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ABSTRACT
Pancreatic progenitor cell research has been in the spotlight, as these cells have the
potential to replace pancreatic b-cells for the treatment of type 1 and 2 diabetic patients
with the absence or reduction of pancreatic b-cells. During the past few decades, the suc-
cessful treatment of diabetes through transplantation of the whole pancreas or isolated
islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-pro-
ducing cells are required to provide sufficient amounts of donor tissues. To overcome this
limitation, the use of pancreatic progenitor cells is gaining more attention. In particular,
pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive
candidates for b-cell regeneration because of their differentiation potential and pancreatic
lineage characteristics. It has been assumed that b-cell neogenesis from pancreatic pro-
genitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have
shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Aci-
nar cells also might have the potential to differentiate into insulin-producing cells. The pre-
sent review summarizes recent progress in research on the transdifferentiation of
pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

INTRODUCTION
Diabetes mellitus is increasing in prevalence worldwide. Defects
in pancreatic b-cell function and loss of b-cell mass are the
major characteristics of both type 1 and type 2 diabetes. This
phenomenon is prevalent in all patients with type 1 diabetes
and in patients with late-stage type 2 diabetes. Complications of
diabetes, such as diabetic neuropathy, nephropathy, retinopathy,
heart disease and stroke could develop during the course of the
disease. For the treatment of intractable diabetes, exogenous
insulin injection has been widely used, and this method has
improved the quality of life of diabetic patients, especially those
with type 1 diabetes. After the first successful extraction of insu-
lin, the use of exogenous insulin became a mainstay of diabetes
treatment. Biosynthetic recombinant human insulin can be pro-
vided for effective treatment through the use of continuous sub-
cutaneous insulin infusion therapy, such as the insulin pump1–6.
In 2000, a breakthrough was recorded in human pancreatic

islet transplantation. Pancreatic islets were isolated from human

cadavers and transplanted into the portal veins of type 1 dia-
betic patients. The advantage of islet transplantation is that it is
a minimally-invasive method compared with traditional pan-
creas–kidney transplantation. Furthermore, the Edmonton and
its related protocols offer proof of concept on the use of cell
replacement therapy for diabetes mellitus7–10. However, the
shortage of donor organs and side-effects of immunosuppres-
sants limit the clinical applications of islet transplantation6.
Limitations of islet transplantation has led to research on alter-
native transplantable b-cell sources, such as embryonic stem
cells (ESCs) or induced pluripotent stem cells (iPSCs; Figure 1).
Human ESCs derived from the inner cell mass of a blastocyst
were first cultured by Thompson et al.11 However, the ethical
problem is the main issue in utilization of ESCs. To overcome
this limitation, iPSCs were developed by nucleus reprogram-
ming of somatic cells. iPSCs have highly similar properties to
that of ESCs, and were generated by transfection of four tran-
scription factors, such as OCT3/4, KLF4, SOX2 and c-MYC, or
OCT4, NANOG, SOX2 and LIN2812–14. iPSCs can also be gen-
erated by other factors, small molecules and ribonucleicReceived 1 October 2015; revised 27 December 2015; accepted 4 January 2016
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acids15–24. iPSCs show a slightly different possibility compared
with ESCs, because the use of iPSCs could make patient-specific
cell replacement therapy possible. iPSCs are able to match with
patients genetically, thus avoiding the issue of immune rejec-
tion. These alternative b-cell sources have unlimited expansion
capacity and pluripotency to differentiate into all other types of
germ layer cells. We have also generated iPSCs derived from
human pancreatic duct cells by using lenti-OCT3/4, -SOX2, -
KLF4 and c-MYC, named HD-iPSCs. These HD-iPSCs present
similar levels of specific markers of ESCs, and spontaneously
differentiate into three-germ layers when HD-iPSCs forms an
embryoid body. Furthermore, teratomas were formed in
immunodeficient mice with subcutaneous injection of HD-
iPSCs. Interestingly, HD-iPSCs had superior differentiation
potential to iPSCs derived from human skin fibroblasts when
these cells were induced with differentiation protocol developed
by Zhang et al.25. This different efficiency in differentiation of
each iPSC was caused by its own epigenetic memory (Kim HS,
Lee MK, unpublished data). However, the differentiation of
ESCs and iPSCs requires numerous stages and various kinds of
factors. Furthermore, clinical trials of these differentiation pro-
tocols take a long time, and undifferentiated ESCs and iPSCs
pose the risk of tumorigenesis. These disadvantages limit the
utilization of ESCs and iPSCs for the treatment of diabetes.
Pancreatic progenitor cells (PPCs) could overcome limitations
of ESCs and iPSCs, because these cells already have pancreatic
lineage. PPCs also could be the targets of drug development
aimed at regenerating b-cells and forming transplantable b-cell
sources (Figure 1). Although PPCs have been well studied, it is
still unclear whether PPCs actually reside in the adult pancreas
and can be differentiated into functional insulin-secreting cells.
The present article reviews the current progress of research on
the development of b-cell sources using the transdifferentiation
of PPCs, and discusses whether these cells are useful for the
treatment of diabetes mellitus.

TRANSDIFFERENTIATION OF PANCREATIC CELLS
Transdifferentiation is a process whereby a differentiated cell is
converted into another type of cell. Recently, transdifferentiation

has become the most attractive method of developing b-cell
sources for cell replacement therapy. This process depends on
cellular reprogramming, such as b-cell neogenesis, the regenera-
tion of new b-cells from alternative PPCs in the adult pancreas.
A representative example of transdifferentiation in the pancreas
is acino-ductal transdifferentiation (acinar ductal metaplasia).
Acinar ductal metaplasia is the process by which acinar cells dif-
ferentiate into duct cells (Figure 2). In addition, acinar cells are
able to differentiate into hepatocyte-like cells and adipocytes,
depending on the microenvironment26–28. Another example of
transdifferentiation in the pancreas has been reported, namely,
that glucagon-secreting a-cells are able to differentiate into b-
cells. In that study, more than 99% of b-cells were genetically
removed when diphtheria toxin was used as a treatment on an
insulin promoter that was conjugated with the diphtheria toxin
receptor. After the ablation of the b-cells, genetic lineage tracing
with the glucagon-TetO system showed that the a-cells had con-
verted into b-cells29. This result was confirmed in PAX4-overex-
pressing a-cells30. Recently, Ye et al.31 has provided direct
evidence that a-cells are able to convert into b-cells by using b-
cell ablation model in zebra fish. Glucagon and glucagon-like
peptide-1 (GLP-1) have a potent effect on a- to b-cell transdiffer-
entiation; b- to a-cell transdifferentiation is possible in the case of
opposition. Overexpression of aristaless-related homeobox, sup-
pression of pancreatic and duodenal homeobox-1 (PDX-1), NK2
homeobox 2 and forkhead box O1 induced the dedifferentiation
of b-cells, and transdifferentiated into a-cells32–38. Interestingly,
pancreatic d-cells are also able to transdifferentiate into insulin-
producing cells. This ‘somatostatin-to-insulin’ d-cell conversion
only occurs in juveniles, and the forkhead box O1 network is
associated with this juvenile adaptability (Figure 1)39.

PANCREATIC PROGENITOR CELLS IN THE ADULT
PANCREAS
Tissue-specific adult stem cells reside in every organ, and have
a regenerative potential. Based on tissue origin, these cells can
be classified into skin stem cells, hematopoietic stem cells, neu-
ral stem cells, mesenchymal stem cells and gut stem cells. PPCs
were relatively recently studied, and able to be distinguished by

Multiple-sources of insulin-producing cells

Embryonic stem cells

Induced pluripotent
stem cells
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Insulin-producing cells
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Figure 1 | Embryonic stem cells and induced pluripotent stem cells are considered as having potency to differentiate into insulin-producing cells.
Likewise, pancreatic progenitor cells express various markers and are able to differentiate into insulin-producing cells. Pancreatic a-, d-, e-, duct
and acinar cells also have differentiation potency.
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the expressions of hepatocyte growth factor, c-Met receptor,
and the absence of CD45, TER119, c-Kit and Flk-140,41. The
pancreas consists of two types of cells, endocrine and exocrine
cells. The endocrine cells are composed of the insulin-secreting
b-cells, glucagon-secreting a-cells, somatostatin-secreting d-cells
and pancreatic polypeptide-secreting cells. The exocrine cells
are composed of acinar cells and duct epithelial cells (duct
cells). Acinar cells are the major constituents of the pancreatic
tissue, and secrete digestive enzymes. Duct cells organize the
epithelial linings of branched tubes that are connected to the
duodenum (Figure 2). These cells are considered as PPCs and
sources for b-cell neogenesis. The specific differentiation of
endocrine cell types begins earlier than E9.5 in the mouse, and
the cells are specialized between E12.5 and E15.5. Endocrine-
specific transcription factors are associated with the maturation
and differentiation of PPCs from the duct cords in the develop-
mental stage42. A mechanism of recovering b-cell mass and
function similar to that which occurs in the developmental
stage has been observed in injured pancreases or intractable
diabetes models. Pancreas regeneration in adult rodents has
been reported in many studies. We have also observed pancreas
regeneration in 8-week-old mice after 70% pancreatectomy.
The pancreas weight and b-cell mass gradually increased over
time, and the fasting blood glucose levels were normalized
(Kim MH, Lim SB, Kim HS, Lee MK, unpublished data).
It is still under debate whether pancreas regeneration in

humans is possible. Spontaneous pancreas regeneration has

been reported in type 1 diabetic patients, which suggests that
pancreas regeneration might be possible, despite continuous b-
cell destruction through autoimmunity and glucotoxicity43–46.
To determine whether regenerated b-cells originate from pre-
existing b-cells or from b-cell neogenesis and transdifferentia-
tion, a number of studies have been carried out. An insulin
promoter-driven Cre-Loxp labeling system dependent on
tamoxifen treatment was used as a genetic lineage method,
through which b-cell neogenesis was identified in adult mice.
Lineage-tracing is an essential tool of developmental biology,
which involves labeling target cells and tracing their lineage
over time. The authors monitored whether the number of
labeled b-cells remained constant or decreased as a result of b-
cell neogenesis from progenitor cells47. They concluded that
pre-existing b-cells are the major sources of new b-cells, rather
than b-cell neogenesis after birth, and that terminally differenti-
ated b-cells have the capacity to proliferate. Another study was
carried out with similar results in normal, pregnant, 50% pan-
createctomized, and the GLP-1 analog, exendin-4 (EX-4)-trea-
ted mice with genetically-removed b-cells, using a serial
thymidine analog labeling method48,49. After transforming
growth factor-a treatment in vivo, insulin-positive cells arose
from pre-existing insulin-positive cells near the duct epithe-
lium50. These results suggested that b-cells are derived only
from pre-existing b-cells after birth, rather than from progeni-
tor cells. However, it is possible that progenitor cells are b-cell
sources for the expansion of b-cells in b-cell neogenesis.

Transdifferentiation of pancreatic exocrine cells

Pancreatic duct

Acinal-ductal metaplasia

Duct cells Acinar cells

Insulin-producing cells

Activin A, GLP-1,
INGAP, Smad2, HGF,
Ngn3, Pdx-1, MafA

LIF, EGF, Nicotinamide,
Ngn3, Pdx-1, MafA, MAPK,
STAT3

Figure 2 | Pancreatic ducts consist of duct cells, and are connected with complexes of acinar cells that secrete the enzyme through the pancreatic
duct into the duodenum. These pancreatic exocrine cells are able to transdifferentiate into insulin-producing cells under various conditions. In
addition, it is known that acinar cells are differentiated into duct cells through acinar-ductal metaplasia. EGF, epidermal growth factor; GLP-1,
glucagon-like peptide-1; HGF, hepatocyte growth factor; INGAP, islet neogenesis associated protein; LIF, leukemia inhibitory factor; MafA,
musculoaponeurotic fibrosarcoma oncogene family protein A, MAPK, mitogen-activated protein kinase; Ngn3, neurogenin 3; Pdx-1, pancreatic and
duodenal homeobox-1; STAT3, signal transducer and activator of transcription 3.
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The basic helix-loop-helix transcription factor, neurogenin 3
(Ngn3), expression is important in PPCs. Ngn3 knockout mice
lose all of the endocrine hormone-expressing cells. In addition,
the expression level of Ngn3 is important for the fate of endo-
crine and exocrine cells derived from PPCs. These data about
Ngn3 show that specific transcription factors are able to induce
the differentiation of endocrine and exocrine cells in the pan-
creas51–56. In addition, Ngn3 expression was observed in a pan-
creatic duct ligation (PDL) animal model. After duct ligation,
the pancreatic b-cell mass had expanded, and the expanded
b-cells strongly expressed Ngn3. Furthermore, the increase in
the number of b-cells was reduced by Ngn3 small interfering
ribonucleic acid. Wang et al.57 observed the expression of
Ngn3 in duct-neighboring pancreatic islets. It has been sug-
gested that Ngn3-positive cells are true progenitor cells located
near or within the adult pancreas. In the PDL model, it is pos-
sible that the remaining b-cells stimulated Ngn3 expression, but
the results suggested that the cells were not derived from
b-cells. In other study, cross-breeding of an insulin-causes
recombination (Cre) mouse expressing Cre recombinase under
the control of the insulin promoter with an Ngn3-reporter
mouse showed that adult acinar cells were able to upregulate
the expression of Ngn3. The authors suggested that Ngn3-posi-
tive cells were derived from acinar cells in the PDL animal
model30. In contrast, Desai et al.58 reported that acinar cells did
not differentiate into b-cells in an elastase-tracing mouse. In
another study using a transgenic mouse with telomerase reverse
transcription-driven green fluorescent protein (GFP), GFP-posi-
tive cells were detected in non-islet tissue after treatment with
EX-459,60. These findings provide clues that PPCs exist in the
mouse pancreas.
Pdx-1 is a transcription factor for insulin expression, and has

important role in expansion and differentiation of pancreatic
cells34,61,62. In addition, Pdx-1 is a representative marker in dif-
ferentiation of ESCs and iPSCs. In the developmental stage,
Pdx-1-positive progenitor cells are located at the tip of pancre-
atic branches, and can be detected with bromodeoxyuridine
and thymidine analogs63. By transfection of PDX-1, adipose tis-
sue-derived stem cells were able to differentiate into insulin-
producing cells. These differentiated cells reduced hyper-
glycemia in diabetic animals64. Recently, it has been reported
that progenitor-like cells isolated from the adult pancreas have
formed duct-like ‘ring/dense’ colonies, and these ring/dense
colonies expressed Pdx-1 and Sox9, and differentiated into
‘endocrine/acinar’ colonies. Most endocrine/acinar colonies con-
tained b-like cells that secreted insulin and C-peptide65.
Nestin-positive cells have been suggested as one of the PPC

types in adult rat islets, and these cells have the ability to differ-
entiate into insulin-producing cells. Nestin is an intermediate
filament protein expressed in neural cells and the pancreas,
although some groups have suggested that nestin is expressed
only during human pancreatic epithelial development66–68. In
addition, other groups using the lineage-tracing method have
suggested that nestin-positive cells contribute to the vascular

and acinar lineages, but not to the endocrine lineage69–71. In
addition, proliferative human islet precursor cells in adult
human islets were able to proliferate in vitro72. These cells can
show a mesenchymal phenotype through a process known as
epithelial-to-mesenchymal transition, and are derived from
insulin-expressing cells. In immunodeficient mice, human islet
precursor cells were shown to express and secrete insulin, and
to redifferentiate into islet-like cell aggregates (ICAs). However,
some have claimed that islet-derived fibroblast-like cells are not
generated through epithelial-to-mesenchymal transition from
pancreatic b-cells in the mouse pancreas, and that human islet
precursor cells are pancreatic mesenchymal stromal cells73–76.
Ghrelin-secreting e-cells are considered as a candidate for

PPCs. Ghrelin is a 28-amino acid polypeptide hormone, and
regulates appetite and insulin secretion. Ghrelin-secreting cells
originate from the stomach, and are detectable in the gesta-
tional developmental stage77–79. The lineage-tracing method
showed that ghrelin-secreting e-cells are not a terminally differ-
entiated endocrine population, and ghrelin cells give rise to
a- and PP cells, and rarely b-cells in the adult mouse islets.
Interestingly, ghrelin-secreting e-cells contribute to cells within
the duct and exocrine compartments80. It is still unclear and
requires more studies whether e-cells are substantial PPCs in
islets (Figure 1).

PANCREATIC DUCT EPITHELIAL CELLS
There is substantial evidence supporting the possibility that
PPCs exist in the adult pancreatic duct81. Exocrine duct and
acinar cells are able to transdifferentiate into pancreatic b-
cells82. Histological evidence of b-cell regeneration through the
transdifferentiation of duct cells has existed for many years.
Islet renewal and pancreas regeneration are thought to be
achieved by b-cell replication and/or Ngn-3 expressing progeni-
tor cells near or within the pancreatic duct47,83. These cells have
also been detected with cytokeratin (CK)-19, and are capable of
self-renewal and differentiation84–86. New evidence of duct cells’
origin was reported by Wang et al.87. They classified duct cells
into two types, peribiliary glands and pancreatic duct glands
duct cells. Peribiliary glands are located nearby in bile duct
walls and expressed pluripotency markers, such as NANOG,
OCT4 and SOX2, whereas pancreatic duct glands expressed
endocrine markers. Authors suggested that these biliary tree-
derived stem cells and their network contribute to PPC consti-
tution in the pancreas. According to these results, pancreatic
duct cells might be ancestors derived from peribiliary glands
duct cells87.
However, it is still controversial whether duct cells are true

PPCs. Various genetic lineage-tracing models have been used to
examine the nature of duct cells. Human carbonic anhydrase-II
(CA-II)-positive cell tracing, in which the CA-II promoter is
conjugated with the Cre-Loxp system, showed that CA-II-posi-
tive cells merged with b-cells in the adult pancreas and ligated
duct. This experiment showed that CA-II-expressing cells might
be progenitor cells and have the potential to generate new islets.
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In contrast, the differentiation potency of duct cells was found
to be restricted to the end of gestation in an experiment using
the mouse hepatocyte nuclear factor 1b (Hnf1b) promoter con-
jugated with the Cre-Loxp system. The investigators found that
mouse hepatocyte nuclear factor 1b-positive cells from embry-
onic days 11.5–13.5 differentiated into acinar, duct and endo-
crine cells. They identified the transition of the duct epithelium
to duct and endocrine cells, but not acinar cells. In that study,
the authors suggested that the duct cells were multipotent pro-
genitor cells only in the embryonic stage, but were not associ-
ated with b-cell regeneration after birth88,89. In addition, the
mucin-1 gene tracing system was used to verify that duct cells
and acinar cells are PPCs. The results suggested that mucin-1-
positive cells were associated with an increase in b-cell mass.
However, mucin-1-labeled cells were not detected in adult islets.
It appeared that exocrine duct cells did not contribute to b-cell
regeneration during pancreas injury or after birth90. Neverthe-
less, there is evidence that postnatal pancreatic duct cells might
be the main source of progenitor cells for b-cell regeneration,
and many in vitro studies have reported the differentiation of
adult duct cells into insulin-producing cells41,91–95. Isolated CA-
19-9 (+), CD133 (+), CD34 (-), CD45 (-) and TER 199 (-)
cells were identified as pancreatic duct cells that could differen-
tiate into insulin-producing cells.
Bonner-Weir et al.96,97 showed that human duct cells could

be cultured in matrigel and form islet-like buds. These cells are
detected by CK-19 and insulin antibodies. Noguchi et al.98 con-
firmed this result by the same protocol, and showed that CK-
19-positive cells could be differentiated into endocrine cells with
nicotinamide treatment. A combination of other differentiation
factors, such as epidermal growth factor and gastrin, can stimu-
late the proliferation of b-cells, and upregulate genes associated
with regeneration (Figure 2)99. These factors led to the expan-
sion and proliferation of the b-cell mass. They carried out lin-
eage-tracing experiments, and found that new b-cells were
budding from a new lobe of the duct during normal postnatal
development through b-cell regeneration. In that experiment,
duct-specific CAII-Cre R26R was constitutively expressed in
islets, which suggested that CAII-expressing duct cells had
transdifferentiated into acinar cells and new islets. In addition,
they carried out other lineage-tracing experiments in which
CAII-CreERTM was used to detect b-cell regeneration after
PDL88. In these experiments, mature duct cells retained the
abilities of pancreatic progenitor cells in adults. Furthermore,
PDL promotes the Wnt target gene, leucine-rich repeat-con-
taining G-protein-coupled receptor 5 expression in mouse duct
cells. In that study, isolated duct cells could be cultured into
pancreatic organoids, which contained leucine-rich repeat-con-
taining G-protein-coupled receptor 5-positive progenitor cells
with Wnt agonist; R-spondin contained expansion media
(N-acetylcysteine, gastrin, epidermal growth factor, noggin,
FGF10, nicotinamide and B27 in Dulbecco’s modified Eagle’s
medium F-12 media). R-spondin allowed continuous self-
renewal of pancreatic organoid up to 9 months100. This

research provided a possibility of efficient utilization of duct
cells by Wnt activation. However, these experiments were only
carried out in rodents, and the insulin secretion capacity was
gradually lost. In addition, direct effects of Wnt signal in the
pancreas are still unclear.
Insulin-producing cells were generated from duct cells with

GLP-1 treatment. GLP-1 induced proliferation, and reduced
apoptosis of pancreatic b-cells. Furthermore, the GLP-1 receptor
was activated during b-cell regeneration by upregulation of Pdx-
1. It was suggested that these Pdx-1-positive progenitor cells were
the source of b-cell regeneration101,102. Considerable evidence
has suggested that duct cells can be differentiated into b-cells
in vitro with GLP-1 and EX-4 treatment103,104. Thus, GLP-1
could regulate the generation of new b-cells from pancreatic duct
cells. Another factor, islet neogenesis associated protein, also
induced duct cells to differentiate into insulin-producing cells105.
In addition, Smad2 (an activator of the transforming growth fac-
tor-b superfamily), activin A (ActA) and hepatocyte growth fac-
tor also affect the differentiation of duct cells when cotreated
with b-cellulin or Pdx-1 (Figure 2)106,107.
We have also shown the existence of rat and human pancreatic

progenitor cells in the duct, and the differentiation potential of
these cells108,109. We isolated CK-19-positive human duct cells
from remnant cells after islet isolation. Cells were treated with
ActA, EX-4 and a high concentration (11 mmol/L) of glucose for
30 days, and we observed that cotreatment of ActA and EX-4
induced the expression of b-cell specific markers, such as Ngn3,
Pdx-1 and insulin, and promoted glucose-stimulated insulin
secretion. In addition, transplantation of differentiated human
duct cells normalized hyperglycemia in type 1 diabetic immun-
odeficient mice. After human duct cell transplantation, the fasting
blood glucose levels of the mice gradually declined for 60 days
(Figure 3a), and the transplanted cells expressed insulin and
GFP, which had been delivered by an adenovirus to trace trans-
planted duct cells (Figure 3b). We concluded that human CK-19-
positive PPCs exist in the adult pancreatic duct, and that these
cells are able to differentiate into insulin-secreting cells on cotreat-
ment with ActA and EX-4109. Human CK-19-positive duct cells
could be considered as PPCs, and these cells also express CA-19
and E-cadherin. Isolated human CD133-positive cells formed
multicellular epithelial spheres in matrigel, and were merged with
CK-19, and did not express acinar and endocrine markers. Then,
investigators introduced Pdx-1, Ngn3 and musculoaponeurotic
fibrosarcoma oncogene family protein A (MafA) with adenoviral
vector into duct cells. These cells expressed b-cell-specific mark-
ers, and also stored and secreted insulin110.
Recently, it was confirmed that adult pancreatic duct cells

were able to differentiate into insulin-producing cells after
transduction of adenoviral vectors encoding Pdx1, Ngn3 and
MafA. The authors used adult pancreatic duct cells isolated
from the mouse insulin I gene promoter -GFP transgenic
mouse to detect the activation of the insulin 1 gene promoter
as a transdifferentiation reporter, and found that transduction
of the three transcription factors increased the expression of
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b-cell-specific markers, such as insulin 1 and 2. Furthermore,
treatment with EX-4 enhanced the expression of NeuroD and
the GLP-1 receptor (Figure 2). However, these transdifferenti-
ated duct cells were not fully differentiated, because they did
not secrete insulin in response to glucose111. The Edmonton
group has attempted to improve the efficiency of islet trans-
plantation, including the long-term survival of islets after trans-
plantation. They identified the correlations between the success
of the transplanted islets and the composition of the cotrans-
planted cells. When they cotransplanted islets with duct cells, a
significant positive effect of duct cells was observed. Islets
cotransplanted with duct cells had long-term metabolic success,
as determined by an intravenous glucose tolerance test 2 years
post-transplantation9,112. It could be possible that islet trans-
plantation might be improved when cotransplanted with the
duct cells.

PANCREATIC ACINAR CELLS
Large populations of acinar cells are discarded after islet
isolation from donors, and in fact, have been shown to

transdifferentiate into b-cells in vivo and in vitro, with the gen-
eration of duct cells as an intermediate step. Thus, verification
of the potential value of acinar cells is attractive as a member
of PPC candidates. Lemoine et al.113 showed that acinar cells
isolated from the human pancreas were able to transdifferenti-
ate into CK-19-expressing duct cells. In another study, rat pan-
creatic exocrine cells (including acinar cells) transdifferentiated
into insulin-producing cells on treatment with epidermal
growth factor and leukemia inhibitory factor114,115. Further-
more, cotransplantation with fetal pancreatic cells and acinar
cells into immunodeficient mice showed that acinar cells gave
rise to endocrine cells. They named these cells highly purified
population of non-endocrine pancreatic epithelial cells. Non-
endocrine pancreatic epithelial cells were capable of endocrine
differentiation, and support the existence of PPCs within the
epithelial compartment of the adult pancreas116. The Melton
group117 showed the adenoviral Ngn3-, Pdx-1- and MafA-
induced reprogramming of acinar cells. These reprogrammed
acinar cells secreted insulin and reduced hyperglycemia in dia-
betic animals. These direct phenotype shifts of acinar cells were
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Figure 3 | (a) After differentiation by cotreatment with activin A (ActA) and exendin-4 (Ex-4) for 30 days, differentiated human duct cells were
transplanted into streptozotocin (STZ)-induced diabetic animals. Hyperglycemia (HG) was gradually reduced after transplantation of differentiated
human duct cells (P < 0.05 vs STZ). (b) For the tracing of transplanted duct cells, adenovirus-green fluorescent protein (GFP) infection was carried
out before transplantation. Transplanted duct cells were detected with insulin (red) and GFP (green) 60 days after transplantation (magnification:
9400; scale bar, 100 μm).
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regarded as evidence that acinar cells are pancreatic progenitor
cells. Furthermore, the reprogramming of acinar cells proceeded
without activation of the cell cycle or dedifferentiation. For this
reason, Melton’s reprogramming protocol might have a low
risk of tumorigenesis. However, a safer delivery system will be
required if reprogramming using adenoviral vectors is to be
applied clinically117.
Recently, Melton et al.118 also provided new evidence of exo-

crine cell reprogramming. The expression of Ngn3, Pdx-1 and
MafA were forced through the use of elastase 2A as a specific
inducer of acinar cells. Then, these genes were introduced sepa-
rately and sequentially into exocrine cells. The investigators veri-
fied the role of each gene in the transdifferentiation of exocrine
cells. In that study, they suggested that the expression of Ngn3
and MafA suppresses the acinar cell fate. Ngn3 activated pan-
creas endocrine cell differentiation, and the differentiation of the
three islet endocrine subtypes, a-, b- and d-cells. MafA also sup-
pressed the fates of acinar and d-cells, and activated a- and b-
cell fates. In addition, Pdx-1 suppressed d-cell differentiation
and induced b-cell differentiation. In that study, the authors sug-
gested that the three major cell subtypes in the islet are derived
from the transdifferentiation of acinar cells (Figure 2)118.
Another study reported that in vitro differentiation of mouse

acinar cells was achieved by treatment with epidermal growth
factor and nicotinamide. In that study, acinar cells were specifi-
cally labeled with lectin, which suggested that new b-cells had
originated from acinar cells by this method119. Baeyens et al.120

suggested that the JAK/STAT signal pathway is associated with
Ngn3 expression during b-cell neogenesis. Recently, they
showed that constitutive overexpression of mitogen-activated
protein kinase and signal transducer and activator of transcrip-
tion 3 induced transdifferentiation of pancreatic acinar cells.
After 7 days of lentiviral gene delivery into acinar cells, the
expression of b-cell specific markers including insulin and Pdx-
1 had increased. Interestingly, a free-floating and 3-D culture
method increased the transdifferentiation efficiency of acinar
cells120. In addition, a lineage-tracing method using the aden-
ovirus-recombinase elastase 2A promoter showed that human
acinar cells are the source of Ngn3- and insulin-expressing cells.
This result showed that human exocrine cells could transdiffer-
entiate into insulin-producing cells, and raised the possibility of
obtaining a large number of exocrine cells from a donor for cell
replacement therapy (Figure 2)121. All these studies demon-
strated that acinar cells have multiplasticity in vitro and in vivo,
and that these cells could serve as a pool of pancreatic progeni-
tor cells for the treatment of diabetes.

CONCLUSION
b-Cells were once considered to be quiescent after birth. How-
ever, b-cells are able to expand under some conditions, such as
pregnancy or obesity122. Although the debate over b-cells and
pancreas regeneration is still in progress, b-cell regeneration
through transdifferentiation could be possible, and pancreatic
duct and acinar cells are considered as the potential candidates

for b-cell replacement therapy. The final number of endocrine
cells is limited by the size of the progenitor cell pool in the
pancreatic bud123. Pancreatic duct and acinar cells could be
members of the postnatal progenitor cell pool.
A major problem with several studies on the existence of

pancreatic progenitor cells and b-cell regeneration by transdif-
ferentiation is that the results have not been reproducible. This
problem might be the reason that we cannot make a clear con-
clusion in this research field124. In addition, the experimental
results in various animal models might be misleading, because
the mechanism of b-cell maintenance, the capacity for regener-
ation and the size of the progenitor cell pool might vary among
species125. Although human physiology is similar to those of
rodents and monkeys, there are certain differences among
them. Rodents are more frequently studied at <3 months-of-
age, when there is a high capacity for b-cell replication.
However, studies in the human pancreas are carried out in
adulthood. Therefore, we should recognize the differences in the
species-specific or injury-specific conditions. Knowledge about
the mechanisms of b-cell regeneration and transdifferentiation
in pathophysiological conditions is very important for the
success of clinical applications. Thus, these efforts will provide
new strategies for the treatment of diabetes, and also promote
the development and utilization of other b-cell candidates.
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