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Abstract: This paper presents a spatial noise reduction technique designed to work on 

CFA (Color Filtering Array) data acquired by CCD/CMOS image sensors. The overall 

processing preserves image details using some heuristics related to the HVS (Human 

Visual System); estimates of local texture degree and noise levels are computed to regulate 

the filter smoothing capability. Experimental results confirm the effectiveness of the 

proposed technique. The method is also suitable for implementation in low power mobile 

devices with imaging capabilities such as camera phones and PDAs. 
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1. Introduction  

 

The image formation process through consumer imaging devices is intrinsically noisy. This is 

especially true using low-cost devices such as mobile-phones, PDAs, etc., mainly in low-light 

conditions and the absence of flash-guns [1]. 

The final perceived quality of images acquired by digital sensors can be optimized through multi-

shot acquisitions (e.g., extending dynamic range [2], increasing resolution [3]) and/or using ad-hoc 

post-processing techniques [4,5] taking into account the raw data acquired by Bayer matrixed image 
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sensors [6]. These are grayscale sensors covered by CFA (Color Filter Array) to enable color 

sensitivity, such that each cell of the sensor array is receptive to only one color component. The final 

color image is obtained by means of a color reconstruction (demosaicing) algorithm that combines the 

color information of neighboring pixels [7-9] and [10]. A useful review of technology and methods in 

the field can be found in [1] and [11]. 

In this paper we propose a novel spatial noise reduction method that directly processes the raw CFA 

data, combining together HVS (Human Visual System) heuristics, texture/edges preservation 

techniques and sensor noise statistics, in order to obtain an effective adaptive denoising.  

The proposed algorithm introduces the concept of the usage of HVS peculiarities directly on the 

CFA raw data from the sensor. In addition, the complexity of the algorithm is kept low by using only 

spatial information and a small fixed-size filter processing window, allowing real-time performance on 

low cost imaging devices (e.g., mobile phones, PDAs). 

The HVS properties, able to characterize or isolate unpleasant artifacts, are complex (highly 

nonlinear) phenomena not yet completely understood involving a lot of complex parameters [12,13]. 

Several studies in the literature have tried to simulate and code some known aspects in order to find 

reliable image metrics [14-16] and heuristics to also be applied for demosaicing [17].  

Sophisticated denoising methods such as [18-20] perform multiresolution analysis and processing in 

the wavelet domain. Other techniques, as suggested in [21], use anisotropic non-linear diffusion 

equations, but work iteratively. Spatial denoising approaches having texture discrimination capabilities 

can be found in [1,23,24], whereas methods implementing texture discrimination using fuzzy logic are 

described in [25,26]. Other kinds of noise, such as fixed pattern noise (FPN) can be treated ad-hoc, in 

[27] a method suitable is presented.  

The proposed filtering method is a trade-off between real time implementation with very low 

hardware logic and the usage of some HVS peculiarities, texture and noise level estimation. The filter 

adapts its smoothing capability to local image characteristics yielding effective results in terms of 

visual quality. 

The paper is structured as follows: in the next section some details about the CFA and HVS 

characteristics are briefly discussed; in Section 3 the overall details of the proposed method are 

presented. An experimental section reports the results and some comparisons with other related 

techniques. The final section tracks directions for future works. 

 

2. Background  

 

2.1. Bayer Data 

 

In typical imaging devices a color filter is placed on top of the imager making each pixel sensitive 

to only one color component. A color reconstruction algorithm interpolates the missing information at 

each location and reconstructs the full RGB image [9-11]. The color filter selects the red, green or blue 

component for each pixel; this arrangement is known as Bayer pattern [6]; other arrangements of CFA 

data take into account CMY complementary colors, but the RGB color space is the most common.  

The number of green elements is twice the number of red and blue pixels due to the higher 

sensitivity of the human eye to the green light, which, in fact, has a higher weight when computing the 
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luminance. The proposed filter processes raw Bayer data, providing the best performance if executed 

as the first algorithm of the IGP (Image Generation Pipeline). A typical image reconstruction pipeline 

is shown in Figure 1. 

 

Figure 1. Image Generation Pipeline. 

 
 

2.2. Basic Concepts about the Human Visual System 

 

It is well known that the HVS has a different sensitivity at different spatial frequencies [28]. In areas 

containing mean frequencies the eye has a higher sensitivity. Furthermore, chrominance sensitivity is 

weaker than the luminance one.  

HVS response does not entirely depend on the luminance value itself, rather, it depends on the 

luminance local variations with respect to the background; this effect is described by the Weber-

Fechner’s law [13,29], which determines the minimum difference DY needed to distinguish between Y 

(background) and Y+DY. Different values of Y yield to different values of DY.  

The aforementioned properties of the HVS have been used as a starting point to devise a CFA 

filtering algorithm. Luminance from CFA data can be extracted as explained in [30], but for our 

purposes it can be roughly approximated by the green channel values before gamma correction.  

The filter changes its smoothing capability depending on the CFA color of the current pixel and its 

similarity with the neighborhood pixels.  

More specifically, in relation to image content, the following assumptions are considered: 

- if the local area is homogeneous, then it can be heavily filtered because pixel variations are 

basically caused by random noise. 

- if the local area is textured, then it must be lightly filtered because pixel variations are mainly 

caused by texture and by noise to a lesser extent; hence only the little differences can be safely 

filtered, as they are masked by the local texture. 
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3. The Proposed Technique 

 

3.1. Overall filter block diagram 

 

A block diagram describing the overall filtering process is illustrated in Figure 2. Each block will 

be separately described in detail in the following sections. 

 

Figure 2. Overall Filter Block Diagram. 

 
 

The fundamental blocks of the algorithm are: 

 Signal Analyzer Block: computes a filter parameter incorporating the effects of human 

visual system response and signal intensity in the filter mask. 

 Texture Degree Analyzer: determines the amount of texture in the filter mask using 

information from the Signal Analyzer Block. 

 Noise Level Estimator: estimates the noise level in the filter mask taking into account the 

texture degree. 

 Similarity Thresholds Block: computes the fuzzy thresholds that are used to determine the 

weighting coefficients for the neighborhood of the central pixel. 

 Weights Computation Block: uses the coefficients computed by the Similarity Thresholds 

Block and assigns a weight to each neighborhood pixel, representing the degree of similarity 

between pixel pairs.  

 Filter Block: actually computes the filter output.  

The data in the filter mask passes through the Signal Analyzer block that influences the filter 

strength in dark and bright regions (Section 3.2 for further details). The HVS value is used in 

combination with the output of the Texture Degree Analyzer (Section 3.4) and Noise Level Estimator 

(Section 3.5) to produce the similarity thresholds used to finally compute the weights assigned to the 
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neighborhood of the central pixel (Section 3.6). The final filtered value is obtained by a weighted 

averaging process (Section 3.7). 

 

3.2. Signal Analyzer Block 

 

As noted [31-33], it is possible to approximate the minimum intensity gap that is necessary for the 

eye to perceive a change in pixel values. The base sensitivity thresholds measure the contrast 

sensitivity in function of frequency while fixing the background intensity level. In general, the 

detection threshold varies also with the background intensity. This phenomenon is known as 

luminance masking or light adaptation. Higher gap in intensity is needed to perceive a visual 

difference in very dark areas, whereas for mid and high pixel intensities a small difference in value 

between adjacent pixels is more easily perceived by the eye [32]. 

It also crucial to observe that in data from real image sensors, the constant AWGN (Additive White 

Gaussian Noise) model does not fit well the noise distribution for all pixel values. In particular, as 

discussed in [34], the noise level in raw data is predominantly signal-dependent and increases as the 

signal intensity raises; hence, the noise level is higher in very bright areas. In [34] and [35] it is also 

illustrated how clipping in data is the cause of noise level underestimation; e.g., noise level for pixels 

close to saturation cannot be robustly tracked because the signal reaches the upper limit of the allowed 

bitdepth encoding. 

We decided to incorporate the above considerations of luminance masking and sensor noise 

statistics into a single curve as shown in Figure 3. The shape of this curve allows compensating for 

lower eye sensitivity and increased noise power in the proper areas of the image, allowing adaptive 

filter smoothing capability in relation to the pixel values.  

 

Figure 3. HVS curve used in the proposed approach. 

Pixel 
Value

HVSweight

2bitdepth -1

HVSmax

HVSmin

(2bitdepth -1)/2
 

 

A high HVS value (HVSmax) is set for both low and high pixel values: in dark areas the human eye 

is less sensitive to variations of pixel intensities, whereas in bright areas noise standard deviation is 

higher. HVS value is set low (HVSmin) at mid pixel intensities.  
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As stated in Section 2.2, in order to make some simplifying assumptions, we use the same HVS 

curve for all CFA colour channels taking as input the pixel intensities directly from the sensor. The 

HVS coefficient computed by this block is used by the Texture Degree Analyzer that outputs a degree 

of texture taking also into account the above considerations (Section 3.4). 

 

3.3. Filter Masks 

 

The proposed filter uses different filter masks for green and red/blue pixels to match the particular 

arrangement of pixels in the CFA array. The size of the filter mask depends on the resolution of the 

imager: at higher resolution a small processing window might be unable to capture significant details. 

For our processing purposes a 5x5 window size provided a good trade-off between hardware cost and 

image quality, allowing us to process images up to 5 megapixels, a resolution that is typical of high 

end mobile phones. Typical Bayer processing windows are illustrated in Figure 4.  

 

Figure 4. Filter Masks for Bayer Pattern Data. 

     
 

3.4. Texture Degree Analyzer  

 

The texture analyzer block computes a reference value Td that is representative of the local texture 

degree. This reference value approaches 1 as the local area becomes increasingly flat and decreases as 

the texture degree increases (Figure 5). The computed coefficient is used to regulate the filter 

smoothing capability so that high values of Td correspond to flat image areas in which the filter 

strength can be increased. 

Depending on the color of the pixel under processing, either green or red/blue, two different texture 

analyzers are used. The red/blue filter power is increased by slightly modifying the texture analyzer 

making it less sensitive to small pixel differences (Figure 6). The texture analyzer block output 

depends on a combination of the maximum difference between the central pixel and the neighborhood 

Dmax  and TextureThreshold, a value that is obtained by combining information from the HVS response 

and noise level, as described below (2). 
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Figure 5. Green Texture Analyzer. 
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Figure 6. Red/Blue texture analyzer. 
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The green and red/blue texture analyzers are defined as follows: 
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(1) 

 

hence: 

- if  Td = 1 the area is assumed to be completely flat; 
- if 10  dT  the area contains a variable amount of texture; 

- if Td = 0, the area is considered to be highly textured. 

The texture threshold for the current pixel, belonging to Bayer channel c (c=R,G,B), is computed by 

adding the noise level estimation to the HVS response (2): 

TextureThresholdc (k)= HVSweight(k) + NLc(k-1) (2) 

where NLc denotes the noise level estimation on the previous pixel of the same Bayer color channel  

c(see Section 3.5) and HVSweight (Figure 3) can be interpreted as a jnd (just noticeable difference); 

hence an area is no longer flat if the Dmax value exceeds the jnd plus the local noise level NL.  

The green texture analyzer (Figure 5) uses a stronger rule for detecting flat areas, whereas the 

red/blue texture analyzer (Figure 6) detects more flat areas, being less sensitive to small pixel 
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differences below the ThR/B  threshold. The gray-scale output of the texture detection is shown in 

Figure 7: bright pixels are associated to high texture, dark pixels to flat areas. 

 

Figure 7. Texture Analyzer output: (a) input image after colour interpolation (b) gray-scale 

texture degree output: bright areas correspond to high frequency, dark areas correspond to 

low frequencies. 

 

(a) (b) 

 

3.5. Noise Level Estimator 

 

In order to adapt the filter smoothing capability to the local characteristics of the image, a noise 

level estimation is required. The proposed noise estimation solution is pixel based and is implemented 

taking into account the previous estimation to calculate the current one.  

The noise estimation equation is designed so that: 

i) if the local area is completely flat (Td = 1) , then the noise level is set to Dmax;  

ii) if the local area is highly textured (Td = 0), the noise estimation is kept equal to the previous 

region (i.e., pixel); 

iii) otherwise a new value is estimated.  

Each color channel has its own noise characteristics hence noise levels are tracked separately for 

each color channel. The noise level for each channel is estimated according to the following formulas: 

)1(*)](1[)(*)()(

)1(*)](1[)(*)()(

)1(*)](1[)(*)()(

max

max

max





kNLkTkDkTkNL

kNLkTkDkTkNL

kNLkTkDkTkNL

BddB

GddG

RddR

 (3)

where Td(k) represents the texture degree at the current pixel and NLc(k-1) (c=R,G,B) is the previous 

noise level estimation, evaluated considering pixel of the same colour, already processed. For k = 1 the 

values NLR(k-1), NLG(k-1) and NLB(k-1) are set to an initial low value depending on the pixel bit-depth. 

These equations satisfy requirements i), ii) and iii). The raster scanning order of the input image is 

constrained by global HW architecture. Starting from different spatial locations the noise level 

converges to the same values due to the presence of homogeneous areas that are, of course, prominent 

in almost all natural images. 
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3.6. Similarity Thresholds and Weighting Coefficients computation 

 

The final step of the filtering process consists in determining the weighting coefficients Wi to be 

assigned to the neighboring pixels of the filter mask. The absolute differences Di between the central 

pixel and its neighborhood must be analyzed in combination with the local information (noise level, 

texture degree and pixel intensities) for estimating the degree of similarity between pixel pairs (see 

Figure 8). As stated in Section 2.2, if the central pixel Pc belongs to a textured area, then only small 

pixel differences must be filtered. The lower degree of filtering in textured areas allows maintaining 

the local sharpness, removing only pixel differences that are not perceived by the HVS. 

 

Figure 8. The Wi coefficients weight the similarity degree between the central pixel and its 

neighborhood. 

P1 P2 P3

P4 Pc P5

P6 P7 P8

W1

 
 

The process for determining the similarity thresholds and the Wi coefficients can be expressed in 

terms of fuzzy logic (Figure 9). 

Let: 

- Pc be the central pixel of the working window;  

- Pi, i = 1,…,7, be the neighborhood pixels; 

- Di = abs(Pc - Pi), i=1,…,7 the set of absolute differences between the central pixel and its 

neighborhood; 

In order to obtain the Wi coefficients, each absolute difference Di must be compared against two 

thresholds Thlow and Thhigh that determine if, in relation to the local information, the i-th difference Di 

is: 

(i) small enough to be heavily filtered,  

(ii) big enough to remain untouched, 

(iii) an intermediate value to be properly filtered. 

The two thresholds can be interpreted as fuzzy parameters shaping the concept of similarity 

between pixel pairs. In particular, the associated fuzzy member function computes the similarity 

degree between the central and a neighborhood pixel. 
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Figure 9. Block diagram of the fuzzy computation process for determining the similarity 

weights between the central pixel and its N neighborhoods. 

SIMILARITY
EVALUATOR
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Filtered Output

D1,…,N

 
 

By properly computing Thlow and Thhigh, the shape of the membership function is determined 

(Figure 10). 

 

Figure 10. Weights assignment (Similarity Evaluator Block). The i-th weight denotes the 

degree of similarity between the central pixel in the filter mask and the i-th pixel in the 

neighborhood. 
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Similarity
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Similarity
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To determine which of the above cases is valid for the current local area, the local texture degree is 

the key parameter to analyze. It is important to remember at this point that, by construction, the texture 

degree coefficient (Td) incorporates the concepts of dark/bright and noise level; hence, its value is 

crucial to determine the similarity thresholds to be used for determining the Wi coefficients. In 

particular, the similarity thresholds are determined to obtain maximum smoothing in flat areas, 

minimum smoothing in highly textured areas, and intermediate filtering in areas containing medium 

texture; this can be obtained by using the following rules (4): 
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Once the similarity thresholds have been fixed, it is possible to finally determine the filter weights 

by comparing the Di differences against them (Figure 10). 

To summarize, the weighting coefficient selection is performed as follows. If the i-th absolute 

difference Di is lower than Thlow, it is reasonable to assume that pixels P and Pi are very similar; hence 

the maximum degree of similarity Maxweight is assigned to Pi. On the other hand, if the absolute 

difference between P and Pi is greater than Thhigh, it is reasonable that this difference is due to texture 

details, hence Pi is assigned a null similarity weight. In the remaining cases, i.e. when the i-th absolute 

difference falls in the interval [Thlow, Thhigh], a linear interpolation between Maxweight and 0 is 

performed, allowing determining the appropriate weight for Pi.  

 

3.7. Final Weighted Average 

 

Let W1,…,WN (N: number of neighborhood pixels) be the set of weights computed for the each 

neighboring element of the central pixel Pc. The final filtered value Pf  is obtained by weighted average 

as follows (5): 

In order to preserve the original bitdepth, the similarity weights are normalized in the interval [0,1],  

and chosen according to equation (6): 

where L(Thlow, Thhigh) performs a simple linear interpolation between Thlow and Thhigh as depicted in 

Figure 10. 

 

4. Experimental Results 

 

The following sections describe the tests performed to assess the quality of the proposed algorithm. 

First, a test computing the noise power before and after filtering is reported. Next some comparisons 

between the proposed filter and other noise reduction algorithms ([25,36,37]) are described.  
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4.1. Noise Power Test 

 

A synthetic image was used to determine the amount of noise that the algorithm is capable to 

remove. Let us denote: 

 INOISY: Noisy CFA Pattern 

 IFILTERED: Filtered CFA Pattern 

 IORIGINAL: Original noiseless CFA Pattern 

According to these definitions we have: 

 INOISY - IORIGINAL = IADDED_NOISE 

 IFILTERED - IORIGINAL = IRESIDUAL_NOISE 

where IADDED_NOISE is the image containing only the noise artificially added to IORIGINAL, whereas 

IRESIDUAL_NOISE is the image containing the residual noise after filtering. The noise power is computed 

for both IADDED_NOISE  and IRESIDUAL_NOISE according to the following formula (7): 








 








1

0

1

0

2
10 ),(

1
log20

N

n

M

m

nmI
MN

P  (7)

To modulate the power of the additive noise, different values of the standard deviation of a 

Gaussian distribution are used. Noise is assumed to be AWGN (Additive White Gaussian Noise), with 

zero mean.  

A synthetic test image has been generated having the following properties: it is composed by a 

succession of stripes having equal brightness but different noise power. Each stripe is composed of 10 

lines and noise is added with increasing power starting from the top of the image and proceeding 

downwards (Figure 11).  

 

Figure 11. Synthetic image test 

 
 

 

The graph in Figure 12 illustrates the filtering effects in terms of noise power; the x-axis represents 

the noise standard deviation; the y-axis shows the corresponding noise power decibels before and after 

filtering. The filter significantly reduces noise and gains up to 6-7dB can be obtained in terms of noise 

power reduction. 
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Figure 12. Noise power test. Upper line: noise level before filtering. Lower line: residual 

noise power after filtering. 

 
 

4.2. Visual Quality Test 

 

In order to assess the visual quality of the proposed method, we have compared it with the SUSAN 

(Smallest Univalue Segment Assimilating Nucleus) [37] and multistage median filters [36] classical 

noise reduction algorithm. This choice is motivated by considering the comparable complexity of these 

solutions. Though more complex recent methods for denoising image data exist [7,8,18,38] achieving 

very good results, they are not yet suitable for real-time implementation. 

 

Figure 13. Overall scheme used to compare the Susan algorithm with the proposed 

method. The noisy color image is filtered by processing its color channels independently. 

The results are recombined to reconstruct the denoised color image. 

 
 

The tests were executed using two different approaches. In the first approach, the original noisy 

Bayer data were interpolated obtaining a noisy color image, which was splitted in its color channels; 



Sensors 2009, 9                            

 

 

1705

each color plane was filtered independently using SUSAN. Finally, the filtered color channels were 

recombined to obtain the denoised color image as sketched in Figure 13. 

The second approach consists in slightly modifying the SUSAN algorithm so that it can process 

Bayer data. In both cases, the results of SUSAN were compared with the color-interpolated image 

obtained from a denoised Bayer pattern produced by the proposed method. 

Figure 14 shows two of test noisy reference images acquired by a CFA image sensor (2 megapixels) 

after colour interpolation. Original SNR values for the two images are 30.2 dB and 47.2 dB, 

respectively. After filtering, the corresponding SNR values became comparable and higher for both, 

SUSAN and our filtering. In the first comparison test, both algorithms show very good performances; 

the proposed method, anyway, is capable to preserve some small details that are lost by SUSAN 

independent R/G/B filtering. Furthermore, processing is very fast because the method processes only 

one plane of image information, i.e. the CFA data. Figure 15 shows a magnified detail of Figure 14(a) 

and the filtering results with SUSAN and our method. Figure 16 shows how the proposed method 

significantly retains texture and sharpness after filtering. Figure 17 shows two different details of the 

noisy image in Figure 14(b) and their filtered counterparts. The homogeneous areas are heavily filtered 

(a), (b); on the other hand, in textured areas, the detail is well preserved (c), (d). 

Finally, Figure 18 illustrates the results of the multistage median filters described in [36] compared 

with the proposed filter. Specifically, the multistage median-1 and multistage median-3 filter outputs 

were considered. The three methods work on CFA data. Figure 18 (e) shows, again, that the proposed 

filtering technique is able to preserve texture and sharpness very well. 

 

Figure 14. Images acquired by a CFA sensor. (a) SNR value 30.2dB. (b)SNR value 

47.2dB. The yellow crops represent the magnified details contained in the following 

figures. 

(a) (b) 
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Figure 15. A magnified detail of Figure 14(a), to better evaluate the comparison between 

the proposed filter and the SUSAN algorithm applied on R/G/B channels separately. Both 

methods preserve details very well, although the proposed technique is capable to better 

preserve texture sharpness; the enhancement is visible by looking at the wall and the roof 

texture. The proposed method uses fewer resources as the whole filtering action takes place 

on one plane of CFA data. 

  
(a) Noisy 

(SNR 30.2dB) 

(b) SUSAN applied to 

R/G/B separately 

(SNR 30.5dB) 

(c) Proposed Method 

(SNR 31.2dB) 

 

Figure 16. Comparison test at CFA level (magnified details of  Figure 14(a)). The original 

SUSAN implementation was slightly modified so that it can process Bayer data. The 

efficiency of the proposed method in retaining image sharpness and texture is  clearly 

visible. 

 
(a) Noisy 

(SNR 30.2dB) 

(b) SUSAN 

adaptedto CFA 

(SNR 30.5dB) 

(c) Proposed method 

(SNR 31.2dB) 

 

 

 



Sensors 2009, 9                            

 

 

1707

Figure 17. Magnified details of  Figure 14(b). (a) 200% zoomed (pixel resize) cropped part 

of noisy image. (b) Filtered 200% zoomed (pixel resize) counterpart (c) 200% zoomed 

(pixel resize) cropped part of noisy image. (d) Filtered 200% zoomed (pixel resize) 

counterpart. The effects of the proposed method over flat (a), (b) and textured (c), (d) areas 

are shown. The noisy images are obtained by color interpolating unfiltered Bayer data (a), 

(c). The corresponding color images produced by demosaicing filtered Bayer data (b), (d). 

SNR values are: 47.2dB for noisy image and 51.8dB for filtered image. 

(a) (b) 

(c) (d) 

 

Figure 18. (a) Original Image. (b) Noisy image. (c) Cropped and zoomed noisy image 

detail. Cropped and zoomed noisy image detail  filtered with: Multistage median-1 

filter(d), Multistage median-3 filter (e), proposed method(f). 

 

 

 

 

(a) Original Image (b)  Noisy image 

(SNR 26.1 dB) 
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Figure 18. Cont. 

 

4.3. PSNR test 

 

In order to numerically quantify the performance of the filtering process, the standard Kodak 24 (8-

bpp) [39] images have been processed with the proposed method comparing them with the outputs of 

SUSAN [37], Multistage median-1, Multistage median-3 algorithms [36] and the following fuzzy 

approaches from [25]: 

- GMED: Gaussian Fuzzy Filter with Median Center 

- GMAV: Gaussian Fuzzy Filter with Moving Average Center 

- ATMED: Asymmetrical Triangular Fuzzy Filter with Median Center 

- ATMAV: Asymmetrical Triangular Fuzzy Filter with Moving Average Center 

After converting each image of the set to Bayer pattern format, the simulation was performed by 

adding noise with increasing standard deviation to each CFA plane. In particular the following values 

have been used:  = 5, 8, 10. More specifically, the aforementioned values of  refer to the noise level 

in the middle of the dynamic range. To simulate a more realistic sensor noise, in fact, we followed the  

model described in [34,35], that allows obtaining lower noise values for dark areas and higher noise 

values for bright areas, according to a square root characterization of the noise. In order to exclude the 

effects of different color interpolations from the computation of the PSNR, the reference images were 

obtained following the procedure described in Figure 19(a); in this way, both images (i.e. clean and 

noisy) are generated using the same color interpolation algorithm.  

Experiments show that the proposed method performs well in terms of PSNR compared to the 

algorithms used in the test (Figure 20). In order to compare the proposed method with other fuzzy 

approaches, we considered some methods described in [25]. The results are shown in Figure 21. 

 
(c) Cropped and 

zoomed noisy image 

(SNR 26.1 dB) 

 

(d) Multistage median-1 

filter. (SNR 26.5 dB) 

(e) Multistage median-3 

filter. (SNR 26.8 dB) 

(f) Proposed method. 

(SNR 27.2 dB) 
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Figure 19. Testing procedure. (a) The original Kodak color image is converted to Bayer 

pattern format and demosaiced. (b) Noise is added to the Bayer image, filtered and color 

interpolated again. Hence, color interpolation is the same for the clean reference and the 

denoised images. 
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Bayer Color
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RGB
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Figure 20. PSNR comparison between proposed solution and other spatial approaches for 

the Standard Kodak Images test set. (a) Kodak noisy images set with standard deviation 5. 

(b) Kodak noisy images set with standard deviation 8. (c) Kodak noisy images set with 

standard deviation 10.  
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PSNR results (Noise Level =8)
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Figure 20. Cont. 

PSNR results (Noise Level =10)
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 (c) 

 

Figure 21. PSNR comparison between proposed solution and other fuzzy approaches for 

the Standard Kodak Images test set. (a) Kodak noisy images set with standard deviation 5. 

(b) Kodak noisy images set with standard deviation 8. (c) Kodak noisy images set with 

standard deviation 10. 
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PSNR results (Noise Level =8)
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Figure 21. Cont. 

PSNR results (Noise Level =10)
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(c) 

 

Conclusions and Future Work 

 

A spatial adaptive denoising algorithm has been presented; the method exploits characteristics of 

the human visual system and sensor noise statistics in order to achieve pleasant results in terms of 

perceived image quality. The noise level and texture degree are computed to adapt the filter behaviour 

to the local characteristics of the image. The algorithm is suitable for real time processing of images 

acquired in CFA format. Future work includes the extension of the processing masks along with the 

study and integration of other HVS characteristics. 
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