addition, a newpopulation of CAFs termed “antigen-
presenting” CAFs has been identified that expresses MHC class II
and CD74 and may thus be able to present antigens to CD4+ T cells,
albeit in the absence of costimulation, and modulate the immune
response in PDAC, although formal proof of this immunosup-
pressive mechanism of CAFs is still pending (Elyada et al., 2019).
CAFs have also recently been shown to be able to sample, process,
and cross-present antigens, killing CD8+ T cells in an antigen-
specific, antigen-dependent manner via PD-L2 and Fas ligand
(Lakins et al., 2018).

Most of the innate CAF responses described above are me-
diated through the induction of an inflammatory and immuno-
suppressive gene expression profile. Besides these mechanisms,
CAFs are the main producers of both ECM components and re-
modeling enzymes and can thus modulate immune cell traf-
ficking by altering the biochemical and biophysical properties of
the ECM also in response to innate stimuli (Chakravarthy et al.,
2018; Eble and Niland, 2019; Kalluri, 2016). Additionally, CAFs
undergo metabolic changes that involve the activation of aerobic
glycolysis and production of metabolites, such as pyruvate,
lactate, ketone bodies, and fatty acids, which in turn support
cancer cell proliferation and the promotion of an immunosup-
pressive milieu (Singer et al., 2018; Wu et al., 2017). This prop-
erty is commonly induced by stress factors produced by cancer
cells and TGF-β leading to loss of caveolin-1 (CAV1), although
innate immune signals could also play a role.

The above studies indicate that innate recognition mecha-
nisms are present in CAFs, which respond by secreting media-
tors capable of shaping the tumor microenvironment, thus
contributing to the recruitment of both innate and adaptive
immune cells and the establishment of a proinflammatory and
immunosuppressive milieu.

Heterogeneity of the innate tumor microenvironment
The expansion of single-cell methodologies, either at the tran-
scriptomics level using single-cell RNA sequencing or using
proteomics with mass cytometry, has enabled the in-depth
characterization of immune infiltrates in disease, including
cancer (Papalexi and Satija, 2018). Single-cell RNA sequencing
has identified unprecedented heterogeneity in tumor cell types,
referring both to cancer cells and the tumor microenvironment,
including immune cells, CAFs, and endothelial cells (Elyada
et al., 2019; Lambrechts et al., 2018; Li et al., 2017a; Puram
et al., 2017; Tirosh et al., 2016). As mentioned above, CAFs
were recently shown to be divided into myofibroblastic, in-
flammatory, and antigen-presenting populations in PDAC
(Elyada et al., 2019). Accordingly, in breast cancer, two of
four CAF subtypes identified by FACS analysis were described as
myofibroblastic and showed immunoregulatory activity through
different mechanisms (Costa et al., 2018). Studies in lung and
renal cancer have revealed a vast heterogeneity in TAMs, with
previously undescribed populations and distinct gene expression
signatures, which is interestingly conserved between mice and
humans (Chevrier et al., 2017; Zilionis et al., 2019). In addition,
Cassetta et al. (2019) identified transcriptional diversity among
TAMs, monocytes, and macrophages, which was further affected
by the tumor location and stage. Similar experiments in gliomas
and breast cancer have also shown variability in tumor cell
composition between patients and correlation with immuno-
suppression, as well as TAM populations that simultaneously
express M1 and M2 signatures, suggesting plasticity and the
presence of different intermediate activation states (Azizi et al.,
2018; Chung et al., 2017; Müller et al., 2017b; Wagner et al., 2019).
In lung adenocarcinoma, single-cell analysis has revealed alter-
ations in the immune landscape even in the early stages, with
changes in myeloid cell subsets, including depletion of CD141+

DCs, reduced and impaired NK cells, and enrichment of PPAR-γhi

macrophages, which correspond to impaired antitumor T cell
immunity (Lavin et al., 2017). Further analysis at the single-cell
level is expected to lead to the identification of more specialized
distinct stromal subpopulations and characterization of their
origin, activation trajectories, and potential plasticity while
aiding in the characterization of the molecular mechanisms
underlying their functions, which is especially relevant for low-
abundant populations, such as MDSCs (Valdes-Mora et al., 2018).

Therapeutic potential of targeting the innate system in cancer
The prognostic relevance of innate cells, along with their im-
portant functions in tumor initiation, progression, and espe-
cially immunosuppression, has led to the development of
multiple therapeutic strategies. Approaches to manipulate
the innate immune responses have been extensively reviewed
recently (Cassetta and Pollard, 2018; Chiossone et al., 2018;
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Mantovani et al., 2017; Shaul and Fridlender, 2019). Briefly, the
most promising approaches (accompanied by representative
references) include (i) the depletion of innate immune cells,
especially TAMs and TANs/MDSCs (Qin et al., 2014; Ries et al.,
2014); (ii) the inhibition of innate immune cell recruitment by
targeting the chemoattractants responsible for immune cell
infiltration in the tumors (Halama et al., 2016; Li et al., 2017b);
(iii) the reprogramming of innate cells toward an antitumor
phenotype (Panni et al., 2019; Ring et al., 2017); (iv) the tar-
geting of effector molecules, usually secreted by innate immune
cells or activated by innate immune pathways, such as IL-6,
IDO, VEGF, neutrophil elastase, and cyclooxygenase-2 (COX2)/
prostaglandin E2 (PGE2; Incio et al., 2018); and (v) therapeutic
strategies aiming at manipulating NK cell antitumor functions
(Hodgins et al., 2019). Many of these therapeutic approaches
have shown efficacy in preclinical settings and/or clinical trials
either alone or in combination with other anticancer drugs
(DeNardo et al., 2011; Nawa et al., 2012; Salvagno et al., 2019;
Wang et al., 2016a; Weizman et al., 2014). Of particular interest
is the combination of checkpoint inhibition with TAM/TAN
manipulation, which by reducing immunosuppression could
increase efficacy of checkpoint immunotherapy (Highfill et al.,
2014; Kim et al., 2014; Zhu et al., 2017).

CAFs have also been proposed as promising targets for cancer
therapy using similar approaches, including cell ablation, tar-
geting of the mechanisms that drive their activation, inhibition
of secreted effector mediators, and their potential reprograming.
Additional strategies for the manipulation of the ECM and the
targeting of matrikines have also been proposed as therapeutics
for cancer and for the improvement of drug delivery (Kobayashi
et al., 2019; Monboisse et al., 2014; Öhlund et al., 2014). New
findings pointing toward an innate role for CAFs, along with
their immunomodulatory properties, suggest new potential
anticancer therapeutic targets, while novel CAF-specific innate
mechanisms and their relationship with corresponding functions
in innate immune cells should be taken into account when pre-
dicting compensatory responses and potential combinatorial
strategies.

Conclusions and future perspectives
Innate immune cells play an important and dual role in carci-
nogenesis, as they are found to both support initial rejection of
tumors and promote tumor initiation, growth, and metastasis
following immune evasion and depending on context. Their
protumorigenic properties are mediated by signals from the
growing tumor and the evolving tumor-educated stroma, which
drive their activation, resulting in immunosuppression, in-
creased proliferation, and angiogenesis. Besides immune cells,
mesenchymal non-hematopoietic cells in the tumor microenvi-
ronment, specifically CAFs, are also able to respond to innate
stimuli and affect cancer outcome. A better understanding of the
cellular players and their identities, developmental trajectories,
and potential plasticity, as well as the molecular mechanisms
underlying innate functions in the tumor microenvironment,
remains to be exploited and should be important in the design
of new or improved immune-targeting therapies. Future stu-
dies should address the allocation of functions to specific cell

populations within tumors and the identification of potential
compensatory mechanisms between the plethora of cell states
that mediate innate functions.
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Lamelas, J.M. González-Quintana, and F.J. Vizoso. 2010. Study of TLR3,
TLR4 and TLR9 in breast carcinomas and their association with me-
tastasis. BMC Cancer. 10:665. https://doi.org/10.1186/1471-2407-10-665

Granot, Z. 2019. Neutrophils as a Therapeutic Target in Cancer. Front. Im-
munol. 10:1710. https://doi.org/10.3389/fimmu.2019.01710

Granot, Z., E. Henke, E.A. Comen, T.A. King, L. Norton, and R. Benezra. 2011.
Tumor entrained neutrophils inhibit seeding in the premetastatic lung.
Cancer Cell. 20:300–314. https://doi.org/10.1016/j.ccr.2011.08.012

Greten, F.R., and S.I. Grivennikov. 2019. Inflammation and Cancer: Triggers,
Mechanisms, and Consequences. Immunity. 51:27–41. https://doi.org/10
.1016/j.immuni.2019.06.025

Hagemann, T., J. Wilson, F. Burke, H. Kulbe, N.F. Li, A. Plüddemann, K.
Charles, S. Gordon, and F.R. Balkwill. 2006. Ovarian cancer cells po-
larize macrophages toward a tumor-associated phenotype. J. Immunol.
176:5023–5032. https://doi.org/10.4049/jimmunol.176.8.5023

Halama, N., I. Zoernig, A. Berthel, C. Kahlert, F. Klupp, M. Suarez-Carmona,
T. Suetterlin, K. Brand, J. Krauss, F. Lasitschka, et al. 2016. Tumoral
Immune Cell Exploitation in Colorectal Cancer Metastases Can Be
Targeted Effectively by Anti-CCR5 Therapy in Cancer Patients. Cancer
Cell. 29:587–601. https://doi.org/10.1016/j.ccell.2016.03.005

Hanahan, D., and L.M. Coussens. 2012. Accessories to the crime: functions of
cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322.
https://doi.org/10.1016/j.ccr.2012.02.022

Hanna, R.N., C. Cekic, D. Sag, R. Tacke, G.D. Thomas, H. Nowyhed, E. Herrley,
N. Rasquinha, S. McArdle, R. Wu, et al. 2015. Patrolling monocytes
control tumor metastasis to the lung. Science. 350:985–990. https://doi
.org/10.1126/science.aac9407

Harney, A.S., E.N. Arwert, D. Entenberg, Y. Wang, P. Guo, B.Z. Qian, M.H.
Oktay, J.W. Pollard, J.G. Jones, and J.S. Condeelis. 2015. Real-Time
Imaging Reveals Local, Transient Vascular Permeability, and Tumor
Cell Intravasation Stimulated by TIE2hi Macrophage-Derived
VEGFA. Cancer Discov. 5:932–943. https://doi.org/10.1158/2159-8290
.CD-15-0012

He, S.J., J. Cheng, X. Feng, Y. Yu, L. Tian, and Q. Huang. 2017. The dual role
and therapeutic potential of high-mobility group box 1 in cancer. On-
cotarget. 8:64534–64550.

Helmink, B.A., M.A.W. Khan, A. Hermann, V. Gopalakrishnan, and J.A.
Wargo. 2019. The microbiome, cancer, and cancer therapy. Nat. Med.
25:377–388. https://doi.org/10.1038/s41591-019-0377-7

Herber, D.L., W. Cao, Y. Nefedova, S.V. Novitskiy, S. Nagaraj, V.A. Tyurin, A.
Corzo, H.I. Cho, E. Celis, B. Lennox, et al. 2010. Lipid accumulation and
dendritic cell dysfunction in cancer. Nat. Med. 16:880–886. https://doi
.org/10.1038/nm.2172

Highfill, S.L., Y. Cui, A.J. Giles, J.P. Smith, H. Zhang, E. Morse, R.N. Kaplan,
and C.L. Mackall. 2014. Disruption of CXCR2-mediated MDSC tumor
trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6:237ra67.
https://doi.org/10.1126/scitranslmed.3007974

Hodgins, J.J., S.T. Khan, M.M. Park, R.C. Auer, and M. Ardolino. 2019. Killers
2.0: NK cell therapies at the forefront of cancer control. J. Clin. Invest.
129:3499–3510. https://doi.org/10.1172/JCI129338

Hope, C., S. Foulcer, J. Jagodinsky, S.X. Chen, J.L. Jensen, S. Patel, C. Leith, I.
Maroulakou, N. Callander, S. Miyamoto, et al. 2016. Immunoregulatory
roles of versican proteolysis in the myeloma microenvironment. Blood.
128:680–685. https://doi.org/10.1182/blood-2016-03-705780

Hope, C., P.B. Emmerich, A. Papadas, A. Pagenkopf, K.A. Matkowskyj, D.R.
Van De Hey, S.N. Payne, L. Clipson, N.S. Callander, P. Hematti, et al.
2017. Versican-Derived Matrikines Regulate Batf3-Dendritic Cell Dif-
ferentiation and Promote T Cell Infiltration in Colorectal Cancer.
J. Immunol. 199:1933–1941. https://doi.org/10.4049/jimmunol.1700529

Houghton, A.M., D.M. Rzymkiewicz, H. Ji, A.D. Gregory, E.E. Egea, H.E. Metz,
D.B. Stolz, S.R. Land, L.A. Marconcini, C.R. Kliment, et al. 2010.

Koliaraki et al. Journal of Experimental Medicine 10 of 14

Innate mechanisms in the cancer microenvironment https://doi.org/10.1084/jem.20190457

https://doi.org/10.1038/ni.1947
https://doi.org/10.1038/nature08296
https://doi.org/10.1038/nature08296
https://doi.org/10.1158/2159-8290.CD-19-0094
https://doi.org/10.1016/j.ccr.2009.12.041
https://doi.org/10.1038/s41467-019-12370-8
https://doi.org/10.1172/JCI77053
https://doi.org/10.4161/onci.23185
https://doi.org/10.1172/JCI29900
https://doi.org/10.1369/0022155417740880
https://doi.org/10.1016/j.ccr.2009.06.017
https://doi.org/10.1084/jem.20101159
https://doi.org/10.1158/2326-6066.CIR-16-0297
https://doi.org/10.1038/nri3175
https://doi.org/10.1038/ni.2703
https://doi.org/10.1038/nri.2016.107
https://doi.org/10.1038/ni.3800
https://doi.org/10.1038/ni.3800
https://doi.org/10.1038/emboj.2011.497
https://doi.org/10.1038/emboj.2011.497
https://doi.org/10.1016/j.cell.2016.09.031
https://doi.org/10.1016/j.immuni.2018.01.010
https://doi.org/10.1186/1476-4598-12-154
https://doi.org/10.1186/1476-4598-12-154
https://doi.org/10.1158/2326-6066.CIR-18-0310
https://doi.org/10.1186/1471-2407-10-665
https://doi.org/10.3389/fimmu.2019.01710
https://doi.org/10.1016/j.ccr.2011.08.012
https://doi.org/10.1016/j.immuni.2019.06.025
https://doi.org/10.1016/j.immuni.2019.06.025
https://doi.org/10.4049/jimmunol.176.8.5023
https://doi.org/10.1016/j.ccell.2016.03.005
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1126/science.aac9407
https://doi.org/10.1126/science.aac9407
https://doi.org/10.1158/2159-8290.CD-15-0012
https://doi.org/10.1158/2159-8290.CD-15-0012
https://doi.org/10.1038/s41591-019-0377-7
https://doi.org/10.1038/nm.2172
https://doi.org/10.1038/nm.2172
https://doi.org/10.1126/scitranslmed.3007974
https://doi.org/10.1172/JCI129338
https://doi.org/10.1182/blood-2016-03-705780
https://doi.org/10.4049/jimmunol.1700529
https://doi.org/10.1084/jem.20190457


Neutrophil elastase-mediated degradation of IRS-1 accelerates lung
tumor growth. Nat. Med. 16:219–223. https://doi.org/10.1038/nm.2084

Huse, M. 2017. Mechanical forces in the immune system. Nat. Rev. Immunol.
17:679–690. https://doi.org/10.1038/nri.2017.74

Iannello, A., T.W. Thompson, M. Ardolino, A. Marcus, and D.H. Raulet. 2016.
Immunosurveillance and immunotherapy of tumors by innate immune
cells. Curr. Opin. Immunol. 38:52–58. https://doi.org/10.1016/j.coi.2015.11.001

Ijichi, H., A. Chytil, A.E. Gorska, M.E. Aakre, B. Bierie, M. Tada, D. Mohri, K.
Miyabayashi, Y. Asaoka, S. Maeda, et al. 2011. Inhibiting Cxcr2 disrupts
tumor-stromal interactions and improves survival in a mouse model of
pancreatic ductal adenocarcinoma. J. Clin. Invest. 121:4106–4117. https://
doi.org/10.1172/JCI42754

Incio, J., J.A. Ligibel, D.T. McManus, P. Suboj, K. Jung, K. Kawaguchi, M.
Pinter, S. Babykutty, S.M. Chin, T.D. Vardam, et al. 2018. Obesity
promotes resistance to anti-VEGF therapy in breast cancer by up-
regulating IL-6 and potentially FGF-2. Sci. Transl. Med. 10:eaag0945.
https://doi.org/10.1126/scitranslmed.aag0945

Jablonska, J., S. Leschner, K. Westphal, S. Lienenklaus, and S. Weiss. 2010.
Neutrophils responsive to endogenous IFN-beta regulate tumor angio-
genesis and growth in a mouse tumor model. J. Clin. Invest. 120:
1151–1164. https://doi.org/10.1172/JCI37223

Jamieson, T., M. Clarke, C.W. Steele, M.S. Samuel, J. Neumann, A. Jung, D.
Huels, M.F. Olson, S. Das, R.J. Nibbs, and O.J. Sansom. 2012. Inhibition
of CXCR2 profoundly suppresses inflammation-driven and spontaneous
tumorigenesis. J. Clin. Invest. 122:3127–3144. https://doi.org/10.1172/
JCI61067

Johnson, D.E., R.A. O’Keefe, and J.R. Grandis. 2018. Targeting the IL-6/JAK/
STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15:234–248.
https://doi.org/10.1038/nrclinonc.2018.8

Jovanovic, I.P., N.N. Pejnovic, G.D. Radosavljevic, J.M. Pantic, M.Z. Milova-
novic, N.N. Arsenijevic, and M.L. Lukic. 2014. Interleukin-33/ST2 axis
promotes breast cancer growth and metastases by facilitating intra-
tumoral accumulation of immunosuppressive and innate lymphoid
cells. Int. J. Cancer. 134:1669–1682. https://doi.org/10.1002/ijc.28481
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