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Bacterial transcripts each have a characteristic half-life, suggesting that the processes of RNA degradation
work in an active and selective manner. Moreover, the processes are well controlled, thereby ensuring that
degradation is orderly and coordinated. Throughout much of the bacterial kingdom, RNA degradation pro-
cesses originate through the actions of assemblies of key RNA enzymes, known as RNA degradosomes. Neither
conserved in composition, nor unified by common evolutionary ancestry, RNA degradosomes nonetheless can
be found in divergent bacterial lineages, implicating a common requirement for the co-localisation of RNA
metabolic activities. We describe how the cooperation of components in the representative degradosome of
Escherichia colimay enable controlled access to transcripts, so that they have defined and programmable life-
times. We also discuss how this cooperation contributes to precursor processing and to the riboregulation of
intricate post-transcriptional networks in the control of gene expression. The E. coli degradosome interacts
with the cytoplasmic membrane, and we discuss how this interaction may spatially organise the assembly
and contribute to subunit cooperation and substrate capture. This article is part of a Special Issue entitled:
RNA Decay mechanisms.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Messenger RNAs are the short-lived information quanta of the
hereditable genome. In all organisms, mRNA transcripts have limited
but adjustable lifetimes [1–4], and their instability permits the expres-
sion of genetic information to be modulated in strength and duration
so as to meet cellular requirements for homeostasis and timely re-
sponse to environmental change. A key event in the degradation of a
transcript in Escherichia coli and related γ-Proteobacteria is an initial
cleavage by an endoribonuclease (Fig. 1). Once cleaved, transcripts are
degraded to completion by exoribonucleases and oligoribonucleases
through the cooperation with numerous enzymes, such as poly(A) po-
lymerase and RNA helicases which facilitate the access to the RNA frag-
ments. Fig. 1 summarises this decay pathway and for comparison shows
representatives from all life domains. The pathways differ in detail
among the three domains of life, and few of the components share
common evolutionary origin; nonetheless, there are parallels in these
pathways that perhaps reflect convergent evolutionary solutions to
the common requirement for regulated transcript turnover.

In many bacteria, one of the key enzymes of the decay pathway
is the hydrolytic endoribonuclease RNase E, highlighted in the E. coli
decay pathway shown in the left panel of Fig. 1. In E. coli and other
γ-Proteobacteria, RNase E is involved in the turnover of most mRNAs
ecay mechanisms.
+44 1223 766002.
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[5,6]. With the first cleavage by this enzyme, the transcript is destined
to a fate of complete destruction. However, RNase E also takes part in
RNA maturation processes and cleaves precursors of structured RNAs
in a more controlled manner, so that the cleavage products are not
marked for destruction but rather processed further to form a func-
tional RNA molecule [5].

One of the many fascinating facets of RNase E is its preference for
substrates having a monophosphate group on the 5′ terminus [7]. As
bacterial primary transcripts have a 5′ terminal triphosphate group,
some are protected from cleavage until they are converted to a 5′
monophosphate form by pyrophosphohydrolase activity [8,9]. RNase
E recognises the 5′ end of the RNA through contacts made by the cat-
alytic domain, which is at the N-terminus of the protein and comprises
roughly half its mass [10,11] (Fig. 2).

Although an accessible 5′ monophosphate can be a potent activa-
tor of RNase E, there are some RNA substrates for which the status of
the 5′ end has little effect on the cleavage rate by RNase E, and for
these the endoribonuclease probably cleaves by an internal entry
without interacting with the 5′ end [12–16]. The mechanism for
bypassing the 5′ end phosphate includes a supporting role by the
non-catalytic C-terminal domain outside the N-terminal catalytic do-
main [12,14–19] (Fig. 2). The interplay of these two segments will be
an important theme of this review.

In E. coli and many other bacteria, the non-catalytic portion of
RNase E forms a scaffold for the physical association of other key en-
zymes of RNAmetabolism into a multienzyme complex, known as the
RNA degradosome [20–23]. Through this interaction, the enzymatic
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Fig. 1.Overview of RNA decay pathways in the different life domains.Within the twomain bacterial lineages, represented by the gram-negative Escherichia coli and the gram-positive
Bacillus subtilis (top left and top right panels, respectively), the enzymes differ although the pathways share similarity. In both gram-negative and gram-positive lineages, the
endoribonucleases can cleave the substrates repetitively, and the products are attacked by exoribonucleases. The degradation pathways in eukaryotes are shown for comparison.

Fig. 2. Components of the canonical degradosome. The asterisk marks the predicted size of the catalytic domain of RNase E; the amino acids 511–529 were not visible in the crystal
structure [10].
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components can cooperate to turn over RNA [15,16,24,25]. The canon-
ical components of the E. coli degradosome include RNase E, which re-
cruits the DEAD-box RNA helicase RhlB [26,27], the glycolytic enzyme
enolase [27–29], and the phosphorolytic exoribonuclease polynucleo-
tide phosphorylase [30] (PNPase, Fig. 2). The degradosome scaffolding
domain also includes RNA binding domains (RBD and AR2) [15,31],
and a membrane targeting sequence [32] (MTS), which will be de-
scribed in further detail in a subsection below. The scaffolding region
is predominantly unstructured, but its interactions with other macro-
molecules are mediated through recognition modules that are struc-
tural microdomains [18,20].

RNase E occurs in many bacterial lineages, and is present in some
bacteria that are distantly related to E. coli, such as Streptomyces
coelicolor [33], as well as in some mycobacteria [34]. However, the
components of the degradosome are not conserved, even among the
γ-Proteobacteria [25,35–40]. The most common composition of pro-
teins associatedwith RNase E includes a DEAD-box helicase,metabolic
enzymes such as enolase or aconitase, and exoribonucleases such as
PNPase or RNase R. Moving to very distantly related species, RNase E
is entirely absent; a notable example is the model gram-positive bac-
terium Bacillus subtilis [41] which is divergent from E. coli by perhaps
two billion years (Fig. 1). Although it lacks an RNase E homologue,
B. subtilis and its relations use entirely different ribonucleases that
fulfil the same function: RNase Y and RNase J [42–45]. RNase J is a
member of the β-metallolactamase structural family, and it is impor-
tant to note that this fold is entirely different from that of RNase E, im-
plying that the two enzymes bear no common evolutionary ancestry.
Multi-enzyme degradosome-like assemblies may also be present in
B. subtilis [46,47], but this issue is under active debate [43,48]. A com-
plex of RNase Jwith an RNAhelicase has been identified recently in the
pathogen Helicobacter pylori [49].

2. RNase E catalytic domain and its accommodating
quaternary structure

Crystallographic studies of the catalytic domain of E. coli RNase E
have provided insight into several of the fascinating features of
RNase E activity (Fig. 3A). The catalytic domain forms a homotetramer
that is organised as a dimer-of-dimers, in which the protomer pairs
within each of the principal dimers are linked through organometallic
bonds with a shared zinc ion [10,50]. The active site of the enzyme is
formed between DNase I domains of two neighbouring protomers
where coordinated magnesium ions present activated water for RNA
cleavage.

Whilst RNase E has little apparent sequence specificity, it none-
theless prefers to cut RNA within single-stranded regions that are
enriched in A/U [5]. The crystal structure shows that the single-
stranded substrate tracks along a shallow groove at the active site,
and this groove does not provide any base-specifying contacts; conse-
quently, the apparent sequence preference for A/U is most likely due
to preference for single stranded conformation [10] (Fig. 3C). Prefer-
ences for a purine at two bases to the 5′ side of the scissile phosphate
[51] may be due to interactions of the purine ring with the S1 domain
in the closed conformation.

The catalytically activating effect of having a 5′monophosphate on
certain substrates can be rationalised by the interaction of this chem-
ical signal with a defined pocket in a domain referred to as the 5′ sen-
sor domain (Fig. 3B). The 5′ end of the RNA fits into this pocket but
must be single stranded to gain access. The interaction of the phos-
phate with the pocket is proposed to favour domain closure and boost
catalytic activity, by increasing the catalytic rate and decreasing the
Km for the enzyme as seen in the RNase E paralogue, RNase G [11,52].
Marked structural changes also accompany substrate binding, with
the S1/5′ sensor domain moving together as a unit to clamp down on
the single stranded substrate in the active site [50]; Fig. 3C shows this
structural transition of the S1/5′ sensor. The domain closure is proposed
to orientate and present the phosphate backbone of the RNA for hydro-
lytic attack by water coordinated to the magnesium co-factor [10]. It
might also help to co-recruit magnesium factor with the substrate, as
occurs for instance in human DNA polymerase η [53].

The interfacial contacts between the domains act like ball bearings
to accommodate changes in quaternary structure. In contrast, the
principal dimer interfaces remain invariant with quaternary transi-
tions (Fig. 3D). These quaternary structural changes could possibly
occur when the ribonuclease interacts with complex RNA species,
for instance during processing of precursors of folded RNA, or whilst
maintaining a grip on the cleaved products during processive degra-
dation of lengthy transcripts.

3. Two domains for RNase E, and two pathways for RNA decay

Deletion of RNase E is lethal in E. coli and other RNase-bearing bac-
teria [54], as is the mutation of the key catalytic residues [11]. Given
the role of 5′ sensing in stimulating RNase E activity, and the potential
to boost sRNA action [55], it might seem surprising that inactivating
point mutations in the pocket are not lethal [11,19]. These findings
suggest that the pathway of 5′ end sensing is neither the sole, nor
the most important pathway for RNase E mediated RNA turnover.
This is in accord with the viability of a deletion mutant for the
pyrophosphohydrolase RppH [9], proposed to decap transcripts to
leave a 5′ monophosphate terminus that would activate RNase E
cleavage. The absence of RppH in the E. coli cells was found to signif-
icantly impair pyrophosphate removal from the rpsT P1 transcript
resulting in a 3- to 5-fold increase in stability of this mRNA; globally,
the lack of RppH influences the half-life of about 400 protein coding
transcripts [9]. However, RppH is one of more than a dozen known
Nudix superfamily pyrophosphohydrolases in E. coli, and potentially
they can act redundantly [56].

Perhaps equally surprising to the non-essentiality of the 5′ end
sensing is the viability of strains bearing deletion of the C-terminal do-
main, i.e., the degradosome scaffolding domain [15,24,57]. Again, this
suggests that the RNase E catalytic domain can mediate a degradation
pathway that does not require the degradosome assembly. However,
when combined with the 5′ sensing mutation, RNase E truncations
are synthetically lethal [19]. Similarly, combining the RppH mutation
and the RNase E truncation is also synthetically lethal [17]. These ob-
servations indicate that there are two, parallel pathways for RNA deg-
radation through RNase E: one requiring the 5′ end monophosphate
and one depending on the RNA fold (Fig. 4) [18].

Mutations affecting Rho-dependent transcription termination can
overcome synthetic lethality by a pathway that requires RNase H. It has
been proposed that RNase H cleavage of RNA–DNA hybrid ‘R-loops’
formed during transcription might substitute for RNase E-dependent
RNA processing and mRNA degradation [17].

As described above, the 5′ end pathway involves domain closure
triggered when the free 5′-monophosphate can become engaged in
the sensing pocket. For the mechanism involving 5′ end bypass, we
envisage that the single stranded region, perhaps as little as 5 bases
in length, will still form the substrate: either the S1 domain is engaged
to present the phosphate backbone to the active site, or the enzyme is
in an open conformation, with the fold of the RNA facilitating sub-
strate presentation. This mode of interaction does not necessarily re-
quire interaction with the 5′ terminus of the RNA. We also propose
that the C-terminal domain of RNase E and its degradosome partners
help in presenting the substrate to the catalytic domain. The interac-
tions could be mediated by the RBD and AR2 [15,58], and possibly by
the basic C-terminal tail of RhlB [26], andmay be favouredwith the in-
teractionwith folded RNA species. PNPase could also assist through its
KH and S1 RNA-binding domains [59–61]. There is likely to be inter-
play between the 5′ end-dependent and independent pathways and
they may not be exclusive. For instance, there could be cooperation
of the RNA binding domains in the C-terminal half of RNase E to



Fig. 3. The quaternary structure of RNase E and its modes of structural change: A) Structural domains of RNase E (color coded) with a 13mer RNA oligo bound (showed only in one
protomer for clarity) and the quaternary structural organisation. The tetramer is a dimer-of-dimers, and the principal dimer pairs are at the same horizontal level and are linked by
a zinc ion (small grey sphere). B) The 5′ phosphate binding pocket of RNase E with the RNA bound; the main amino acids contacting the phosphate group are labelled. C) The RNA sub-
strate tracking along a shallow groove at the active site, with the contacts between RNA and RNase E marked in black. D) Domain movement in the RNase E catalytic domain upon sub-
strate binding, and quaternary structure flexibility. The left panel shows the overall structure of RNase E tetramer alone (top) and the RNA bound (bottom). The movements at the
dimer-of-dimer interface are shown in the middle panel. Domain closure with the S1/5′-sensor domain clamping down on the substrate is demonstrated on the right panel.
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Fig. 4. A cartoon schematic of two pathways for RNA cleavage by RNase E and the degradosome: 5′ end sensing and the 5′ bypass pathway. A). Activation of RNase E by 5′ end
sensing to trigger domain closure. B). Proposed model for how the CTD might affect 5′ end bypass by capturing and presenting potential substrates to the catalytic domain. The
red bars represent the two RNA binding domains in the C-terminal half of RNase E.
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present structured substrates to the catalytic domain which would rec-
ognise the 5′ end and cleave them more efficiently, and to help recruit
and present small non-coding RNAs (sRNAs) or sRNA/Hfq complexes
for pairing to the mRNA target [55]. We turn now to explore this topic.

4. RNase E, the degradosome and sRNA mediated riboregulation

Riboregulation in bacteria is an important aspect of the control of
gene expression, especially in response to stress [62,63]. This regulato-
ry mode is mediated by small non-coding RNAs of 50 to 300 nucleo-
tides that share imperfect sequence complementarity with the target
RNAs. Despite the limited size of the pairing region, the sRNAs recog-
nise targets with selectivity and affect rapid responses, which is most
often by repressing translation and triggering degradation of the
targeted mRNA. Many of the sRNAs studied in E. coli and Salmonella
sp. act in conjunction with the RNA chaperone Hfq, which assists the
sRNAs to pair with their target mRNAs and also protects them from
premature degradation [64]. Themain body of the sRNAmight interact
with Hfq such that the “seed region” is presented to the transcript for
cognate base-pairing [65–67]. The primary nuclease through which
sRNAs trigger transcript instability is RNase E [68,69], and once RNase
E initiates cleavage, degradation proceeds rapidly for both mRNA and
sRNA, so that their turnover is effectively coupled [70].

Truncations of RNase E that lose the degradosome scaffolding do-
main are deficient for some small RNA mediated responses. Deletion
of this portion of Salmonella RNase E (residues 702 to 1061) weakens
the sRNA-mediated repression of the outer membrane protein OmpD
[71]. Similar deletions decrease the degradation rate of the sRNAs [72],
and diminish the effectiveness for target gene silencing [70,73]. Some
portion of the C-terminal domain may be important for mediating the
repression effects of sRNAs, and one model proposes that these do-
mains may help to recruit the Hfq:sRNA complex [74,75]. Binding
data suggest that RNA can bridge between Hfq and the RNA-binding
domains that are located in the C-terminal half of RNase E [76]. In
this sense, the large degradosome mediated sRNA/Hfq “recognition
assembly” has some parallels to the Dicer machinery of eukaryotes.
The interaction of these RNA-binding domains of RNase E may help
to present the seed region of sRNA, and also assist the delivery of the
target to the catalytic domain of RNase E for cleavage. We envisage a
mechanism for this action in which an sRNA activates the catalytic
domain of RNase E, whilst other components of the degradosome
assembly together with RNA binding domains in the C-terminal half
of RNase E might interact with the mRNA target to aid presentation
of the target site to the catalytic groove of RNase E [55].

5. How riboregulationmight enable substrate access on polysomes

Prévost et al. [73] have reported a case in which an sRNA can di-
rect RNase E to cleave targets at a distance from the seed-pairing re-
gion. The sRNA RyhB base pairs with the target sodBmRNA (encoding
superoxide dismutase) at the 5′-UTR (untranslated region), and this
induces RNase E to cleave within the coding region during active
translation. Like many other cases of sRNA mediated riboregulation,
the mechanism of RyhB involves the RNA chaperone, Hfq. Binding
of RyhB at the 5′-UTR triggers two processes in sequence: first, pre-
vention of a new round of translation, by simply occluding the ribo-
some binding sites; second, RNase E cleavage at the distal site after
it has been cleared of translating ribosomes. This two-stage mecha-
nism avoids the fate of accumulating ribosomes that are trapped on
a cleaved, stop-less transcript [73].

One model that may account for sRNAmediated action, both local-
ly and at a distance, is based on evidence that the degradosome may
bind to polysomes in E. coli [77]. The interaction is mediated by the
AR2, RBD, and the highly basic C-terminal tail of the RhlB helicase.
Interacting with polysomes, the degradosome might remain associat-
ed with the sRNA/Hfq/mRNA region whilst the emerging transcript
spools from the terminal ribosome. This could continue until a struc-
tural signal is recognised by a component of the degradosome, and
this would trigger cleavage of the exposed transcript. Although such
a process enables the graceful exit from translation without generat-
ing stop-less codons, it is conceivable that cleavages might be made
within the coding region of an actively translated transcript; this
would result in an “emergency stop” that would generate a stop-less
mRNA and would require rescue of the stalled ribosome for example
by the tmRNA system. For instance, this could enable rapid termination
of biosynthesis of proteins that could cause cell death in stress condi-
tions, like porin synthesis during envelope stress response (Fig. 5B).

Translating ribosomes are potent helicases [78], and it might be
expected intuitively that it would be difficult for an sRNA or even
the large degradosome mediated sRNA/Hfq “recognition assembly”
to transiently stall such a machine. However, there may be small
windows of opportunity kinetically that enable a site to be rapidly
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Fig. 5. RNase E, the degradosome and sRNA mediated post-transcriptional regulation. Cartoon schematic of the sRNA mediated pathways for degradation (left and central panels)
and translational activation (right panel). The purple body represents RNase E and the orange body is an exoribonuclease.
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exposed and cleaved, and this would ensure that subsequent rounds
of translation are prevented. Such pausing could be triggered by ribo-
somes encountering certain signals in the message or regulatory
signals (such as hibernation factor). This hypothetical modewould re-
quire collaborationwith the tmRNA pathway to rescue the terminated
assembly. Similar or analogous effects of ribonucleases may occur in
other bacteria; for instance, an interaction of a ribonuclease (RNase J)
and ribosomes is observed inH. pylori [49]. This process is not expected
to occur under exponential conditions, butmight occurwith potentially
deleterious stress or other conditions that require rapid adaptation.

6. Cell localisation and compartmentalisation

The subcellular compartmentalisation of enzymes is likely to influ-
ence strongly access to substrates. In E. coli, RNase E is localised to the
cytoplasmic membrane [79–81]. The localisation can be visualised
in situ by fluorescence microscopy of living cells expressing fusions
of RNase E with fluorescent proteins that are encoded either on plas-
mids or the chromosome, and the protein moves on the membrane
surface in a highly dynamic manner (AJC and BFL, unpublished). The
membrane localisation of RNase E is mediated principally by an am-
phipathic α-helix localised 30 to 45 residues to the c-terminus of the
catalytic domain (residues 565–582 in E. coli RNase E), which is con-
served in RNase E homologues of the β- and γ-Proteobacteria [79].
Similar ‘membrane anchors’ are found in other membrane-
associated proteins in bacteria, such as the actin-like MreB, the cell
division proteins FtsA and MinD, and the signal recognition particle
receptor FtsY [82–85].

The membrane anchor is envisaged to float on the surface of the
inner leaflet of the cytoplasmic membrane, such that the hydrophobic
residues are immersed in the hydrocarbon interior of the lipid mem-
brane and the basic residues form electrostatic interactions with the
polar head groups [79]. This model is consistent with the results of
molecular dynamics simulations of peptide binding to vesicles having
the complex lipid composition of E. coli membranes (Syma Khalid,
personal communication). The RNase E catalytic domain by itself
may associate with the cytoplasmic membrane, and this affects ribo-
nuclease activity by stabilising the catalytic core [80] although this
effect is likely due to a general electrostatic attraction.

The compartmentalisation of RNase E and the degradosome
may be a specialisation of the β- and γ-Proteobacteria, as RNase E
of other species generally lacks identifiable membrane anchors. In
the α-proteobacterium Caulobacter crescentus, RNase E is not on the
membrane and appears to be associated with the nucleoid [86]. How-
ever, in the highly divergent B. subtilis, the degradosome component
RNase Y is membrane-associated [87]. In those cases where the ribo-
nuclease is membrane-localised, the role of the membrane interac-
tion has not been established unequivocally, but it is clear that the
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interaction is required for competitive fitness since disruption of the
membrane anchor causes slow growth in E. coli [79]. The interaction
of B. subtilis RNase Y with the membrane may be required for its ac-
tivity in vivo [87].

Cryo-electron microscopy of the wild type degradosome suggests
that the sample may be conformationally heterogeneous (Jarrod
Voss, personal communication), but it is likely that membrane associ-
ation may influence and help to confine the spatial spread of the com-
ponents. We speculate that this membrane association structurally
organises the RNase E tetramer, as it would bring the non-catalytic
C-terminal domains to the periphery of a focal point of catalytic do-
mains (Fig. 7).

7. Summary and perspective

A transcript's lifetime will be affected by its accessibility, and ac-
cordingly, active translation that enshrouds the transcript with ribo-
somes protects mRNAs [15,88,89]. The available data indicate that
each transcript has a characteristic and tunable lifetime, and proper-
ties of the RNA such as propensity to fold as it issues from the last
bound ribosome (or polymerase itself), will affect the rate at which
it can be attacked by a ribonuclease. In a T7 RNA polymerase-based
system, the 8-fold higher transcription rate uncouples transcription
from translating ribosomes, which are too slow to keep pace with
the polymerase. The resulting ribosome-free mRNAs are extremely
sensitive to ultra-rapid degradation that is mediated by RNase E [16].

Under normal conditions in E. coliwhere transcription is driven by
E. coli RNA polymerase, it seems likely that the decay is initiated at
some stage during translation — and this could be either as the mes-
sage exits from the trailing ribosome (Fig. 6A), or perhaps more rad-
ically, internally in a translating polysome (Fig. 6B for example). Once
the attack is initiated, it is critical that degradation continues to
completion, and speculatively the degradation machinery might be
waiting in a passive mode on polysomes for stochastic access to the
issuing end of the transcript or for activating signals from sRNAs
or pyrophosphohydrolases, that can help to recruit the substrate
Fig. 6. A speculative model for interaction of the degradosome and polysome in sRNA media
RNase E on the 5′ end of a spooling transcript. B) Amore radical “emergency stop” process to t
an actively translated mRNA. This hypothetical mode would generate a stop-less transcript
RNase E is purple, and the two RNA binding sites in the C-terminal half of the enzyme are sho
the blue trimer.
and allosterically activate the catalytic domain of RNase E for cleavage
under stress or rapidly changing conditions [77]. A recent report
suggests that the density of translating ribosomes is an important fac-
tor in RNA degradation by RNase E, where 5′ monophosphate gener-
ated by the pyrophosphohydrolase RppH accelerates the cleavage by
RNase E in 5′ UTR of the transcripts with poor ribosome binding affin-
ity [89]. In considering such a dynamic picture, it must also be borne
in mind that the degradosome might be generally busy with process-
ing tRNA and rRNA, thereby limiting its availability for mRNA decay
[90]; perhaps such a distracting effect may potentially link degrada-
tive activity with cellular growth conditions.

The cooperation of components of the degradosome facilitates
substrate turnover, and the assembly is likely to be highly flexible
and accommodating for complex RNA folds, with interesting func-
tional consequences for substrate capture and subunit communica-
tion. Some of the structural subdomains forming the N-terminal half
of RNase E can move relative to each other with substrate binding
(e.g., the S1-5′ sensor domain) and quaternary structure of the
tetramer allows changes at the dimer-of-dimer interfaces (Fig. 3).
The scaffolding region of the degradosome, namely the C-terminal re-
gion of RNase E, is also highly flexible, and this would help to confer
interactions and cooperation between degradosome components.
Tethering of the degradosome to the membrane would help to bring
the components into juxtaposition, with capacity for flexible maneu-
vering. Thus, the entire assembly on the membrane might resemble
something like a sea anemone, with flexible tentacles that can capture
and engulf substrates (Fig. 7). Although the C-terminal domain of
RNase E is predicted to be predominantly unstructured, it is not
expected to be elongated and in fact the degradosomemight nonethe-
less be a semi-compacted assembly. The available EM data suggest
that the particles might be 30 nm in diameter, which suggests that
there is compaction that would limit the ‘throw’ of the segments
into the cellular milieu (Górna PhD thesis). We envisage that the flex-
ibility may enable the degradosome assembly to scan along translat-
ing polysomes, and facilitate the identification of suitable substrates
to initiate degradation. These hypotheses, as well as further insight
ted gene silencing [77]. Panel A suggests a mechanism for sRNA mediated activation of
erminate translation prematurely. Here, the cleavage is mediated in the coding region of
and require collaboration with the tmRNA pathway to rescue the terminated assembly.
wn in red. Helicase is the bi-lobed green body, enolase is the yellow dimer and PNPase is
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Fig. 7. The membrane localisation of Escherichia coli RNase E and the RNA degradosome. Schematic of proposed association of an RNase E tetramer (purple) on the inner leaflet of
the cytoplasmic membrane through four amphipathic alpha helices (orange). With this model, the hydrophobic side chains of the amphipathic helices are partially immersed in the
hydrocarbon interior of the lipid bilayer (gray lines). The grey spheres are the lipid polar head groups. Membrane association may help to bring the other degradosome components
closer in space. Each purple sphere is an RNase E catalytic domain, RhlB helicase is the bi-lobed green body, dimeric enolase is shown in yellow and trimeric PNPase in blue.
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into the organisation and activities of the degradosome, require chal-
lenging experimental approaches to explore the degradosome struc-
ture on the cytoplasmic membrane in a living cell.
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