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Weber’s law—the observation that the ability to perceive changes in magnitudes of stimuli
is proportional to the magnitude—is a widely observed psychophysical phenomenon. It is
also believed to underlie the perception of reward magnitudes and the passage of time.
Since many ecological theories state that animals attempt to maximize reward rates,
errors in the perception of reward magnitudes and delays must affect decision-making.
Using an ecological theory of decision-making (TIMERR), we analyze the effect of multiple
sources of noise (sensory noise, time estimation noise, and integration noise) on reward
magnitude and subjective value perception. We show that the precision of reward
magnitude perception is correlated with the precision of time perception and that Weber’s
law in time estimation can lead to Weber’s law in value perception. The strength of this
correlation is predicted to depend on the reward history of the animal. Subsequently, we
show that sensory integration noise (either alone or in combination with time estimation
noise) also leads to Weber’s law in reward magnitude perception in an accumulator model,
if it has balanced Poisson feedback. We then demonstrate that the noise in subjective
value of a delayed reward, due to the combined effect of noise in both the perception of
reward magnitude and delay, also abides by Weber’s law. Thus, in our theory we prove
analytically that the perception of reward magnitude, time, and subjective value change all
approximately obey Weber’s law.
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INTRODUCTION
Weber’s law, or approximate Weber’s law, has been observed in
the perception of stimulus features such as weight (Weber, 1978;
Killeen et al., 1993), length (Dehaene and Brannon, 2011; Droit-
Volet, 2013; Akre and Johnsen, 2014), brightness (Rovamo et al.,
1995), number (Whalen et al., 1999; Cordes et al., 2001; Nieder
and Miller, 2003; Cantlon and Brannon, 2006; Beran, 2007;
Gallistel, 2011; Droit-Volet, 2013), reward magnitude (Killeen
et al., 1993; Bateson et al., 1995; Kacelnik and Bateson, 1996),
time (Gibbon, 1977; Gibbon et al., 1984; Matell and Meck, 2000;
Buhusi and Meck, 2005), loudness (Forrest, 1994; Bee et al., 2012)
etc. (Akre and Johnsen, 2014). It states that the ability to perceive
a change in a quantity decreases in proportion to its magni-
tude. The fact that our ability to perceive a change in a stimulus
often decreases as its magnitude increases is immediately recog-
nized; for instance, it is more difficult to perceive an increase
of 1 g if one is measuring 100 g as opposed to when measuring
2 g. Weber’s law, however, states that this decrease in ability to
assess magnitude is proportional to the magnitude of the stim-
ulus, i.e., that it is 50 times more difficult to perceive a given
change around 100 g than it is to perceive the same change around
2 g. Even though there is considerable experimental support for
the law, its neural or evolutionary origin is unclear (Walsh, 2003;
Bueti and Walsh, 2009; Akre and Johnsen, 2014). Further, since
animals are often thought to make decisions so as to maximize
reward rates (thus requiring perception of reward magnitude and
delays) (Stephens and Krebs, 1986; Balci et al., 2011; Blanchard

et al., 2013; Namboodiri et al., 2014b), Weber’s law in the percep-
tion of reward magnitudes and delays must affect such decisions.
The mathematical properties of such effects on the decisions of
animals are, however, unclear.

Previously, we presented a theory of decision-making and time
perception that postulates that the decision of animals regarding
delayed outcomes is a consequence of reward rate maximization
in a limited temporal window that includes a past integration
interval (over which experienced reward rate is estimated) and the
delay to a given reward (TIMERR) (Namboodiri et al., 2014b).
We showed that the decision-making algorithm resulting from
this postulate automatically includes an estimate of opportunity
cost and an explicit cost of time. We further showed that it can
explain the breadth of behavioral observations on intertemporal
decision-making. The theory also postulates that time is repre-
sented subjectively such that the subjective reward rate equals
the objective change in reward rate, i.e., a subject’s estimate of
the subjective value per unit subjective time accurately represents
how much the reward rate of the current offer exceeds the experi-
enced reward rate. Using this theory, we examine the origin of
Weber’s law in reward magnitude in this paper and show that
the perception of reward magnitude is correlated with the per-
ception of time, and that the subjective value change of a delayed
reward should also approximately abide by Weber’s law. We also
present a novel accumulator model of sensory perception that
predicts approximate Weber’s law for quantities (such as reward
magnitude) that are measured over finite sensory intervals.
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RESULTS
Our main aim in this paper is to study how errors in the sub-
jective representation of an interval correspondingly affect the
subjective value of that reward. To this end, we first express the
subjective value of a delayed reward in terms of the subjective
representation of the delay.

The subjective value of a reward with magnitude r delayed by
an interval t as calculated in TIMERR (Figure 1) is:

SV (r, t) = r − aest t

1 + t
Time

(1)

where Time represents the past integration interval, i.e., the
interval over which the past reward rate (aest) is estimated.
Importantly, Time is not a perceived temporal interval, but is
merely the effective interval over which the past reward rate is esti-
mated (e.g., using an exponential memory filter as in Namboodiri
et al., 2014a).

In the above equation, r can be thought of as the magnitude of
an offered reward. But a more rigorous definition of r is the sub-
jective value of an immediate offered reward, i.e., r = SV(r, 0).

Correspondingly, the subjective representation of the delay t as
expressed in TIMERR is:

ST (t) = t

1 + t
Time

(2)

Thus, the subjective representation of time is a non-linear map-
ping and its non-linearity is controlled by the past integration
interval. It is important to emphasize that the subjective represen-
tation of the delay expressed above is not the subjective (verbal)

report of an interval; it can be thought of as the non-linear neural
representation of an interval.

Equation (1) can now be re-expressed in terms of the subjec-
tive representation of time as shown in Equation (2) as

SV (r, t) = r

1 + t
Time

− aestST(t) = r
ST(t)

t
− aestST(t)

= r
ST(t)
ST(t)

1− ST(t)
Time

− aestST(t) (3)

Therefore,

SV (r, t) = r −
(

r

Time
+ aest

)
ST(t) (4)

Thus, the discounting of a delayed reward is linear with respect
to the subjective representation of that delay. We assume here
that the subjective value of a delayed reward is calculated by first
measuring the subjective representation of the delay and then
linearly discounting using the form expressed in Equation (4).
This linear discounting with respect to the subjective represen-
tation of time is a direct result of the postulate of our theory
that animals maximize reward-rates over a limited temporal win-
dow including the past integration interval and the delay to future
reward.

FIGURE 1 | The subjective value of a delayed reward (r) is

calculated as the immediate reward that produces the same

total reward rate over a window including a past-integration

interval (Time) (over which experienced reward rate is calculated,

aest ) and the expected delay (t) to a future reward. The figure
shows a ready means to visually depict the subjective value of a
delayed reward, shown as the purple bar at time zero (“now”).
Modified from Namboodiri et al. (2014a).
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CONTRIBUTION OF TIME MEASUREMENT ERROR TO THE ERROR IN
SUBJECTIVE VALUE
From this relation, we can now calculate the error in subjective
value of a delayed reward resulting from an error in the repre-
sentation of subjective time (Figure 2). To this end, let us denote
that the just-noticeable-difference (JND) in the subjective rep-
resentation ST(t) of the delay t by δST(t), and that the error in
the corresponding subjective value is denoted by δSV(r, t). For
the purpose of this section, we assume that the measurement of
the reward magnitude is noiseless. Then, as the subjective repre-
sentation of the delay t increases by its JND, the subjective value
will increase by the corresponding error. This can be expressed
mathematically as:

SV(r, t) + δSV(r, t) = r −
(

r

Time
+ aest

)
(ST(t) + δST(t))(5)

From Equations (4, 5), we can now calculate the JND in
subjective value as

δSV(r, t) = −
(

r

Time
+ aest

)
δST(t) (6)

The negative sign here implies that as the delay increases, the
subjective value decreases, i.e., the value is discounted.

We have previously shown that the error in the subjective rep-
resentation of time is approximately linearly related to the subjec-
tive representation of time in an accumulator model (Namboodiri
et al., 2014b), i.e., δST(t) = kST(t) + c. The contribution due to
the constant term c can be thought of a constant read-out error
and is quite small except in the limit of ST(t) approaching zero.
Substituting this relationship into Equation (6), we get

δSV(r, t) = −
(

r

Time
+ aest

)
(kST(t) + c) (7)

Equation (7) can also be rewritten using Equation (4) as

δSV(r, t) = −c

(
r

Time
+ aest

)
− k(r − SV(r, t)) (8)

From the above equation, it can be seen that the error in sub-
jective value of a delayed reward is linearly related to the drop
in subjective value from time zero due to the passage of time.
Hence, Weber’s law applies for the reduction in subjective value
of a delayed reward due to the delay, i.e., to r − SV(r, t). In other
words, as the delay increases and the subjective value reduces, the
error in the change of subjective value due to the delay is propor-
tional to the change in subjective value. Henceforth, we refer to
this as Weber’s law in value perception.

Let us now examine the effect of reducing the delay to zero.
Since the negative sign in the above equations only indicates
the direction of change, we drop this sign from here on for the
calculation of noise. Thus, when t = 0, both Equations (7, 8)
become

δSV(r, 0) = c

(
r

Time
+ aest

)
(9)

Thus, the error in the subjective value of an immediate reward
is proportional to the magnitude of the reward. This is Weber’s
law in magnitude perception resulting purely from an error in
the perception of an infinitesimally small immediate delay rather
than arising solely from magnitude measurement error as is

FIGURE 2 | Errors in measurement of the delay to a future reward results

in a corresponding error in subjective value. If the delay to the reward is
perceived as earlier by the just-noticeable difference (JND), the subjective

value is perceived as being larger. This error in subjective value is shown in
the red bar and is calculated analytically in Section Contribution of time
measurement error to the error in subjective value.
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commonly believed. Interestingly, as the past integration inter-
val (Time) increases—leading to an increased accuracy of time
perception (Namboodiri et al., 2014b)—so does the accuracy of
reward magnitude perception. This is a novel, untested predic-
tion of the account presented here. This temporal basis of Weber’s
law for the perception of reward magnitude also predicts that
the accuracy of magnitude representation reduces when the past
reward rate is high. This too, is a novel, testable prediction and is
consistent with the notion that when reward rate is high, the need

to represent rewards accurately (thus incurring greater metabolic
costs) is reduced. The above two predictions regarding the depen-
dence of errors in subjective value on the past integration interval
and the past reward rate is depicted in Figure 3.

The above treatment indicates that noise in time perception
results in reward magnitude perception that abides by Weber’s
law. Yet note that, to calculate the error in subjective magnitude
(resulting purely from the noise in the measurement of the
infinitesimally-small delay to immediate reward), we heretofore

FIGURE 3 | (A) The Weber fraction of error in subjective value decreases
with an increase in the past integration interval. This is mathematically
represented in Equation (8). Compared to Figure 2 (represented as low
Time in the graph on the right), the past integration interval is larger in
this panel, thus reducing the error in subjective value while increasing
the subjective value. The Weber fraction is thus smaller. (B) The Weber

fraction of error in subjective value increases with an increase in the
past reward rate. This is mathematically represented in Equation (8).
Compared to Figure 2 (represented as low aest in the graph on the
right), the past reward rate is larger in this panel, thus increasing the
error in subjective value while decreasing the subjective value. The
Weber fraction is thus larger.
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have ignored the contribution of noise in the measurement of the
reward magnitude itself. Since we do not know the relative con-
tributions of these sources of noise, it is possible that the source
related to time might contribute but minimally to the overall error
in reward magnitude perception. Therefore, in the next section,
we present a model of sensory perception for reward magnitude,
and then calculate the resulting perceptual error.

SENSORY MEASUREMENT ERROR OF REWARD MAGNITUDE DUE TO
EVIDENCE ACCUMULATION
In this section, we calculate the sensory measurement error of
reward magnitude (e.g., error in the measurement of the vol-
ume of a water reward). In some modalities, the sensory receptor
is itself thought to produce scalar noise (Matthews et al., 1990;
Donner et al., 1998; Nieder and Miller, 2003). While this is possi-
ble in the measurement of reward magnitude, we do not consider
this simple solution here as neural elements in the central nervous
system are typically considered to approximate Poisson processes,
which have square-root noise and not linear noise (Rieke et al.,
1999). Rather, we consider errors in ascribing value to a given
reward magnitude as resulting from central and not peripheral
processes. While there are other models for Weber’s law in sen-
sation (Treisman, 1966; Dehaene, 2003; Deco and Rolls, 2006;
Shouval et al., 2013), ours is based on the fact that the measure-
ment of any sensory quantity has to be carried out over time.

To this end, we assume that the sensory process for measur-
ing the magnitude is carried out in time over a small temporal
window of sensation. This sensory window is defined as the time
over which there is a constant rate of sensory input. Hence, we
assume that the net perceived reward magnitude is proportional
to the time it takes to integrate the sensory input (e.g., when
drinking water at a constant rate, the amount of water obtained is
proportional to the duration of consumption). For an alternative
model of sensory integration, see Appendix A1 in Supplementary
Material. In order to evaluate the noise in measurement, we
assume that this sensory integration can be described by an
accumulator model similar to previous decision-making mod-
els used for evidence accumulation (e.g., Simen et al., 2011;
Brunton et al., 2013). We further assume that the reward mag-
nitude is represented linearly and does not undergo a logarithmic
transformation, as has been suggested for number representation
(Dehaene, 2003). In the rest of this section, we formalize this
accumulator model using a stochastic differential equation, and
then analytically calculate the time dependence of its mean and
variance.

If the neural system carrying out this sensory integration were
perfectly noiseless, we can describe the accumulator model by the
following differential equation

drt = adt; 0 ≤ t ≤ tsensory (10)

Here, rt represents the integrated reward magnitude at a given
time. Thus, the measured reward magnitude r will be the inte-
grated magnitude at the end of the sensory window, tsensory, i.e.,
r = rtsensory . The rate of sensory input is denoted by a.

We now relax the assumption that the sensory integration is
noiseless. Noise in such an accumulator system can result from

two sources: noise in the sensory input and feedback noise in the
accumulator. We assume that the feedback is a zero mean noise
resulting from balanced excitatory/inhibitory connections, simi-
lar to many previous works (e.g., Simen et al., 2011; Brunton et al.,
2013), and that the neurons performing these computations can
all be described as Poisson point processes, i.e., the variance of
each source of noise will be proportional to the corresponding sig-
nal. Thus, the variance of the sensory input will be proportional
to the input (a) and the feedback noise will be proportional to rt .
We denote the proportionality constants as b and σ respectively.

For simplicity, we first assume that these two sources of noise
are independent and additive. Since the variance of the sum
of two independent sources sum up, the net variance can be
expressed as σ 2rt + b2a. If we consider the variance of the noise
term as constant throughout the integration, it can be represented
by introducing an additional diffusive term that approximates a
Brownian motion with infinitesimal variance of σ 2rt + b2a into
Equation (10). Thus, the introduction of these noise sources
can be formally described by the following stochastic differential
equation

drt = adt +
√

σ 2rt + b2a dWt; 0 ≤ t ≤ tsensory (11)

Wt represents a standard Wiener process (Brownian motion).
We will analytically solve the time dependence for the first and

second moments of the above accumulator [shown in Equation
(11)] so as to calculate the mean and variance at the end of the
sensory window.

Taking the expectation values on both sides of Equation (11),
we get

d < rt > = adt; 0 ≤ t ≤ tsensory (12)

where < rt > represents the expectation value of rt . Since <

r0 >= 0, we can write the solution obtained by integrating from
0 to t as

< rt >= at (13)

The time evolution equation for < r2
t > can similarly be

calculated by applying Ito’s product rule as

dr2
t = 2rtdrt + (drt)

2 = 2artdt + 2rt

√
σ 2rt + b2a dWt

+
(

adt +
√

σ 2rt + b2a dWt

)2
0 ≤ t ≤ tsensory (14)

Using dt2 = 0, dWtdt = 0, and dW2
t = dt and taking the

expectations of both sides, we get

d < r2
t > =

(
2 < art > + <

√
σ 2rt + b2a .

√
σ 2rt + b2a >

)
dt;

0 ≤ t ≤ tsensory (15)

Simplifying, we get

d < r2
t >= (

(σ 2 + 2a) < rt > +b2a
)

dt; 0 ≤ t ≤ tsensory (16)
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Substituting from Equation (13) and integrating from 0 to t with
the boundary condition of < r2

t = 0 >= 0, we get

< r2
t >= a(σ 2 + 2a)

t2

2
+ b2at; 0 ≤ t ≤ tsensory (17)

Thus, the variance of rt can be calculated as

var(rt) =< r2
t > − < rt >2= aσ 2t2

2
+ b2at; 0≤ t ≤ tsensory(18)

The coefficient of variation of rt is thus

CV(rt) =
√

σ 2

2a
+ b2

at
; 0 < t ≤ tsensory (19)

Since the measured reward magnitude is the integrated magni-
tude after the sensory window, the CV of the measurement can
be written as

CV(r) =
√

σ 2

2a
+ b2

atsensory

(20)

or

CV(r) =
√

σ 2

2a
+ b2

r
(21)

If one assumes that the rate of sensory input is a constant, the
above equation shows that except for low reward magnitudes, the
CV is a constant, i.e., Weber’s law holds approximately for reward
magnitude perception. If σ 2/a is large compared to b2, the con-
stant term will dominate and the CV would be almost exactly
constant. These analytical results are confirmed in numerical
simulations as shown in Figure 4.

The mathematics of the accumulator shown in Equation (11)
is quite similar to Equation (9) in (Simen et al., 2011). But there
are some significant differences in the meaning of the terms. First,
our model is for reward magnitude perception, whereas theirs is
for time interval production. Second, as a consequence, while in
our model the rate of sensory input is assumed to be a constant,
they assume that the rate of accumulation is tuned for the inter-
val to be timed. For this reason, their model can produce scalar
timing only for time interval production and not for time inter-
val measurement/perception where the coefficient of variation
decreases in inverse proportion to the square root of the interval
[similar to the second term in Equation (21)].

Equations (11–21) assumed that the sensory input noise is
additive with respect to the feedback noise. Instead, if this noise
were in fact multiplicative, Equation (11) would change to

drt = adt + σ
√

b2art dWt; 0 ≤ t ≤ tsensory (22)

In this case, the CV can similarly be calculated as (shown in
Appendix A2 in Supplementary Material)

FIGURE 4 | Confirmatory simulations (see Methods) of the analytical

solution of an accumulator model in which the sensory and feedback

noise combine additively. The red line shows the result of the analytical
calculation as expressed in Equation (21), wherein the sensory signal (a),

magnitude of sensory noise (b), and the magnitude of feedback noise (σ) are
varied. The black dots show the results of numerical simulation. The results
approximate Weber’s law well but for low reward magnitudes and high
sensory noise (b).
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CV(r) = σb√
2

(23)

Thus, when the sensory and feedback noises multiply, the coeffi-
cient of variation is independent of the magnitude of the sensory
signal (a).

Again, we performed confirmatory numerical simulations of
Equation (22), the results of which are shown in Figure 5.
Therefore, if the sensory input noise is multiplicative, the coef-
ficient of variation is exactly constant, thus making Weber’s law
exact. Instead, if the sensory input noise is additive, the coeffi-
cient of variation shows deviations from exact Weber’s law at low
reward magnitudes.

The accumulator model considered above is similar to the
one that we previously proposed for the representation of
subjective time (Namboodiri et al., 2014b), with two differ-
ences. The most important difference is that whereas subjec-
tive time is assumed to be a non-linear transform of real
time, subjective reward is assumed to be linearly proportional
to the real reward. Due to this difference, the reward mag-
nitude accumulator is analytically tractable, unlike the subjec-
tive time accumulator, for which the analytical solution was
approximate (Namboodiri et al., 2014b). The other differ-
ence is that since the reward magnitude accumulator oper-
ates on a sensory input (unlike the subjective time accumu-
lator), the contribution of this sensory noise has also been
included.

COMBINED ERROR DUE TO TIME AND MAGNITUDE MEASUREMENTS
ON SUBJECTIVE VALUE
We now have all the elements to calculate the error in subjective
value of a delayed reward resulting from errors in both magnitude
and time measurements (Figure 6).

Returning to Equation (4), if we consider the effect of adding
the JND of both r and ST(t), we see that while adding the JND of
r leads to an increase in the SV(r,t), adding the JND of ST(t) leads
to a decrease (due to temporal discounting). Since we are only
interested in the net error, so as to match the direction of change,
we will consider the effect of error in both r and ST(t) by adding
the JND of r and subtracting the JND of ST(t). Thus, we get the
following equation

SV(r, t) + δSV(r, t) = r + δr −
(

r + δr

Time
+ aest

)
(ST(t)

−δST(t)) (24)

Therefore, using Equation (4), the error in subjective value
δSV(r, t) can be written as

δSV(r, t) = δr

(
1 − ST(t)

Time

)
+

(
r

Time
+ aest

)
δST(t)

+ δrδST(t)

Time
(25)

FIGURE 5 | Confirmatory simulations (see Methods) of the

analytical solution of an accumulator model in which the

sensory and feedback noise combine multiplicatively. The red
line shows the result of the analytical calculation as expressed in

Equation (23) wherein the sensory signal (a), magnitude of sensory
noise (b), and the magnitude of feedback noise (σ) are varied. The
black dots show the results of numerical simulation. Here, Weber’s
law is exact.
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FIGURE 6 | The error in subjective value is affected by errors in the measurement of both delay (as shown in Figure 2) and reward magnitude. This
combined error is calculated analytically in Section Combined error due to time and magnitude measurements on subjective value.

From Equation (4),
(

1 − ST(t)
Time

)
= SV(r,t)+aest ST(t)

r . Therefore,

Equation (25) becomes

δSV(r, t) = δr

r

(
SV(r, t) + aestST(t)

) +
(

r

Time
+ aest

)
δST(t)

+ δrδST(t)

Time
(26)

For simplicity, we consider the exact form of Weber’s law to hold
for the sensory measurement of r. Therefore, we write δr

r = l,
where l is the Weber fraction.

From Equations (6), (8), the second term in the R.H.S is equal

to c
(

r
Time

+ aest

)
+ k(r − SV(r, t)), where δST(t) = kST(t) + c.

Before calculating the error in subjective value at any delay, we
first calculate its value for an immediate reward, where t = 0 and
ST(t) = 0. From Equation (26), this can be written as

δSV(r, 0) = lr + c

(
r

Time
+ aest

)
+ lcr

Time
(27)

Simplifying, we get

δSV(r, 0) = r

(
l

(
1 + c

Time

)
+ c

Time

)
+ caest (28)

The above equation obeys Weber’s law for reward magnitude
perception, resulting from errors in both the measurement of
magnitude and the measurement of the infinitesimal delay to an
immediate reward. As can be seen, the Weber fraction [slope of

δSV(r,0) with respect to r] depends on Time, the past integra-
tion interval. Thus, we predict that even within an individual, the
Weber fraction in the perception of reward magnitude (subjec-
tive value of an immediate reward) can change depending on the
context, as the past integration interval changes. The direction of
this change will be such that the better the perception of time, the
better the perception of reward magnitude. Further, as mentioned
previously after Equation (9), the above equation also predicts
that the larger the experienced reward rate, the larger the error in
perception of reward magnitude. These are the strong falsifiable
predictions of our account.

We now calculate the error in subjective value at a given delay
t due to errors in both time and reward magnitude measurement.
From Equation (26), we get

δSV(r, t) = l
(
SV(r, t) + aestST(t)

) + c

(
r

Time
+ aest

)

+ k(r − SV(r, t)) + lr(kST(t) + c)

Time
(29)

Simplifying, we get

δSV(r, t) = (l − k)SV(r, t) +
(

laest + lrk

Time

)
ST(t)

+ r

(
(1 + l)c

Time
+ k

)
+ caest (30)

Since we are interested in the noise in subjective value of a con-
stant reward magnitude delayed by varying amounts, if we treat
r as a constant (for now), we can write [using Equation (4)]
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ST(t) = r − SV(r,t)
r

Time
+ aest

. Grouping the terms that are proportional

to SV(r,t) separately from the other terms, the above equation
becomes

δSV(r, t) =
(

l − k − l
aestTime + rk

aestTime + r

)
SV(r, t)

+
(

r

(
(1 + l)c

Time
+ k + l

aestTime + rk

aestTime + r

)
+ caest

)
(31)

The above equation also abides by Weber’s law. Thus, we have
shown that the error in subjective value of a given reward delayed
by different amounts is proportional to the subjective value at
each given delay. Again, the Weber fraction depends on the reward
environment of the animal since it depends on r, aest , and Time.

We can also similarly calculate the subjective value error at a
given delay for differing reward magnitudes. To do this, we sub-
stitute r as [using Equation (4)] r = SV(r,t)+aest ST(t)

1− ST(t)
Time

in a rewritten

version of Equation (25) as shown below.

δSV(r, t) = lr

(
1 − ST(t)

Time

)
+ c

(
r

Time
+ aest

)

+ k

(
r

Time
+ aest

)
ST(t) + lr(kST(t) + c)

Time
(32)

Thus,

δSV(r, t) = l
(
SV(r, t) + aestST(t)

) + r(1 + l)
c + kST(t)

Time

+ aest(c + kST(t)) (33)

Or,

δSV(r, t) = SV(r, t)

(
l + (1 + l)

c + kST(t)

Time − ST(t)

)
+ aest

(
lST(t))

+ ST(t)(1 + l)
c + kST(t)

Time − ST(t)
+ c + kST(t)

)
(34)

where ST(t) = t
1+ t

Time

.

This too abides by Weber’s law. Thus, we have also shown that
the error in subjective value at a given delay for different reward
magnitudes is proportional to the subjective value.

DISCUSSION
Previously, we presented a general theory of intertemporal
decision-making and time perception (TIMERR) that explains
many well-established observations in these fields (Namboodiri
et al., 2014b). Our theory states that the decisions of animals are
a consequence of maximizing reward rates in a limited temporal
window including a past integration interval and the delay to a
current reward. Interestingly, we showed that the representation
of time is also related to the past integration interval in our frame-
work, and that impulsive (low tolerance to delays of rewards)
individuals have an impaired perception of time. We then demon-
strated that the error in perception of time is approximately scalar,

with the deviation from exact Weber’s law depending on the past
integration interval.

In this paper, we extend the results of our prior work to con-
sider the role of error in time perception on the perception of
reward magnitudes and the subjective values of delayed rewards.
We showed that the error in perception of the infinitesimally
small delay to an immediate reward affects the perception of
reward magnitude in accordance with Weber’s law. Since the sen-
sory measurement of the reward must be carried out over time,
we derived Weber’s law in the sensation of reward magnitude
by assuming an accumulator model (for this sensory integra-
tion) with a Poisson feedback with balanced excitation/inhibition.
This could be the underlying reason behind the observation of
Weber’s law in the perception of reward magnitude by animals.
Subsequently, we showed that in TIMERR, the combination of
errors in both time and reward magnitude measurement on
the subjective value change of a delayed reward also accords
with Weber’s law. Crucially, the Weber fractions are predicted to
depend on the reward history of the animal, thus providing a
strong, falsifiable prediction of our theory, along with the pre-
dicted correlation between errors in time perception and reward
magnitude estimation.

Superficially, it might be assumed that since the perception of
reward magnitude abides by Weber’s law, so should the subjective
value of a delayed reward. In fact, such an assertion has previously
been made (Cui, 2011) without the recognition that this requires
a specific relation between subjective value, reward magnitude,
delay to reward, and the perception of the delay. From our ana-
lytical derivation presented above, it is evident that Weber’s law
in subjective value change is a consequence of the special forms
of discounting function (subjective value of a delayed reward
divided by the subjective value of that reward when presented
immediately) and subjective time representation that result from
our theory. In fact, if one were to make the standard assump-
tions of (1) Weber’s law in reward magnitude measurement, (2) a
hyperbolic discounting function (Ainslie, 1974; Frederick et al.,
2002; Kalenscher and Pennartz, 2008; Cui, 2011), and (3) lin-
ear subjective representation of time that abides by Weber’s law
(Gibbon, 1977; Gibbon et al., 1984), the resultant error in sub-
jective value of a delayed reward is far from proportional to the
subjective value, as we show in Appendix A3 in in Supplementary
Material.

Recent experiments have shown that the representation of
reward magnitude or value is not just dependent on the reward
under consideration, but also on other available options (Huber
et al., 1982; Bateson et al., 2003; Louie et al., 2013). A recent
neuroeconomic model (Louie et al., 2013) employing a divi-
sive normalization scheme wherein each individual reward is
compared against the other available options can produce such
context dependence. In light of these findings, one might question
our assumption of an absolute code for reward magnitude, i.e.,
our assumption that reward magnitude is represented based only
on the magnitude of the reward of interest. It is thus important
to point out that our theory predicts context dependent choices
even under the assumption that the reward magnitude repre-
sentation is independent of the other available options. This is
because the subjective value of a reward (since every reward is
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effectively a delayed reward) is affected by the animal’s estimate
of its past reward rate [Equation (1)]. Thus, the presence of dis-
tracters affects the subjective value of a reward due to an effect on
the past reward rate in experiments involving sequential choices.
Additionally, the current options might affect one’s estimate of
experienced reward rate (Namboodiri et al., 2014a). Further, as
shown in Equations (9, 28), the larger the value of the past reward
rate, the larger the error (Weber fraction) in representation of a
reward. Thus, our theory predicts that the larger the value of the
distracter (thereby making the past reward rate larger), the higher
the errors in deciding between two rewards, in accordance with
the experimental observations shown in Louie et al. (2013). The
key difference between our account and the divisive normaliza-
tion account (Louie et al., 2013) is that in our account, the context
dependence is due to the estimation of past reward rate, whereas
in divisive normalization, the context dependence is based only
on the currently available options.

There have been prior models of how Weber’s law in reward
magnitude and time perception affects decisions of animals in the
context of external variability along these two dimensions (see
Kacelnik and Bateson, 1996; Kacelnik and Brito e Abreu, 1998).
These models have been successful at explaining why animals tend
to prefer variability in time, but not in reward magnitude, in com-
parison with fixed options of the same mean (see Kacelnik and
Bateson, 1996; Kacelnik and Brito e Abreu, 1998). However, they
do not propose an origin of Weber’s law for reward magnitude
or time, nor do they calculate the net error due to both sources
of noise. Unique to our theory, we predict a systematic relation-
ship between the reward history of animals and their perception
of these quantities.

METHODS
The confirmatory simulations performed for Figures 4, 5 inte-
grated Equations (11, 22) respectively using the Euler-Maruyama
method. Thus, the discrete time version of the equation used for
Figure 4 was

rt+�t = rt + a�t +
√

σ 2rt + b2a
√

�tN(0, 1)

and that for Figure 5 was

rt+�t = rt + a�t + σb
√

art

√
�tN(0, 1)

where N(0,1) is the standard normal distribution. The step size
for integration, �t, was set to 0.001 units. The parameters were
changed as shown in the figure legend. In each case, the same
random seed was used to initialize the simulations.
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