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Purpose: To identify the disease-causing mutations in three consanguineous Pakistani families with multiple members
affected by primary congenital glaucoma.
Methods: Blood samples were collected, and DNA was extracted. Linkage analysis for reported primary congenital
glaucoma loci was performed using closely spaced polymorphic microsatellite markers on genomic DNA from affected
and unaffected family members. All coding exons, the exon-intron boundaries, and the 5′ untranslated region of
CYP1B1 were sequenced.
Results: The alleles of chromosome 2p markers segregate with the disease phenotype in all three families with positive
LOD scores. The sequencing results identified three novel mutations (L177R, L487P, and D374E) and one previously
reported mutation (E229K) in CYP1B1 that segregate with the disease phenotype in their respective families. None of
these sequence variations were present in 96 ethnically matched control samples.
Conclusions: These results strongly suggest that missense mutations in CYP1B1 are most likely to be responsible for
primary congenital glaucoma in these families.

Glaucoma is the second leading cause of visual loss and
accounts for approximately 15% cases of blindness
worldwide [1]. It is estimated to affect 60 million people by
2010 and predicted to rise to 80 million by 2020 [2]. Glaucoma
is a group of poorly understood neurodegenerative disorders
that are usually associated with elevated intraocular pressure
[2]. It is clinically characterized by the degeneration of the
optic nerve, loss of retinal ganglion cells, and characteristic
changes in the visual field, which all lead to irreversible vision
loss [3]. Although there has been much progress in finding
new genes and detecting disease-related mutations, little is
known about the function of the mutated gene products and
the underlying pathogenic mechanisms. Further, it is
estimated that all the known loci/genes of glaucoma account
for a minority of all cases of glaucoma, and hence, many
glaucoma genes remain to be identified.

Primary congenital glaucoma (PCG) is an inherited
ocular congenital anomaly of the trabecular meshwork and
anterior chamber angle [4-7]. This leads to the obstruction of
aqueous outflow and increased intraocular pressure (IOP),
which results in optic nerve damage leading to blindness. The
disease manifests in the neonatal or early infantile period with
symptoms of photophobia, epiphora, signs of enlargement of
the globe, edema, opacification of the cornea, and breaks in
the Descemet's membrane. The mode of inheritance is largely
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autosomal recessive with variable penetrance, but rare cases
of pseudo dominance are also seen in families with multiple
consanguinity [8-11]. Three chromosomal loci have been
linked to PCG, GLC3A (2p21; OMIM 231300), GLC3B
(1p36; OMIM 600975), and GLC3C (14q24.3) [12,13]. To
date, only mutations in the human cytochrome P450 gene,
CYP1B1 (OMIM 601771), have been reported to cause PCG.

Here, we report three consanguineous Pakistani families
diagnosed with early onset primary congenital glaucoma.
Linkage analysis with chromosome 2p21 markers that were
harboring CYP1B1 provided positive LOD scores.
Sequencing of CYP1B1 identifies three novel mutations
(L177R, L487P, and D374E) and one previously reported
mutation (E229K) that segregated with the disease phenotype
in their respective families. None of these sequence variations
were present in 96 ethnically matched control samples.

METHODS
Thirteen consanguineous Pakistani families with PCG were
recruited to participate in a study to understand the genetic
aspects of glaucoma at the National Centre of Excellence in
Molecular Biology (Lahore, Pakistan). This study was
approved by the internal review board (IRB) of the National
Centre of Excellence in Molecular Biology. The participating
subjects gave informed consent, consistent with the tenets of
the Declaration of Helsinki. All three families described in
this study are from the Punjab province of Pakistan.

A detailed medical history was obtained by interviewing
family members. All of the ophthalmological examinations
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including slit lamp biomicroscopy and applanation tonometry
were completed at Layton Rahmatullah Benevolent Trust
(LRBT) hospital (Lahore, Pakistan). Diagnosis of PCG was
based on established criteria that include measurement of IOP,
measurement of corneal diameters, observation of optic nerve
head where possible, and symptoms of corneal edema
including photophobia, buphthalmos, cloudy cornea, and
excessive tearing. Patients with elevated IOP associated with
other systemic or ocular abnormalities were excluded. Blood
samples were collected from affected and unaffected family
members. DNA was extracted by a nonorganic method
described by Grimberg et al. [14]

Genotype analysis: Genotype analysis was performed
with 12 highly polymorphic fluorescent markers for GLC3A,
GLC3B, and GLC3C loci. Briefly, each reaction was
performed in 5ml reaction mixture containing 40 ng genomic
DNA, 1X PCR Buffer, 1mM dNTP mix, 2.5 mM MgCl2, and
0.2 U Taq DNA polymerase (Ampli Taq Gold Enzyme;
Applied Biosystems, Foster City, CA). Amplification was
performed in a GeneAmp PCR System 9700 (Applied
Biosystems). Initial denaturation was performed for 5 min at
95 °C followed by 10 cycles of 15 s at 94 °C, 15 s at 55 °C,
and 30 s at 72 °C and then 20 cycles of 15 s at 89 °C, 15 s at
55 °C, and 30 s at 72 °C. The final extension was performed
for 10 min at 72 °C followed by a final hold at 4 °C.
Polymerase chain reaction (PCR) products from each DNA
sample were pooled and mixed with loading cocktail HD-400
containing size standards (Applied Biosystems). The resulting
PCR products were separated in an ABI 3100 DNA Analyzer
and analyzed by using GeneMapper software packages
(Applied Biosystems).

Linkage analysis: Two-point linkage analysis was
performed using the FASTLINK version of MLINK from the
LINKAGE program package [15,16]. All linkage packages
are provided in the public domain by the Human Genome
Mapping Project Resources Centre (Cambridge, UK).
Maximum LOD scores were calculated using ILINK.
Autosomal recessive PCG was analyzed as a fully penetrant
trait with an affected allele frequency of 0.001. The marker
order and distances between the markers were obtained from

the Marshfield database and the National Center for
Biotechnology Information (NCBI) chromosome 2 sequence
maps. Allele frequencies were estimated from 100 unrelated
and unaffected individuals from the Punjab province of
Pakistan.

Mutation screening: Primer pairs for individual exons of
CYP1B1 were designed using the Primer3 program. The
primers are listed in Table 1. Amplifications were performed
in a 25 μl reaction containing 50 ng of genomic DNA, 2.5 μl
1X PCR buffer, 8 pmoles of each primer, 2.5 mM dNTP, 2.5
 mM  MgCl2,  and  0.2  U Taq  DNA  polymerase  (Applied
Biosystems). Amplification was performed in a GeneAmp
PCR System 9700 (Applied Biosystems). PCR amplification
consisted of a denaturation step at 96 °C for 5 min, followed
by 40 cycles, each at 96 °C for 45 s followed by 57 °C for 45
s and 72 °C for 1 min. PCR products were analyzed on 2%
agarose gel and purified by ethanol precipitation. The PCR
primers for each exon were used for bidirectional sequencing
using Big Dye Terminator Ready reaction mix (Applied
Biosystems) according to the manufacturer’s instructions.
Sequencing products were precipitated, resuspended in 10 μl
of formamide, and denatured at 95 °C for 5 min. Sequencing
was performed on an ABI 3100 Automated sequencer
(Applied Biosystems). Sequencing results were assembled
using the ABI PRISM sequencing analysis software version
3.7 and analyzed using Chromas software version 1.45.

RESULTS
All three families reported here, PKGL021, PKGL022, and
PKGL026, are from the Punjab province of Pakistan. A
detailed medical history was obtained by interviewing family
members. Ophthalmological examinations were completed at
the LRBT hospital in Lahore, Pakistan. The symptoms of
glaucoma in affected individuals in family PKGL021 were
present at birth. Visual acuity is confined to hand motion or
light perception. The IOP is controlled with antiglaucoma
treatments. Similarly, glaucoma in affected individuals of
family PKGL022 was diagnosed within the first month after
birth. Clinical features include bilateral buphthalmos eyes,
corneal opacity, and central corneal haze. Visual acuity was

TABLE 1. THE PRIMER SEQUENCES AND ANNEALING TEMPERATURES FOR CYP1B1.

Exon Forward Primer Reverse Primer Annealing Temp
(°C)

1 GCTCCCATGAAAGCCTGCTG ACGCCACCCGCTACCTGTAA 63
2a GGCCATTTCTCCAGAGAGTC GAACTCTTCGTTGTGGCTGA 57
2b ATGATGCGCAACTTCTTCAC CACTGTGAGTCCCTTTACCG 57
3a AGCCTATTTAAGAAAAAGTGGAA AATTGAGAAGCAGCACAAAA 54
3b ATAAGAAGCAAGAGGCAAGC AGGTACAACATCACCTTGGAG 55
3c CAGTTGCTCAAAAAGAAATCA AAAGAACATCCAGGTAATTCA 55
3d TGAACATTCTCCTGTGGAAG ATTCCAAACCACAAAACAGA 54
3e TTTGGAGCACAAAATTCAAA AGCTTTGACATACAAATGAAGC 55
3f TGCTGACAACCATTAAAGTCA AAATGTAACCTCCGTGTTGG 55
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reduced to counting fingers. The IOP of both affected
individuals of PKGL022 was considerably higher than the
affected individuals of PKGL021 and PKGL026. The clinical
records indicate that individual 11 and 12 have 43/50 (OD/
OS), and 23/37 (OD/OS) mm Hg of intraocular pressure,
respectively. Lastly, ophthalmic examinations of affected
individuals of PKGL026 show typical features of glaucoma
with elevated IOP and visual acuity reduced to counting

fingers or light perception. The symptoms of glaucoma were
either present at birth or appeared in the first six weeks after
birth.

Two-point linkage analysis with chromosome 2p21
markers provided positive LOD scores. For PKGL021, the
maximum LOD scores of 1.43, 1.47, and 0.91 were obtained
with markers D2S352, D2S1346, and D2S2331 at θ=0,
respectively (Table 2). Similarly, for PKGL022, maximum

Figure 1. Family pedigrees. Pedigrees of A) PKGL021, B) PKGL022 and C) PKGL026. Squares denote males while circles denote females.
Filled symbols indicate affected individuals. A double line between individuals signifies consanguinity, and a diagonal line through a symbol
indicates a deceased family member. The haplotypes of six adjacent chromosome 2p21 microsatellite markers are shown with alleles forming
the risk haplotype shaded black, alleles cosegregating with PCG but not showing homozygosity shaded gray, and alleles not cosegregating
with PCG shown in white.

Molecular Vision 2008; 14:2002-2009 <http://www.molvis.org/molvis/v14/a236> © 2008 Molecular Vision

2004

http://www.molvis.org/molvis/v14/a236


LOD scores of 1.65, 1.35, 1.48, and 1.60 were obtained with
markers D2S2163, D2S177, D2S1346, and D2S2331 at θ=0,
respectively (Table 2). Lastly, for PKGL026, maximum LOD
scores of 5.16, 4.86, 3.71, and 2.96 were obtained with
markers D2S2163, D2S177, D2S1346, and D2S2331 at θ=0,
respectively (Table 2). Haplotype analysis show that all the
affected individuals of PKGL021, PKGL022, and PKGL026
have homozygous alleles for D2S2163, D2S177, D2S1346,

and D2S2331 short tandem repeat (STR) markers whereas the
normal individuals are either heterozygous carriers of the
disease allele or are homozygous for the normal allele (Figure
1).

All coding exons, exon-intron boundaries, and the 5′
untranslated region of CYP1B1 were sequenced in all three
families. In PKGL021, a C→G transversion in exon 3, c.
1122C>G, was identified resulting in an aspartic acid to

Figure 2. Sequence chromatograms.
The forward and reverse sequence
chromatograms of (A) unaffected
individual 9 of PKGL021, (B)
individual 5 of PKGL021, heterozygous
and (C) individual 7 of PKGL021,
homozygous for a C→G transversion in
exon 3, c.1122C>G, resulting in a;
p.D374E, (D) individual 8 of PKGL022,
heterozygous and (E) individual 10 of
PKGL022, homozygous for G→A
transition in exon2, c.685G>A,
resulting in mutation p.E229K, (F)
individual 8 of PKGL022, heterozygous
and (G) individual 10 of PKGL022,
homozygous for a T→C transition in
exon 3: c.1460T>C resulting in a;
p.L487P (H) unaffected individual 21 of
PKGL026, (I) individual 7 of
PKGL026, heterozygous, and (J)
individual 16 of PKGL026,
homozygous for a T→G transversion in
exon 2: c.530T>G: resulting in p.
L177R.
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glutamic acid change, D374E (Figure 2). In PKGL022, a
G→A transition in exon 2, c.685G>A, was identified resulting
in a glutamic acid to lysine change, E229K (Figure 2).
Additionally, in PKGL022, a T→C transition in exon 3, c.
1460T>G, was identified leading to a leucine to proline
change, p. L487P (Figure 2). Both these mutations segregated
with the disease phenotype in PKGL022. Finally, in
PKGL026, a T→G transversion in exon 2, c.530T>G, was
identified leading to a leucine to arginine change, L177R
(Figure 2). All the above mentioned variations were
homozygous and segregated with the disease phenotype in
their respective families. None of these sequence variations
were present in 96 ethnically matched control samples. Six
single nucleotide polymorphisms (SNPs) including
rs2617266, a SNP residing 12 bp upstream of the first coding
exon of CYP1B1, rs10012, rs1056827, rs1056836,
rs1056837, and rs1800440 were examined to construct the
disease haplotype. As shown in Table 3, the affected
individuals of PKGL021 and PKGL022 harbor T-G-T-C-C-
A haplotype whereas PKGL026 has a C-C-G-G-T-A
haplotype.

DISCUSSION
Here, we report three consanguineous Pakistani families
diagnosed with primary congenital glaucoma. Linkage

analysis with chromosome 2p21 markers, which harbor
CYP1B1, provided positive LOD scores. Sequencing of
CYP1B1 identified three novel mutations (L177R, L487P, and
D374E) and a previously reported mutation (E229K) in these
families. All variations segregated with the disease phenotype
in the respective families, and none of them were present in
96 control samples of similar ethnic population. Amino acids,
Leu177, Asp374, and Leu487, are highly conserved among
higher primate species (Figure 3). Linkage to chromosome
2p21 harboring CYP1B1, segregation of these variations with
the disease phenotype, and the absence of these variations in
96 control samples of similar ethnic population strongly
suggest that these variations are most likely to be responsible
for primary congenital glaucoma in these families.

Figure 3. Sequence alignment of amino acids of CYP1B1 among
higher primate species. The alignment of CYP1B1 among higher
primate species shows the conservation of Asp374 (green), Leu487
(blue), and Leu177 (red).

TABLE 2. TWO-POINT PARAMETRIC LOD SCORES OF PKGL021, PKGL022, AND PKGL026 WITH CHROMOSOME 2p MARKERS.

Marker cM Mb 0.00 0.01 0.03 0.05 0.07 0.09 0.10 0.20 0.30 Zmax θmax
PKGL021
D2S149 34.0 14.31 −4.34 −1.19 −0.74 −0.54 −0.42 −0.33 −0.30 −0.12 −0.06 −0.06 0.30
D2S2150 40.5 20.39 −2.59 −1.27 −0.83 −0.64 −0.52 −0.44 −0.41 −0.23 −0.17 −0.17 0.30
D2S352 50.7 31.34 1.43 1.39 1.33 1.26 1.19 1.12 1.09 0.73 0.39 1.43 0.00
D2S2163 59.4 37.78 0.38 0.37 0.34 0.32 0.29 0.27 0.25 0.14 0.06 0.38 0.00
D2S177 59.4 37.87 0.43 0.42 0.39 0.36 0.33 0.31 0.29 0.17 0.07 0.43 0.00
D2S1346 59.4 38.11 1.47 1.44 1.37 1.3 1.24 1.17 1.13 0.79 0.46 1.47 0.00
D2S2331 59.9 38.79 0.91 0.89 0.82 0.77 0.71 0.65 0.62 0.34 0.09 0.91 0.00
D2S391 70.3 46.25 −2.89 −1.27 −0.82 −0.61 −0.48 −0.39 −0.35 −0.13 −0.05 −0.05 0.30
D2S337 80.7 61.51 −2.89 −1.27 −0.82 −0.61 −0.48 −0.39 −0.35 −0.13 −0.05 −0.05 0.30
PKGL022
D2S149 34.0 14.31 0.16 0.14 0.13 0.12 0.12 0.11 0.11 0.09 0.04 0.16 0.00
D2S2150 40.5 20.39 0.48 0.46 0.43 0.40 0.37 0.34 0.32 0.18 0.08 0.48 0.00
D2S352 50.7 31.34 0.16 0.14 0.13 0.12 0.12 0.11 0.11 0.09 0.04 0.16 0.00
D2S2163 59.4 37.78 1.65 1.61 1.52 1.43 1.35 1.26 1.22 0.79 0.40 1.65 0.00
D2S177 59.4 37.87 1.35 1.31 1.23 1.16 1.08 1.01 0.97 0.61 0.30 1.35 0.00
D2S1346 59.4 38.11 1.48 1.44 1.36 1.28 1.20 1.12 1.08 0.69 0.34 1.48 0.00
D2S2331 59.9 38.79 1.60 1.56 1.48 1.39 1.31 1.22 1.18 0.76 0.38 1.60 0.00
D2S391 70.3 46.25 −3.92 −1.49 −0.98 −0.73 −0.57 −0.45 −0.40 −0.13 −0.04 −0.04 0.30
D2S337 80.7 61.51 −3.08 −1.03 −0.59 −0.39 −0.28 −0.20 −0.17 −0.02 0.01 0.01 0.30
PKGL026
D2S149 34.0 14.31 -∞ −2.82 −1.08 −0.36 0.05 0.32 0.41 0.76 0.62 0.76 0.20
D2S2150 40.5 20.39 -∞ −4.62 −2.80 −2.00 −1.50 −1.14 −1.00 −0.22 0.05 0.05 0.30
D2S352 50.7 31.34 -∞ −1.55 −0.68 −0.31 −0.10 0.04 0.10 0.30 0.25 0.30 0.20
D2S2163 59.4 37.78 5.16 5.06 4.86 4.66 4.45 4.24 4.14 3.06 1.97 5.16 0.00
D2S177 59.4 37.87 4.86 4.76 4.56 4.36 4.16 3.96 3.86 2.83 1.79 4.86 0.00
D2S1346 59.4 38.11 3.71 3.71 3.65 3.56 3.44 3.3 3.23 2.42 1.56 3.71 0.00
D2S2331 59.9 38.79 2.96 2.92 2.82 2.71 2.59 2.47 2.41 1.77 1.15 2.96 0.00
D2S391 70.3 46.25 1.60 1.57 1.49 1.41 1.33 1.25 1.21 0.81 0.45 1.60 0.00
D2S337 80.7 61.51 -∞ 1.52 1.85 1.92 1.92 1.87 1.84 1.35 0.73 1.92 0.05

LOD scores were calculated at different θ values for each marker with the FASTLINK version of MLINK from the
LINKAGE  program package. Maximum LOD scores for each marker were calculated using ILINK.
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CYP1B1 is a member of the CYP450 super family, which
contains 58 functional genes in the human genome [2]. The
gene product is a 543 amino acid protein that contains the
NH2-terminal membranous region; a 10 residue long, proline-
rich region; and a cytosolic globular domain [2]. Mutations in
CYP1B1 are the predominant cause of PCG in patients from
various ethnic backgrounds. Previous studies have shown that
missense mutations in CYP1B1 affect highly conserved and
functionally important regions of CYP1B1, resulting in
significant structural changes and reduced CYP1B1 activity
[11,17-21].

In PKGL021, we identified a homozygous missense
change that substitutes aspartic acid at position 374 with
glutamic acid in affected individuals. Previously, aspartic acid
to asparagine substitution at the same position has been
reported to lead to PCG phenotype in Saudi Arabian patients
[22]. Amino acid 374 maps to helix K, one of the highly
conserved core structures thought to be involved in correct
folding and heme binding of the cytochrome P450 molecule
[23]. Further mutations that map to helix K are reported to be
responsible for the severe PCG phenotype in Indian patients
[21].

In PKGL022, a leucine to proline substitution at residue
487 and a previously reported mutation, E229K, segregated
in an autosomal recessive pattern with the disease phenotype.
L487P affects the highly conserved position marking the end
of helix L, and the proline substitution at this position could
potentially disrupt the helical structure and possibly affect the
native three-dimensional structures. Conversely, glutamic
acid 229 resides in the vicinity of the substrate-binding region
(SBR) and is reported to cause conformational changes in
CYP1B1 [24]. Heterozygous carriers of this mutation develop
PCG and primary open-angle glaucoma phenotype [25-32].
Interestingly, compound heterozygous carriers of E229K and
L487P in PKGL022 show no symptoms of PCG. Noteworthy,
the affected individuals of PKGL022 have higher IOP
compared with affected individuals examined during this
study. Mutation L177R was detected in PKGL026. Amino
acid 177 in CYP1B1 resides in a highly conserved NH2-
capping region [21]. The non-conservative replacement of a
non-polar amino acid, leucine, with positively charged
arginine is most likely to impair the native protein structure
and consequently affect the protein function.

SNPs, especially rs2617266, rs10012, rs1056827,
rs1056836, rs1056837, and rs1800440, have been used to
construct haplotypes of CYP1B1 mutations [18,33,34].
According to the proposed hypothesis of evolution, the T-G-
T-C-C-A and C-C-G-G-T-A haplotypes are ancestral human
haplotypes whereas the T-G-T-C-C-A haplotype is
comparatively recent [35,36]. To date, approximately 50% of
known CYP1B1 mutations are associated with the C-C-G-G-
T-A haplotype while the T-G-T-C-C-A and C-C-G-C-C-G
haplotypes are less frequent and are associated with 9.7% and
7% of CYP1B1 mutations, respectively [31,33,37]. Affected
individuals of PKGL021 and PKGL022 harbor a T-G-T-C-C-
A haplotype, which is indicative of their common ancestry.
Noteworthy, the previously reported mutation, E229K, which
segregates in PKGL022, has been associated with the T-G-T-
C-C-A haplotype in French, German, Indian, and Iranian
patients [35,36]. The D374N mutation found in Saudi Arabian
patients is associated with the C-C-G-G-T-A haplotype,
which is in contrast to the T-G-T-C-C-A haplotype coupled
with D374E mutation in PKGL021 [38]. Finally, the L177R
mutation detected in PKGL026 is present in the C-C-G-G-T-
A haplotype, which is frequently associated with CYP1B1
mutations.

Studies of pathogenic sequence variants in CYP1B1 will
contribute to better understanding of primary congenital
glaucoma. Identification of these mutations reaffirms the
diverse allelic heterogeneity of CYP1B1 in the pathogenesis
of PCG. This will further help in the elucidation of the
structure-function relationship of CYP1B1 and hence, lead to
the development of novel therapeutic approaches.
Consequently, the association of specific haplotypes with
pathogenic mutations will contribute to our knowledge of
haplotype clustering of PCG associated with CYP1B1
mutations. This will overall enhance our understanding of
primary congenital glaucoma at the molecular level.
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TABLE 3. SINGLE NUCLEOTIDE POLYMORPHISM (SNP) PROFILE OF PCG PATIENTS FROM ALL THREE FAMILIES LINKED TO CYP1B1.

Family rs2617266 rs10012 rs1056827 rs1056836 rs1056837 rs1800440
PKGL021                   T G T C C A
PKGL022                   T G T C C A
PKGL026                   C C G G T A

To trace CYP1B1  mutations identified in this study haplotypes for six intragenic SNPs including rs2617266 , which is 12 bp
upstream of the first coding exon of CYP1B1, rs10012, rs1056827, rs1056836, rs1056837, and rs1800440  were constructed.
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Pakistan), and Comstech.EMRO project of the World Health
Organization (Registration No: RAB and GH 06–07_24).
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