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87-100 Torun, Poland; annkrol18@gmail.com (A.K.-G.); katrafinska@gmail.com (K.R.);
fernandamonedeiro@hotmail.com (F.M.); pomastowski.pawel@gmail.com (P.P.)

2 Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun,
7 Gagarina Str., 87-100 Torun, Poland

* Correspondence: bbusz@chem.umk.pl

Abstract: In this paper, a study of the cytotoxicity of bare and functionalized zinc oxide nanoparticles
(ZnO NPs) is presented. The functionalized ZnO NPs were obtained by various types of biologi-
cal methods including microbiological (intra- and extracellular with Lactobacillus paracasei strain),
phytochemical (Medicago sativa plant extract) and biochemical (ovalbumin from egg white protein)
synthesis. As a control, the bare ZnO NPs gained by chemical synthesis (commercially available) were
tested. The cytotoxicity was measured through the use of (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT) dye as well as lactate dehydrogenase (LDH) assays against murine
fibroblast L929 and Caco-2 cell lines. As a complementary method, scanning electron microscopy
(SEM) was performed to assess the morphology of the tested cells after treatment with ZnO NPs. The
microscopic data confirmed the occurrence of apoptotic blebbing and loss of membrane permeability
after the administration of all ZnO NPs. The reactive oxygen species (ROS) concentration during
the cell lines’ exposure to ZnO NPs was measured fluorometrically. Additionally, the photocatalytic
degradation of methylene blue (MB) dye in the different light conditions, as well as the antioxidant
activity of bare and functionalized ZnO NPs, is also reported. The addition of all types of tested ZnO
NPs to methylene blue resulted in enhanced rates of photo-degradation in the presence of both types
of irradiation, but the application of UV light resulted in higher photocatalytic activity of ZnO NPs.
Furthermore, bare (chemically synthetized) NPs have been recognized as the strongest photocatalysts.
In the context of the obtained results, a mechanism underlying the toxicity of bio-ZnO NPs, including
(a) the generation of reactive oxygen species and (b) the induction of apoptosis, is proposed.

Keywords: zinc oxide nanoparticles; organic surface deposit; cytotoxicity assay; photocatalytic
activity; ROS generation; toxicity mechanism

1. Introduction

Currently, zinc oxide is one of the main pillars of research in the field of nanotech-
nology and medicine, mainly due to its high applicability—it is widely used in many
bactericidal formulations (such as ointments for controlling eczema) or in the cosmetic
industry (in UV rays protection creams) [1,2]. The nanomaterials of zinc oxide, including
bare nanoparticles (ZnO NPs), but also those functionalized with various types of surface
modifications, attract special attention [3,4]. The concept of functionalization (inorganic
core and organic deposition) is well known from the chromatographic sciences (the de-
signing of stationary phases with specific modifications) and can be successfully applied
to the nanotechnology field [5,6]. Some research groups have proposed the addition of
polyethylene glycols (PEGs), which are known for their biocompatibility and biodegrada-
tion properties [7,8]. Another widely used type of functionalization is silica coating—silica
is the most common material applied in analytical chemistry as column packing for liquid
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chromatography [5,6], but the thin film of silica can be also used in nano deposition. It
seems clear that the surface chemistry of ZnO NPs might be a decisive factor in describing
the cell–nanoparticle interactions in in vitro studies. According to data in the literature,
functionalized ZnO NPs consisting of an inorganic metal oxide core and organic surface
deposition represent a new class of nanomaterials. Furthermore, they exhibit improved
properties such as, e.g., stability, biocompatibility and toxicity, in comparison with native
nanoparticles. However, not all types of the ZnO NPs’ surface manipulation will result
in the enhancement of such attributes. As an example, Yin et al. [9] modified ZnO NPs
with a SiO2 coating and performed a toxicity study on human lymphoblastoid cells. The
experimental data proved that, regardless of the surface modification, the toxicity of bare
and functionalized NPs was the same. Recently, a new approach based on the biological
production of ZnO NPs was able to be suggested. Based on our latest experience, ZnO
NPs can be described as functionalized due to the specific organic deposit on their surface,
which comes from the bacterial biomass, for example, the probiotic Lactobacillus paracasei
strain [10], plant extracts, e.g., Medicago sativa [11], or proteins, e.g., egg white protein [12],
that is used in the synthesis process. The presence of characteristic organic residuals of
natural origin on bio-ZnO NPs significantly increases their luminescence and antimicrobial
properties [10–13]. This subject led our research group to the main motivation of the
experiments presented in this paper—the interest in biologically synthetized ZnO NPs as a
potentially safe agent for the treatment of oral and external bacterial infections.

Despite many potential medical applications of bio-ZnO NPs, it is necessary to con-
sider the fact that each antimicrobial agent can be risky for human health because of its
potential to reach any organ or tissue [4,14,15]. Nano-ZnO might have an impact on the loss
of membrane integrity, the decrease in cells viability or even the activation of apoptosis [16].
The mechanisms underlying the nano-toxicity have been studied intensively, but there are
still many questions and doubts. One of the possible toxicity mechanisms is the generation
of reactive oxygen species (ROS) in cells after the nanomaterials’ treatment [17,18]. The
production of radicals by nano-ZnO is strongly related to the catalytic properties of this
material. Zinc oxide is a wide-bandgap (3.3 eV) semiconductor and it is able to absorb the
UV and other higher energy radiations, producing a hole in the valence band and a free
electron in the conduction band [19]. The reactions of holes and/or electrons in ZnO NPs
can further produce another activated reactive oxygen species [19,20]. The redox reactions
caused by the photoinduced electrons (e−) and holes (h+) enhance the nano–ZnO photocat-
alytic activity [21]. The photocatalysis process is commonly used on an industrial scale for
the degradation of dyes and pollutants in environmental samples, e.g., water [21–24].

On the other hand, nanomaterials can also show antioxidant activity, which means
protecting cells from the damaging effects of reactive oxygen species [4,25–28]. This can be
explained by the transfer of electron density located in oxygen to the odd electron located
in the outer orbits of oxygen in OH• and O2

•− radicals [17,29]. The totally different mode
of nano-ZnO action might be associated with the concentration and colloidal stability of
the used nanoparticles. Baskar et al. [26] revealed that the antioxidant activity of ZnO
NPs followed a decreasing order with increasing concentrations of NP treatment. A
similar result was described by Zafar with colleagues [28], who reported that, at lower
concentrations, ZnO NPs showed increased 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity
in comparison with the higher content of nanoparticles. Moreover, according to [30],
with the increasing of the concentration of ZnO NPs, the content of glutathione (GSH) in
adipocyte cells also increased. Glutathione is a major antioxidant that can help prevent this
process through the removal of ROS. With higher concentrations of ZnO NPs, the level of
reactive oxygen species (ROS) was also increased. These results suggest the hypothesis
that higher concentrations of nanomaterials exhibit pro-oxidative activity, while, at lower
concentrations, the nanoparticles act as antioxidant agents [26,28,30].

According to the Food and Drug Administration (FDA) regulations, physicochemical
characterization, assessment of the size distribution, in vitro and in vivo toxicology studies,
and the evaluation of photocatalytic properties, are recommended for the safety assessment
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of nano-ingredients [31]. Furthermore, the choice of the appropriate assay is important
for the accurate assessment of NPs’ cytotoxicity. Although there are clear guidelines for
nanomaterials against cell lines, there is no consensus on the exact nano-ZnO toxicity mech-
anism. So far, the basic mechanism of nanotoxicity related to the size and concentration
of NPs has been proposed. Valdiglesias with colleagues [32] tested the cytotoxic effect
of ZnO NPs of around 100 nm in size on human SH-SY5Y neuronal cells with the MTT
assay—the viability of the neuronal cells depended on the NPs’ concentration. As for the
second mechanism, the release of toxic zinc ions [33,34] or ROS production was suggested.
Although the use of the ZnO NPs as photocatalysts is a great opportunity, it is important
to remember that all of ROS might be responsible for lipid peroxidation, DNA damage or
even the activation of apoptosis [18]. Punnoose et al. [35] demonstrated that the ZnO NP
sample with the higher photocatalytic activity displayed around 1.5-fold stronger cytotoxic
effect on the Hut-78 lymphoma T cell line.

However, despite numerous literature reports, the nanotoxicity mechanism is ambigu-
ous and the specific determination of its foundations is still a challenge. Therefore, the
concern for the correlation between photocatalytic activity and cytotoxicity of ZnO NPs
seems to be crucial. The translation of biological and catalytic properties of ZnO to applied
medicine is a novel approach and will allow the successful design of medical products
such as, e.g., bedsore ointments.

Taking the above into consideration, a novel approach for evaluating the biological
effect of synthetized ZnO NPs, based on complementary and interdisciplinary methods, is
proposed. The present research compares the toxic potential of bare and functionalized ZnO
NPs during biological synthesis via microbial (intra- and extracellular), plant-based and
biochemical approaches, respectively. Cytotoxicity tests were performed on the Caco-2 and
murine fibroblasts L929 cell lines using lactate dehydrogenase (LDH) and tetrazolium dye
(MTT) assays. Based on the experimental data, the factors influencing the ZnO nanotoxicity
(size, concentration, origin, and the presence of specific organic deposits on the surface) are
demonstrated. Furthermore, the tight relationship between the oxidative potential of ZnO
NPs (photocatalytic and antioxidant activity) with the cytotoxicity is shown. The described
unique attributes of functionalized ZnO NPs indicate their potential for further application
in medical fields. Finally, the results of the performed study support the proposed ZnO
NPs’ nanotoxicity mechanism.

2. Results and Discussion
2.1. Antioxidant Activity of ZnO NPs

In Figure 1, the DPPH scavenging activity of bare and functionalized ZnO NPs is
presented. The obtained data indicate that the antioxidant activity of ZnO NPs depends
on their concentration. At 200 µg/mL concentration, biochemically synthetized ZnO NPs
(ZnO_Prot) have the highest ability to scavenge the DPPH radical (48.87 ± 4.21%), whereas
the nanoparticles formed by M. sativa plant extract (ZnO_Phyto) and by L. paracasei LB3
cells (ZnO_Intra) exhibit the lowest antioxidant activity (32.54 ± 2.02 and 37.29 ± 1.07%,
respectively). With the decrease in the ZnO NPs’ concentration, their scavenging activ-
ity increases to 84.62 ± 1.25% (ZnO_Prot), 79.59 ± 3.54% (ZnO_Phyto), 76.16 ± 1.37%
(ZnO_Chem), 65.05 ± 1.85% (ZnO_Extra) and 56.31 ± 1.21% (ZnO_Intra) at 1.56 µg/mL
concentration level, respectively (Figure 1). Analysis of variance (ANOVA) between the
tested groups revealed the significant influence of the studied concentrations on the DPPH
scavenging effect for the bio-ZnO NPs (p-value < 0.001) as compared to bare ZnO NPs.

The greatest increase in the antioxidant activity was observed for plant-based nano-
ZnO (ZnO_Phyto). The higher ability of two ZnO NPs types (ZnO_Phyto and ZnO_Prot)
to scavenge the DPPH radical might be related to the presence of biologically active groups
on the surface of nanoparticles. As shown in the previous study [11], Medicago sativa,
used for the biosynthesis, is a material that is rich in flavonoids, saponins or phenolic
compounds. All of them have free radical scavenging abilities [36]. Interestingly, the
interaction of flavonoids, such as zinc, with Me2+ may enhance the antioxidant properties
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of the flavonoids [37]. During the biosynthesis of ZnO NPs with M. sativa (ZnO_Phyto),
an increase in antioxidant activity was observed in comparison with a crude extract [11].
This is in a good correlation with the data obtained in present study. The next ZnO
NPs with good antiradical properties were obtained from egg white protein, known as
ovalbumin [12]. The data in the literature point out that proteins and peptides derived
from egg white produce a good antioxidant effect [37–39]. Furthermore, the complexes of
zinc with peptides [40] or amino acids (e.g., histidine) [41,42] were proven to have boosted
the antioxidant properties.
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Figure 1. Antioxidant activity (%) of bare and functionalized ZnO NPs (at 200, 100, 50, 25, 12.5,
6.25, 3.12 and 1.56 µg/mL concentrations). The values are expressed as mean ± SD values of
three independent experiments (n = 3); * p < 0.001 compared to bare ZnO NPs (ANOVA).

2.2. Photocatalytic Degradation of Methylene Blue (MB) by ZnO NPs

The bare and functionalized ZnO NPs were used as a photocatalyst for the degradation
of methylene blue dye under different light conditions (dark, sunlight and UV light at
λ = 365 nm; Figure 2A). After 8 h of photocatalysis, the degradation of MB in the dark
was the slowest in comparison with the light conditions (sunlight and UV irradiation).
Moreover, for all types of tested nanoparticles, the percentage of MB degradation was in
the range of 24.88 ± 1.3–29.12 ± 1.4% (dark). In the sunlight, at the same time (8 h), the
MB degradation was found to be at the 32.37 ± 2.48–63.04 ± 1.64% level. The highest
degradation of methylene blue was observed under UV irradiation and the percentage
of this varied from 67.13 ± 1.42 to 82.22 ± 1.1%. The greater efficiency of photocatalysis
after UV irradiation finds its explanation in the semiconductor properties of zinc oxide.
ZnO has a band gap of 3.3 eV, which corresponds to the emission in the UV region [19].
When the photon energy (hν) is equal or exceeds the band gap of the photocatalyst, the
photon is absorbed. Next, the electron from the VB is excited to the CB—at the same time,
the positive charge holes in the valance band are created. Then, the electron and hole pairs
might take part in a series of redox reactions, leading to the formation of reactive oxygen
species [20,21,31].
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Figure 2. Photocatalytic activity of bare and functionalized ZnO NPs toward methylene blue (MB). The efficiency of MB
photocatalytic degradation (%) (A) in different light conditions (dark, sunlight and UV irradiation), and (B) for different pH
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presence of ZnO_Chem at pH 10 under UV irradiation. All ZnO NPs were at 1000 µg/mL concentration. The values are
expressed as mean ± SD values of three independent experiments (n = 3); * p < 0.001 compared to bare ZnO NPs (ANOVA).

In addition to factors such as the type of irradiation or the type of nanoparticles used
in photocatalysis, it is also important to consider the effect of pH [43,44]. In order to
investigate the influence of pH on bare and functionalized ZnO NPs’ photocatalytic activity,
the degradation of MB dye was studied in acidic and alkaline conditions (Figure 2B). It
was observed that the decolorization of methylene blue is strongly dependent on the
pH of the solution, which plays an important role in photocatalytic degradation. From
the chart (Figure 2B), it can be seen that about 56% and 77% of MB dye was degraded
after 480 min illumination by the ZnO_Prot NPs at pH = 3 and pH = 10, respectively.
This tendency was visible for almost all tested nanoparticles except for the ZnO_Intra
NPs, which show a slightly higher ability to degrade the dye at pH = 3 (Figure 2B).
The explanation of this phenomenon can be the fact that the alkaline pH value could
provide a higher concentration of hydroxyl ions, which are able to react with holes and
form hydroxyl radicals. In consequence, the photocatalytic degradation of methylene
blue is enhanced [1,2]. Therefore, the presence of UV-irradiation and the pH value of
10 have been recognized as the most efficient conditions in terms of photocatalysis speed
(Figure 2C) and were, therefore, chosen as the final experimental conditions. ANOVA on
the tested experimental conditions revealed significant results (p-value < 0.001) (showed in
Figure 2A–C), indicating that the type of tested ZnO NPs had a significant influence on the
observed MB degradation, under all of the studied conditions. Additionally, Dunnett’s post
hoc test was performed in order to compare the results from each type of functionalized
ZnO NPs in relation to the bare (ZnO_Chem) NPs. In addition, the average percentages of
MB degradation, observed for conditions of dark, sunlight and UV light, were significantly
different in all ZnO NPs (p < 0.001). The results of the post hoc assay are summarized in
the Supplementary Material (Tables S1 and S2) and are presented in the form of asterisks
in Figure 2.



Int. J. Mol. Sci. 2021, 22, 9529 6 of 17

Methylene blue dye shows a prominent peak at λ = 665 nm, as shown in Figure 2D. The
peak intensity decreases gradually with the addition of ZnO NPs under UV irradiation and
shows an increase in the MB degradation from 29.72 ± 1.09 to 85.22 ± 1.36% within 720 min.
To sum up, among all tested nanoparticles, the bare chemically obtained NPs (ZnO_Chem)
are considered as the most efficient photocatalysts. Those data are the opposite of the DPPH
test results—the highest antioxidant activity was shown by the nanoparticles that were
also the weakest photocatalysts (ZnO_Phyto). ZnO NPs synthetized by M. sativa aqueous
extract showed a DPPH radical scavenging effect at the 79.59 ± 3.54% level (1.56 µg/mL
concentration), while the higher concentration (1000 µg/mL) of the tested nanoparticles
allowed degradation only with 17.53 ± 0.77% of dye. This strongly supports the hypothesis
that higher concentrations of nanomaterials exhibit pro-oxidative activity, while lower
concentrations of nanoparticles act as antioxidant agents [29,45]. Furthermore, it is clear
from the experimental data and our previous works [10–13] that the differences between the
bare and functionalized ZnO NPs photocatalytic activity may be related to the size of the
nanoparticles. Bare NPs (ZnO_Chem) were recognized as the strongest photocatalysts—the
size of this nanomaterial was about 100 nm. The remaining functionalized NPs (ZnO_Prot,
ZnO_Intra, ZnO_Phyto, ZnO_Extra) were smaller, at a size of 40, 16.7, 13.9 and 13.7 nm,
respectively [10–13]. Thus, it can be stated that photocatalytic activity increases with the
increase in the nano-ZnO particle size. The work of Kusiak-Nejman et al. [46] confirmed
that the ZnO NPs’ photoactivity under UV light increases mainly with the increase in
the ZnO particle size. The highest phenol degradation was found for a ZnO sample with
an average particle size of 71 nm [46]. Murakami et al. [47] prepared titanium(IV) oxide
(TiO2) NPs for the photocatalytic degradation of acetaldehyde. They found a size of about
40 nm to be optimal for the effectiveness of the photocatalysis process, mainly due to the
optimized balance between efficient separation of redox sites and large specific surface
area [47].

According to the data in the literature [19,48,49], the dyes’ photo-degradation might
be related to the generation of electron–hole pairs. The mechanism underlying the process
described in this study is discussed later.

2.3. Cytotoxicity of ZnO NPs

To examine the cytotoxicity effect of bare and functionalized ZnO NPs in vitro, two cell
lines—murine fibroblast L929 and human epithelial colorectal adenocarcinoma Caco-2—
were chosen. Caco-2 cells show many morphological and biochemical similarities to
intestinal cells, or enterocytes. In addition, this type of cell line is commonly used in
the pharmaceutical industry as an in vitro model of the human small intestine mucosa to
predict the absorption of orally administered drugs [50,51]. Moreover, Caco-2 cells were
used as model to assess the toxicity of ZnO NPs in many studies [52–55]. The application of
mouse fibroblast L929 cells is most frequently undertaken to evaluate cytotoxicity and may
represent a sufficient in vitro screening model for skin formulations [56–58]. Furthermore,
the cytotoxicity assay with mouse fibroblasts L929 is in compliance with ISO 10993-5
standards, and is often used for comparative studies of different types of nanoparticles [59].

The anti-proliferative effect was determined using two colorimetric assays—3–(4,5–
dimethylthiazol–2–yl)–2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase
(LDH). The first of these, the MTT test, is based on the ability of mitochondrial dehydroge-
nase enzyme to convert yellow tetrazolium dye into formazan crystal. The rate of formazan
crystal formation is directly proportional to cell viability; the untreated (positive) control
is set to 100% viability [60,61]. In the LDH assay protocol, lactate dehydrogenase, as a
soluble cytosolic enzyme, is released into the culture medium following the loss of mem-
brane integrity. Then, LDH activity can be used as an indicator of cell membrane integrity
and serve as a general means to assess cell viability by measuring plasma membrane
permeability [62].

As shown in Figure 3A,B, the MTT results demonstrated that, for both types of cell
lines, higher concentrations of ZnO NPs generated more serious cytotoxicity. At the
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lowest concentration of 1.56 µg/mL, intracellularly synthetized ZnO NPs (ZnO_Intra) were
able to reduce both Caco-2 and L929 cells’ viability to 20.28 ± 9.54 and 26.09 ± 6.74%,
respectively. On the other hand, the biochemically synthetized NPs (ZnO_Prot) turned
out to be the least toxic to cells—the concentration of 50 µg/mL might be considered as
an IC50. At the highest concentration (100 and 200 µg/mL) (Figure 3C), all types of tested
nanoparticles significantly reduced the cells’ viability, while the bare and functionalized
ZnO NPs were significantly more toxic to the fibroblasts L929 (Figure 3B). The work of
Valdiglesias et al. [32] also showed the concentration-dependent toxicity of nano-ZnO—
significance was obtained from 25 µg/mL for all of the treatments. Despite the crucial
role of the ZnO NPs’ dose, the size of the nanoparticles used should be also taken into
consideration. Many papers indicate the influence of the nano-ZnO size on its further
toxicity. Kang et al. [55] tested ZnO NPs at different sizes (26, 62 and 90 nm) against
Caco-2 cells and observed that 26-nm ZnO NPs exhibited the highest toxicity. The different
toxic effects of ZnO_Intra and ZnO_Prot NPs can be also explained by their various sizes—
as mentioned above, the size of biochemically (ZnO_Prot) synthetized NPs was about
41 nm [12], whereas the ZnO_Intra NPs were smaller, at a size of 16.7 nm [10]. Furthermore,
biologically synthetized NPs are functionalized by the specific organic deposit on their
surface—the presence of organic residues was confirmed by the LDI-MS method in our
previous study [13]. It was proven that the organic deposit plays an important role in the
antibacterial action of nanomaterials. Silver [27] and zinc oxide NPs [13], naturally coated
by microbial compounds, exhibit higher antibacterial effects compared with chemically
synthetized nanomaterials. Intriguingly, the presence of the surface deposit might affect
the cell–NPs interaction, and consequently, the intended bio-application of the obtained
nanoparticles. As shown in the present paper, the extracellularly synthetized ZnO NPs,
with organic deposits on their surfaces, were less toxic for Caco-2 cells than the chemically
obtained NPs (29.26 ± 1.15% and 4.81 ± 1.57%, respectively, at 200 µg/mL concentration).
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Figure 3. The MTT assay results and effects of indicated concentrations of bare and functionalized ZnO NPs on the
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against the Caco-2 cell line. The values are expressed as mean ± SD values of three independent experiments (n = 3);
* p < 0.001 compared to bare ZnO NPs (ANOVA).

The MTT results presented in this paper are also in good correlation with the data
from the photocatalytic study. The highest tested concentration of ZnO NPs resulted in
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a significant reduction in the number of live cells (Figure 3) as well as in the degradation
of MB dye (Figure 2A). The photocatalytic activity of nano-ZnO is connected to the toxic
oxygen species [18,20,21]. In consequence, the toxicity of effect is enhanced.

The decrease in cell viability is very often correlated with apoptosis. Cell death
occurred as a result of, e.g., cell membrane damage, and, in consequence, the release of
LDH into the extracellular medium took place. In our study, LDH activity was measured to
observe the effect of bare and functionalized ZnO NPs on membrane integrity by treating
fibroblast L929 and Caco-2 cells. The results of this assay show that the enzyme release
depends on the nanoparticles concentration, as shown in Figure 4. The ZnO_Chem and
ZnO_Prot NPs exhibited a significant increase in LDH leakage at 25–100 µg/mL for the
L929 cell line (Figure 4A,B). On the contrary, the intracellularly synthetized NPs (ZnO_Intra)
already caused the release of LDH at the 1.56 µg/mL concentration level (Figure 4C) for
both types of tested cells. The lack of leakage of LDH at 50–200 µg/mL was not due to
a lack of ZnO_Intra NPs toxicity, but the fact that, at this concentration, the cell number
was too small to give the correct results (Figure 4C). The tested nano-ZnO were more toxic
against the fibroblast L929 than Caco-2 cell line. The higher sensitivity of murine fibroblasts
could be explained by a different expression of specific control mechanisms, which play an
important role in the differentiation and the apoptosis of various cells. One such mechanism
is MAPKs (mitogen-activated protein kinases) [63]. Krüger et al. [64] showed that the
addition of TiO2 NPs activated the p38 mitogen-activated protein kinase pathways in
Caco-2 cells and, furthermore, did not affect enterocyte differentiation. Another mechanism
of cell lines’ resistance might be associated with the induction or inhibition of the membrane
transporting proteins. Guarnieri et al. [65] emphasized the correlation between metallic
uptake, intracellular localization and cytotoxicity. Brück with colleagues [66] compared
two different types of cells and showed that the protein expression patterns of membrane
transporters in Caco-2 cells and jejunal cells differed notably. However, a detailed genomic
and proteomic study regarding the exact nanotoxicity mechanism of tested nanoparticles is
required to confirm the differences between the cell lines used in our study.
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To observe the changes in murine fibroblast cells’ morphology, scanning electron
microscopy (SEM) images, after treatment with 6.25 µg/mL of bare and functionalized
ZnO NPs (the concentrations where an effect on the cell growth was noticed), were obtained.
According to Figure 5, cells exposed to nano-ZnO differed significantly from the control.
The L929 cells treated with the different types of nanoparticles became spherical and
specific blebs were formed on their surface (Figure 5B–F). Moreover, the ZnO_Intra NPs
caused the destruction of cells such as, e.g., cell membrane collapse (Figure 5D). All of the
noticed morphological changes are related to the apoptosis process [67], in which the cell
breaks into several vesicles, which are known as apoptotic bodies [68].
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Figure 5. SEM analysis showing the morphology changes in L929 cells after the bare and functionalized ZnO NPs treatement.
(A) control sample and L929 cells after the (B) extracellularly, (C) phytochemically, (D) intracellularly, (E) chemically and
(F) biochemically synthetized ZnO NPs’ exposure. The concentration of the used ZnO NPs was 6.25 µg/mL.

The interaction of nanoparticles with cells’ surfaces leads to the loss of membrane
integrity, but also presents itself in the production of reactive oxygen species (ROS). In
order to detect the ROS involved in the MB degradation and the cytotoxicity of the tested
bare and functionalized ZnO NPs, a fluorometric intracellular ROS Kit (Sigma-Aldrich,
St. Louis, MO, USA) was used (Figure 6). Importantly, the applied kit detects superox-
ide and hydroxyl radicals in particular. Murine fibroblasts and human epithelium cells
exposed to ZnO NPs exhibited a significant concentration-dependent increase in intracel-
lular ROS generation. Figure 6 shows that intracellularly synthetized (ZnO_Intra) NPs
cause the highest increase in ROS production—from 153.65 ± 11.52% (at 1.56 µg/mL) to
308.49 ± 43.29% (at 200 µg/mL). The observed tendency may be explained by the fact that,
at higher NP concentrations, the higher amount of OH• and O2

•− radicals production
exceeds the defense capability of the cells [69]. Laurent et al. [70] and Popescu et al. [69]
observed that treating cell lines with low amounts of ROS increased their proliferative rate,
while further increased amounts of radicals resulted in cell death. Oxygen radicals were
also found to be produced during the photocatalysis process [21]—the ZnO_Intra NPs
were found to degrade the 71.67 ± 0.47% of methylene blue after 12 h and the same type of
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nanocomposite showed the greatest production of ROS in tested cells. In contrast to the
ZnO_Intra NPs, NPs obtained with OVA protein (ZnO_Prot) act as antioxidant agent at the
lowest concentration (75.19 ± 29.46% and 106.56 ± 3.65% for L929 and Caco-2 cell lines,
respectively). For both types of tested cells, a similar trend was observed in terms of ROS
production. It is strongly associated with DPPH assay results (Figure 1) and confirms the
thesis that higher concentrations of nano-ZnO promote pro-oxidative activity, while lower
concentrations act as antioxidant agents.
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(n = 3); * p < 0.001 compared to bare ZnO NPs (ANOVA).

In summary, based on the experimental data obtained in this study, it can be concluded
that the type of biological synthesis influences the further toxic properties of functionalized
ZnO NPs. The phyto- and biochemical synthesis resulted in the nanoparticles having high
antioxidant activity toward the DPPH radical. It is well known that both raw sources used
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for the ZnO NPs production (Medicago sativa extract and OVA protein [11,12]) have scaveng-
ing ability [36–39]. Furthermore, the interaction of metal ions (Me2+), including zinc, with
peptides [40] or flavonoids [37] might enhance the antioxidant properties. Intriguingly, the
intracellular synthesis of nano-ZnO using the bacterial biomass [10] turns out to produce
the most toxic nanoparticles. It might be related to their size (16.7 nm)—numerous factors,
including composition, size and shape, are well known to influence nanotoxicity [71].
The crucial aspect is also the presence of organic deposits on the nanoparticles’ surface,
which might be the key in the reduction in ZnO NPs’ toxicity. Experimental data from the
actual study confirmed the presence of less cytotoxicity of extracellularly synthetized ZnO
NPs [13] with organic constituents on the surface (against Caco-2 cells) compared to the
bare, chemically obtained nanoparticles.

According to the data in the literature, it seems that the mechanism of toxicity de-
pends on the aforementioned properties of the nanomaterials (size, concentration, cat-
alytic/luminescence properties or surface characterization and coatings) [3,4,35,46]. How-
ever, the exact mechanisms and the material dependence of ZnO nanomaterials’ cytotoxicity
is still unclear. Metal oxide nanomaterials are well known to alter the environment around
the cells and, thus, induce ROS generation [69,72]. It is also well reported that different
mechanisms are proposed for nano-toxicity and one of them includes the production of
radicals [4,14,17,18,73]. Based on the experimental results obtained in this study, it can be
concluded that the generation of ROS plays a key role in the inhibition of cell growth, the
loss of their membrane integrity and, in consequence, the apoptosis process. Moreover, the
tight relationship between the harmful impact of the oxygen radical on the living cells and
the bio-ZnO NPs’ photocatalytic activity could clearly explain the probable mechanism
of bio-ZnO NPs toxicity (Figure 7). During photocatalysis, specific electron–hole pairs
are created—the reactions of holes and/or electrons in ZnO NPs lead to the production
of reactive oxygen species (Figure 7B). Accordingly, the bio-NPs with greater catalytic
properties also exhibited higher toxic impacts on the tested cell lines.

1 

 

 

Figure 7. The proposed mechanism of (A) photocatalytic degradation of methylene blue and (B) cytotoxicity of functional-
ized ZnO NPs.
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Despite the observed dose-dependent action of ZnO NPs, which is related to greater
ROS production, attention should be also paid to another possible nanotoxicity mechanism.
The smaller nanoparticles (e.g., ZnO_Intra; about 16.7 nm) have an extraordinary ability
to internalize into living cells through different biological mechanisms and reach the
nucleus, thereby generating genotoxic damage with the consequent triggering of apoptosis.
Mittag et al. [74] investigated the cellular uptake of two differently sized ZnO NPs (<50 nm
and <100 nm) against two human intestinal cell lines (Caco-2 and LT97). The outcomes
of this study showed that ZnO NPs, at smaller sizes (<50 nm), led to the formation of
micronuclei in LT97 cells. Micronucleus analysis is normally performed to examine whether
some potentially toxic agent is able to cause chromosome damage [75]. To conclude,
the smaller nanoparticles might often exhibit a strong genotoxic activity. Therefore, the
undertaking of more detailed studies of ZnO NPs’ genotoxicity seems to be crucial.

3. Materials and Methods
3.1. Biological Synthesis and Physicochemical Characterization of ZnO NPs

Four different biological methods of synthesis—phytochemical using Medicago sativa
plant extract (ZnO_Phyto) [11], microbiological intracellular using Lactobacillus paracasei
LB3 biomass (ZnO_Intra) [10], microbiological extracellular with Lactobacillus paracasei
supernatant (ZnO_Extra) [13] and a biochemical approach with ovalbumin (OVA) protein
(ZnO_Prot) [12]—were used to obtain the ZnO NPs. All biologically synthetized nanoparti-
cles were functionalized by the presence of the specific organic deposit on their surface.
ZnO_Prot, ZnO_Intra, ZnO_Phyto and ZnO_Extra NPs were found to have sizes of 40,
16.7, 13.9 and 13.7 nm, respectively. All further details of the synthesis methods as well as
physicochemical characterization of all ZnO NPs are described in our previous papers.

For the comparison, in all experiments, bare chemically synthetized nano-ZnO (ZnO_Chem)
NPs from Sigma-Aldrich, Poznań, Poland (CAS number: 1314-13-2; <110 nm particle size)
were used.

3.2. Antioxidant Activity of ZnO NPs

Evaluation of the antioxidant activity of bare and functionalized ZnO NPs was per-
formed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) test [76]. The DPPH radical (Sigma-
Aldrich, Steinheim, Germany), at 0.1 M concentration in methanol, was added to different
concentrations (200, 100, 50, 25, 12.5, 6.25, 3.12 and 1.56 µg/mL) of each bio-ZnO NP at a
ratio of 1:1. All samples were incubated in the dark for 30 min; after the incubation time, the
UV-vis absorbance at λ = 517 nm was recorded using a NanoDrop 2000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA). The DPPH scavenging activity was calculated
using the following equation:

AA% =
(A0 − A1)

A0
× 100 (1)

where A0 and A1 are absorbance of DPPH and ZnO NPs sample at λ = 517 nm, respectively.
All of the experiments were prepared in triplicate.

3.3. Photocatalytic Degradation of Methylene Blue (MB) Dye by ZnO NPs

The bare and functionalized ZnO NPs were studied in terms of their catalytic prop-
erties under sunlight and UV-light (λ = 365 nm), during the degradation of methylene
blue (MB) dye, according to a procedure adapted from [77]. The ZnO NPs, at 1000 µg/mL
concentration, were added to the dye solutions (Aqua-Med, Łódź, Poland) at 0.015 mg/mL
concentration and pH = 3 and 10. The mixture was magnetically stirred in dark conditions
in order to maintain the absorption–desorption equilibrium. After the incubation, the
suspension of MB dye and ZnO NPs was subjected to solar light and UV irradiation, respec-
tively. The UV-vis spectra and absorption maxima (λ = 665 nm) were registered at fixed
intervals using Varioskan TM LUX multimode microplate reader (Thermo Fisher Scientific,
Waltham, MA, USA). The experiment was performed in triplicate, and the photocatalytic
degradation was calculated using Equation (1), where A0 and A1 are the absorbance of MB
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and MB with ZnO NPs sample at λ = 665 nm, respectively. As a control, the degradation of
MB dye was carried out in dark conditions.

3.4. Cytotoxicity of ZnO NPs

The L929 normal mouse fibroblast cells and Caco-2 from human colon were obtained
from the European Collection of Authenticated Cell Cultures. The cells were cultured as
adherent monolayers in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal
bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. Cells were passaged
using 0.25% trypsin/EDTA every 3–4 days.

3.4.1. MTT, LDH Release and Intracellular ROS Assays

For MTT, LDH release and intracellular ROS assays, cells were cultured on 96-well
plates at 2 × 105 cells/mL and incubated under 5% CO2 at 37 ◦C for 24 h. When cells were
adherent, ZnO NPs were added and incubated for another 24 h. In all cell experiments, the
L929 and Caco-2 cells without ZnO NPs were used as controls. Then, 10 µL of Thiazolyl
Blue Tetrazolium Bromide (MTT) solution (5 mg/mL in PBS) was added and incubated
for 4 h at 37 ◦C. After incubation, medium from wells was discarded and the crystalline
formazan was dissolved in DMSO. Absorbance was measured at λ = 570 nm using a
Varioskan TM LUX multimode microplate reader (Thermo Fisher Scientific, Waltham, MA,
USA). The results were expressed as percentages relative to the negative control—cells in
standard medium without ZnO NPs that are considered as 100% viable. All experiments
were performed in three independent replicates.

The LDH release assay was performed using a commercially available kit from
Sigma Aldrich (Lactate Dehydrogenase Activity Assay Kit MAK066) and all samples
were prepared according to the manufacturer’s instructions Absorbance was measured
at λ = 450 nm using a Varioskan TM LUX multimode microplate reader (Thermo Fisher
Scientific, Waltham, MA, USA). Briefly, cultured cells were incubated with bare and func-
tionalized ZnO NPs to induce cytotoxicity and subsequently release lactate dehydrogenase
(LDH). The LDH released into the medium was transferred to a new plate and mixed with
50 µL of the Reaction Mixture in each well. The plate was protected from light during the
incubation (37 ◦C). The measurements of absorbance were taken each 5 min until the value
of the most active sample was higher than the value of the highest standard in the standard
curve (12.5 nmole/well). The results are presented as percentages of activity in comparison
to control. All samples were run in the three independent replicates.

For reactive oxygen species measurements, the Fluorometric Intracellular ROS kit
(MAK144), from Sigma-Aldrich, was used. All samples were prepared according to the
manufacturer’s instructions. To induce ROS, the cells, after bare and functionalized ZnO
NPs treatment, were incubated in 96-well plates in a 5% CO2, 37 ◦C incubator for 24 h.
After the incubation time, 100 µL of Master Reaction Mix were added to each well and
the cells were incubated again in a 5% CO2, 37 ◦C incubator for 30 min. After that, the
fluorescence intensities (λex = 540/λem = 570 nm) were measured using a Varioskan TM
LUX multimode microplate reader (Thermo Fisher Scientific, Waltham, MA, USA). Each
experiment was performed in the three independent replicates.

The results of the LDH release and ROS level measurement are presented as percent-
ages of reactive oxygen species in comparison to the control sample, and were calculated
according to Kalińska et al. [78] and Lin et al. [79], respectively.

3.4.2. SEM Analysis

Adherent cells were fixed in 2.5% glutaraldehyde in PBS for 30 min and washed
3 × 5 min times in PBS. The next step was washing 2 × 2 min with dH2O, dehydration
in 95% EtOH for 1 × 2 min followed by 4 × 5 min in 100% EtOH. In the next step, cells
were dehydrated 2 × 10 min with 100% HMDS at room temperature. Slides with cells
were fixed on a holder with carbon tape and coated with Au with in a SC7620 Mini Sputter
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Coater (Quorum Technologies, Lewes, UK). The cells were examined using a Quanta 3D
FEG scanning electron microscope/focused ion beam (SEM/FIB).

3.4.3. Statistical Data Analysis

Significant differences among means of the groups were evaluated using one-way
analysis of variance (ANOVA). The test was performed employing the software IBM SPSS
Statistics v.23. Additionally, Dunnett’s post hoc test was performed in order to compare the
results from each type of functionalized ZnO NPs in relation to the bare (ZnO_Chem) NPs.
The results of post hoc assay are summarized in the Supplementary Material (Tables S1–S6).

4. Conclusions

This study presents, for the first time, the comparative evaluation of the cytotoxicity of
bare and functionalized ZnO NPs against L929 murine fibroblasts and Caco-2 cells as model
cell lines. The outcomes of this work showed the dependence of ZnO NPs’ concentration
and size on their biological properties such as antioxidant, photocatalytic and cytotoxic
activity. Moreover, the toxic action of functionalized ZnO NPs can be also connected to
the presence of a specific organic deposit on their surface. Intracellularly and chemically
synthetized ZnO NPs were considered to be the most toxic agent, while the ZnO NPs
obtained with ovalbumin protein exhibited the lowest toxicity toward the tested cells.
Intriguingly, cell lines showed different sensitivities to ZnO NP treatment—the murine
fibroblast L929 was discovered to be more susceptible than Caco-2 cell lines. Accordingly,
the functionalized bio-ZnO NPs might be a promising antibacterial agent when used as
an oral treatment rather than in skin formulations. The ROS generation assay and SEM
microscopy confirmed the oxidative stress induction and the morphological changes in the
cells exposed to the ZnO NPs. Based on the data from our investigation, the bio-ZnO NPs
toxicity mechanism was proposed—it is tightly related to the generation of ROS which
leads to, e.g., the loss of membrane permeability, mitochondrial dysfunction and, at the
highest concentrations, the apoptosis of cells.
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45. Bedlovičová, Z.; Strapáč, I.; Baláž, M.; Salayová, A. A brief overview on antioxidant activity determination of silver nano-particles.
Molecules 2020, 25, 3191. [CrossRef]

46. Kusiak-Nejman, E.; Wojnarowicz, J.; Morawski, A.W.; Narkiewicz, U.; Sobczak, K.; Gierlotka, S.; Lojkowski, W. Size-dependent
effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution. Appl. Surf. Sci. 2021, 541, 148416.
[CrossRef]

47. Murakami, N.; Kawakami, S.; Tsubota, T.; Ohno, T. Dependence of photocatalytic activity on particle size of a shape-controlled
anatase titanium(IV) oxide nanocrystal. J. Mol. Catal. A Chem. 2012, 358, 106–111. [CrossRef]

48. Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357. [CrossRef]
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