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ARTICLE INFO ABSTRACT

Keywords: COVID-19 detection using Artificial Intelligence and Computer-Aided Diagnosis has been the subject of several
COVID-19 studies. Deep Neural Networks with hundreds or even millions of parameters (weights) are referred to as "black
Pneumonia

boxes" because their behavior is difficult to comprehend, even when the model’s structure and weights are
visible. On the same dataset, different Deep Convolutional Neural Networks perform differently. So, we do not

. necessarily have to rely on just one model; instead, we can evaluate our final score by combining multiple
Deep feature extraction o . . | L. 2
Ensemble Learning models. While including multiple models in the voter pool, it is not always true that the accuracy will improve.
Majority voting So, In this regard, the authors proposed a novel approach to determine the voting ensemble score of individual
Condorcet’s Jury Theorem classifiers based on Condorcet’s Jury Theorem (CJT). The authors demonstrated that the theorem holds while
ensembling the N number of classifiers in Neural Networks. With the help of CJT, the authors proved that a
model’s presence in the voter pool would improve the likelihood that the majority vote will be accurate if it
is more accurate than the other models. Besides this, the authors also proposed a Domain Extended Transfer
Learning (DETL) ensemble model as a soft voting ensemble method and compared it with CJT based ensemble
method. Furthermore, as deep learning models typically fail in real-world testing, a novel dataset has been used
with no duplicate images. Duplicates in the dataset are quite problematic since they might affect the training
process. Therefore, having a dataset devoid of duplicate images is considered to prevent data leakage problems
that might impede the thorough assessment of the trained models. The authors also employed an algorithm for
faster training to save computational efforts. Our proposed method and experimental results outperformed the
state-of-the-art with the DETL-based ensemble model showing an accuracy of 97.26%, COVID-19, sensitivity
of 98.37%, and specificity of 100%. CJT-based ensemble model showed an accuracy of 98.22%, COVID-19,
sensitivity of 98.37%, and specificity of 99.79%.

Biomedical imaging
Chest X-ray images

1. Introduction infection worry. As a result, the testing of symptomatic patients was
delayed. Although the testing kits have shown high sensitivity to the

The novel coronavirus is precedented as the 21st century’s most coronavirus, these tests are still carried out by lab technicians, which
significant threat to humankind, caused by a newly emerged virus, adds to the delay. During the peak of each wave that COVID brought
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. with every new variant, hospitals all across the globe were filled with

Coronavirus (COVID-19) commenced its spread in Wuhan, China, in suspected COVID patients. To treat this virus, COVID patients need to
December 2019. It was declared a pandemic by the World Health Or- wait hours with no cure at hand [7]. Chest imaging can be utilized in

gan.ization on1lth March 2029 (2. Th.is dead.ly pandemic los.t.millions place of the conventional RT-PCR test for COVID-19 diagnosis because
of lives due to delayed diagnosis of patients with severe conditions [3]. T . .
of its limitations, such as its slow response time.

Acros§ nations, there are Fwo dlff.erent methods to dlag.nose .COVID- Computed Tomography (CT) scans and Chest X-ray (CXR) images
19: real-time polymerase chain reaction (RT-PCR) or chest imaging. The . . . L
are the two primary methods for chest imaging. Although radiation is

RT-PCR is a nuclear-derived method used for detecting any specific . . . o

genetic material present in any pathogen as a virus. The problem used in X-rays (radiography) to generate a 2-D image, the radiation
with RT-PCR is that it is not completely accurate [4,5]. Also, a small
number of nurses work 16-17 h shifts a day at medical facilities [6] that of chest X-ray images [8]. As a result, we have opted for Chest
and the workers were reluctant to enter their employment due to X-ray (CXR) images instead of CT scans to detect COVID-19 in this

produced by CT scans is far more damaging to human health than
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manuscript. In addition, CT scans are not cost-effective, require heavy
infrastructure, and are not as readily available [9] whereas CXR images
are more cost-friendly than CT scans. For our approach to making an
impact, we needed a detection system that could work for most people,
is cost-friendly, highly efficient, and less time-consuming.

During the pandemic, it has been observed that the patients also
suffer from Viral Pneumonia [10]. It is a lung infection in which air sacs
in an infected person’s lungs start to fill with purulent material, caus-
ing extreme sickness, which could also lead to the patient’s eventual
death [11]. In most cases, timely treatment of pneumonia has a high
success rate, but COVID-19 pneumonia can be deadly as there is no cure
found for COVID-19 that positively works on all infected coronavirus
patients [12]. In 2021, during the second wave of COVID-19, the
situation in hospitals became even worse than before. Many infected
people had severe breathing conditions, and their blood oxygen levels
started plummeting, leading to deadly lung disabilities, and even organ
failures for hundreds of people [13].

Computer-Aided diagnosis, combined with deep learning models,
are often used to enhance the efficiency of the diagnosis and identi-
fication of COVID-19 infections from radiological images to minimize
human intervention and error [14-16]. There are significant findings
regarding these scans verifying that a differential diagnosis of them
could be helpful. Recent research works have also shown that CXR
images are effective for the early diagnosis of COVID-19 [17]. With all
the recent advances in the field of artificial intelligence, we must aid
the diagnostics processes of our hospitals using various techniques of
Machine Learning and Deep Learning to better equip them for the un-
foreseen dangers to humanity in our very future [18,19]. Humankind’s
ability to fight such pandemics has had a great boom with advancing
medical tech backed by the exponential growth of research on artificial
intelligence [20,21].

Different Deep Convolutional Neural Networks perform differently
on the same dataset. So, we leverage the ensemble learning approach to
not rely on just one model. Ensemble learning aggregates the decisions
made by individual models, hence improving the performance of meta-
models compared to the base classifiers. Majority voting is one of the
Ensemble approaches we use to enhance the base classifier perfor-
mance. In majority voting, each voter, i.e., model, casts a vote, and the
final decision is considered the majority vote among these. However, it
is not always true that the more the number of models we include in
our base classifiers group, our accuracy will improve. A less accurate
model can make the cumulative decision of all models lesser when
included in the voter’s pool. In 1785, Marquis de Condorcet proposed
several similar assumptions [22]. In this manuscript, with the help
of Condorcet’s Jury theorem, we prove that the theorem holds while
ensembling the N number of classifiers in neural networks. Condorcet’s
Jury theorem-based ensemble model has also shown competitive results
compared to the state-of-the-art.

The recent work done by scientists and researchers to fight such
a deadly pandemic and hold coronavirus back motivates us to conduct
this research. Implementing preventive measures for the general public
and engineering vaccines in such a short period shows how far our
technological advancements have come in recent years. Ensemble tech-
nique and Transfer Learning have already been used to attain several
breakthroughs in healthcare, and biomedical image processing with
promising results [23-26]. To achieve the same, our fundamental goal
is to design and develop a system using Deep Learning models and an
Ensemble Learning method based on Condorcet’s Jury Theorem that
is completely automated for efficient computerized identification of
COVID-19 in CXR images.

In this research, the author’s primary contributions are:

1. On the CXR Dataset, the authors applied deep feature extraction
techniques using pre-trained DCNN networks to extract deep
features. These pre-trained networks are modified according to
the CXR dataset. The authors investigated and selected the top-
performing DCNN classifiers on the CXR dataset to create a
meta-model.
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2. To ensemble the base classifiers, the authors proposed a Do-
main Extended Transfer Learning based ensemble model as a
soft voting ensemble method to compare it with hard voting,
i.e., majority voting.

3. Using the concept of Condorcet’s Jury Theorem, the authors
proposed a novel approach to determine the majority voting
ensemble score based on individual classifier scores. The authors
demonstrated that the theorem holds while ensembling the N
number of classifiers in Neural Networks.

4. The authors employed a novel curated dataset, keeping in mind
the problem of the duplicate image. This curated dataset was
used to ensure the proposed model’s robustness in real-world
testing.

The remaining contents of the study can be summarized as fol-
lows. Section 2 is dedicated to analyzing the previous work of various
scholars to detect COVID-19 and Pneumonia. Section 3 deals with
the various Materials and Methods used and entailed in the proposed
research. Furthermore, Section 4 dives deep into the proposed method.
Next, Section 5 discloses and covers experimentation and the results
found from the aforementioned experiments. Section 6 adds a brief
discussion of proposed approaches in the paper. At last, we add the
conclusion of our research with future aspects of it.

2. Related works

Implementing Deep Learning is on a spree in Bio-medical Imaging,
autonomous navigation, visual recognition, and many other automation
technologies today. However, it will be an ineffective use of such
powerful technology if we do not use it to solve the more significant
problems at hand. For example, from 2020, the novel coronavirus
was the most considerable problem humans faced on this planet. To
counter it with equal force, many types of research took place in
all possible domains. Similarly, deep learning scientists too started
using all possible ways to lend a helping hand to medical workers by
a computer-aided diagnosis of pneumonia and COVID-19 using CXR
images of likely infected individuals.

Ismael [27] proposed three different approaches for binary classi-
fication of COVID-19 on CXR images. For their first approach, deep
feature extraction was classified with the help of a Support Vector
Machines (SVM) classifier and many different combinations of kernel
functions. The dataset used for training contained 180 COVID-19 and
200 healthy CXR images. The third approach, i.e., the end-to-end
trained deep CNN model, produced an accuracy of 91.6%, a sensitivity
of 90%, and a specificity of 93.33%. On fine-tuning, the ResNet50
model showed 92.6% accuracy, sensitivity of 87%, and a specificity
of 97.78%. ResNet50 combined with the SVM classifier produces an
accuracy of 94.7%, a sensitivity of 91%, and a specificity of 98.89%.
Tang [28] proposed an approach to overcome overfitting, high variance
problems, and generalization errors caused by using a single Deep
Learning network. EDL-COVID ensembles the training results of various
models based on open source network architecture. COVID-Net uses
a weighted averaging ensembling approach that learns how different
sensitivities of various deep learning models vary with different types
of classes. These models are trained on COVIDx CXR datasets and
give an accuracy of 95% and sensitivity of 96%, which is better than
individual COVID-Net models. Finally, Jain [29] took 6432 CXR scans
samples from the Kaggle repository, compared InceptionV3, Xception,
and ResNeXt models, and reported their accuracy. The Xception model
gave the highest accuracy of 97.97%, the sensitivity of 89%, and speci-
ficity of 99%. In conclusion, the author stated that this high accuracy
obtained may be a cause of concern since it may result from overfitting.

Aminu et al. proposed a new deep learning architecture to de-
tect COVID-19 which is suitable for training over limited data as
the proposed architecture has less number of parameters [30]. To
prevent the problem of overfitting caused by this lack of data, the L-
2 regularization approach is used by the authors along with a global
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average pooling layer. Using feature extraction over the CovidNet
model and feeding them to various classifiers such as KNN, RF, and
SVM, the effectiveness of the CovidNet model is measured. To attain
even better performance from this approach, Bayesian optimization is
also used to select the optimal parameters for selected classifiers. With
the proposed model CovidNet, Aminu et al. achieved an accuracy of
95.81%, a sensitivity of 89.06%, and a specificity of 98.41%. Khan [31]
proposed two deep learning frameworks: Deep Hybrid Learning (DHL)
and Deep Boosted Hybrid Learning (DBHL), which benefit from data
augmentation, TL-based fine-tuning, deep features boosting, and hybrid
learning from two developed DCNN models named COVID-RENets-1
and 2. These models are used for hybrid learning and feature boosting
of the CXR images of COVID and non-COVID patients from the training
dataset, which helps merge both COVID-RENets models and, simulta-
neously, leave out deficits of these individual models. Proposed models
achieved an accuracy of 98.53%, a sensitivity of 99%, and a specificity
of 98%.

S-H. Wang et al. [32] proposed a hybrid algorithm in which they
use wavelet Renyi entropy to extract deep features from images. The
authors used a novel Three-Segment Biogeography-Based Optimization
method to update the network weights and biases. The proposed ap-
proach was tested on 296 chest CT images with an accuracy of 86.12%
+2.75. The authors have also employed ten runs of 10-fold cross-
validation to reduce randomness and get unbiased results. S.-H. Wang
et al. [33] proposed a model named CCSHNet for detecting COVID-19
using Chest CT scans. This model comprises three proposed techniques.
First, the authors proposed a transfer learning algorithm to extract
deep features and set hyperparameters to remove the number of layers.
Secondly, the authors proposed a selection algorithm to determine the
best two models to create a fusion model. This algorithm selects the best
two models identified by the transfer learning algorithm. Lastly, the au-
thors proposed a discriminant correlation analysis algorithm to fuse the
two features extracted by the fused models. These proposed techniques
outperformed 12 state-of-the-art COVID-19 detection approaches.

A. Khan et al. examined Deep Learning (DL) techniques in depth and
created a taxonomy based on diagnostic procedures and learning ap-
proaches [34]. This survey sheds light on interesting areas of research
in DL for interpreting radiographic images, which might help to speed
up the development of tailored DL-based diagnostic tools for dealing
with novel COVID-19 variations and future difficulties. In addition,
issues in establishing pandemic diagnostic procedures, cross-platform
interoperability, and assessing imaging modalities are discussed, as
well as the methodology and performance measurements employed in
these approaches. S.H. Khan et al. proposed two custom architectures
of Convolutional Neural Network, named COVID-RENet-1 and COVID-
RENet-2 [35]. These models aim to classify COVID pneumonia and
healthy individuals from a dataset of CXR images. Region and Edge-
based operations were employed to obtain better information in an
image, accompanied by the convolutional operations of the CNN ar-
chitecture. These models achieved promising results that showed 98%
accuracy, 0.96 Matthews correlation coefficient (MCC), and 0.98 F1-
score. Furthermore, S.H. Khan et al. also compared their proposed
approach with several existing models, resulting in high precision
of 98% and sensitivity of 0.98. The comparative analysis of existing
techniques can be seen in Table 1.

As per the recent studies we came across in our investigation, a
significant downside of many of these proposed implementations is
the shortfall of data, ultimately resulting in the overfitting of deep
learning models. Overfitting and improper assessment could also occur
due to duplicate images in training set in cases such as [29,30,35].
Furthermore, having duplicate images can also affect the proper evalu-
ation of models because of the data leakage problem. Another common
observation is the inefficient use of various pre-trained deep learning
models, such as in [29]. The pre-trained networks can be modified to
perform more efficiently on a specific dataset by cutting down some
parameters without impacting the performance much. Based on this,
we consider there is still a long way to go for deep learning researchers
in COVID detection using CXR images as it would be of great use in
equipping us against such pandemics in the upcoming time.
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3. Materials and methods
3.1. Data description

Curated Dataset for COVID-19 Posterior—Anterior Chest Radiogra-
phy Images (X-rays) [36] is a combined and filtered dataset formed
after merging 15 different publicly available datasets. Initially, all these
publicly available datasets combined accounted for 4558 COVID-19,
5403 Normal, 4497 Viral pneumonia, and 5768 bacterial pneumonia
CXR images. The authors [36] used the Inception V3 model on this
combined repository to remove duplicate and defective images. As
a result, 1379 COVID-19, 1476 normal, 2690 viral pneumonia, and
2588 bacterial pneumonia duplicate CXR images were removed from
the repository. Furthermore, the authors removed clusters of defective
images using unsupervised learning methods based on cosine similarity
distances. The final refined dataset contains 1281 COVID-19, 3270
Normal, and 1656 viral pneumonia CXR images.

3.2. Data preprocessing

In deep learning, the model expects the input image of the same
size, but the images in our dataset are not in the same size or shape.
Initially, the images in our CXR images dataset were of sizes ranging
from 400 x 300 to 936 x 768. However, because the dataset’s CXR
images are not homogeneous and come in various sizes, we transformed
all CXR images into a standard size.

3.2.1. Image resizing

While downscaling the images, we can lose some information, so
this has to be done very carefully as a part of the data preprocessing
step by observing the dataset. For example, suppose we have a dataset
of MRI scans for brain tumor classification. If we downscale the images
to a very small size, the tumor will almost disappear from MRI scans,
which can impact training accuracy. Also, resizing the image to a very
large size like 512 x 512 can exceed the GPU memory. To make it
both memory efficient and not lose any critical information from the
image, we have to choose the best image size based on the experiments.
Also, the Images in our dataset are not isotropic, they are of different
sizes, and their aspect ratio varies. Pre-trained networks employed
for extracting features expect the input data to be in a uniform size.
Therefore, we must resize our images to a standard size to maintain
this uniformity.

The main concern here is in what standard size we have to resize
all of our images. Either we choose the smallest image size available
and scale down all the images larger than that, or we choose the
most prominent image size and stretch all the images smaller. While
stretching the images, small image pixels are stretched as they are made
larger. This might make it difficult for our model to pick up important
details like object boundaries. Stretching can be an excellent approach
to utilize the most pixels provided to the network if the input aspect
ratio is unimportant. However, this also necessitates that we provide
similar stretched images to our trained model. In addition, downsizing
is less likely to hinder performance if we are detecting objects or
classifying images where the area of the distinguishing attributes is the
majority of our captured images.

So, experimenting with progressive resizing is a useful tactic. The
models in our initial batch will be experimental. We start with smaller
image size and examine the image size vs. accuracy and computational
cost trade-off as we increase the image size. Additionally, starting
with smaller image inputs, we may save time. We have resized and
conducted our experiments on all 128x128,196x196, and 256 x 256
image sizes, and we have observed that the accuracy remains constant
for all three image sizes. However, on 128 x 128, training time is
much lower, saving much computational cost. In addition, there was no
overlap cropping technique used while resizing the images. The image
resizing was done with the inbuilt python Pillow library function.
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Table 1
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Comparative Analysis of existing techniques and methods/models proposed by various researchers depicting their advantages and disadvantages.

Author

Method used

Dataset Description

Advantage(s)

Disadvantage(s)

Ismael et al. [27]

Tang et al. [28]

Jain et al. [29]

Aminu et al. [30]

Khan et al. [31]

S-H. Wang
et al. [32]

S-H. Wang
et al. [33]

Saddam Khan
et al. [35]

ResNet50
+ SVM

EDL-COVID

Transfer
learning from
InceptionV3,
Xception, and
ResNeXt models
CovidNet
Architecture

Deep

Boosted Hybrid
Learning (DBHL)
Framework.
Hybrid algorithm
using wavelet
Renyi entropy
and three-segment
biogeography-based
optimization.
CCSHNet with
deep fusion using
transfer learning.

COVID-RENet-1
and
COVID-RENet-2
CNN
architectures.

180 COVID-19
and 200 Normal
CXR images

573 COVID-19,
6053 Pneumonia
infected and 8851
Normal Chest
X-rays.

6432 Chest

X-ray images

321 COVID-19,
500 Pneumonia,
and 445 Normal
CXR images
3224 COVID-19
infected and 3224
Normal Chest
X-rays.

148 COVID-19
and 148 Normal
chest CT scans.

284 COVID-19,
281 Pneumonia,
293 tuberculosis
and 306 Normal
Cardiac CT scans.
3224 COVID-19
and 3224 Normal
CXR images

Computational cost of
ResNet50 + SVM is quite

good with just 48.9 s.
Ensemble learning approach is
used which reduces overfitting,
high variance, and generalization
errors caused by noise and a
limited number of datasets.
Various pre-trained networks
have been used and presented
for multi-class classification.
Xception performed extremely
well with an accuracy of 97.97%.
Proposed CovidNet architecture
consists of a relatively small
number of parameter which is
efficient.

Hybrid learning from CNN
models named COVID-RENets-1
and 2 has been used which
leverages both the models.

A novel approach is used

to extract deep features from
images and update the network
weights and biases has been
used. 10 runs of 10-fold cross
validation have also been used.
A novel CCSHNet has been
introduced which produced
remarkable results.

Region and Edge-based
operations were employed to
better obtain features in an
image.

The proposed technique may
not be suitable for the large
dataset.

The dataset is highly
imbalanced as the
COVID-19 class has

only 573 images.

High accuracy obtained
is due to overfitting
and duplicate images in
the used dataset

On the multi-class
classification the weighted
average ensemble based
approach could be used.
Only binary classification
has been performed. Also
the balanced dataset might
contain duplicate images.
Dataset used is very small
scale. The neural network
requires an adequate amount
of data for training as well
as the proper evaluation of
trained models.

CXR images can be used
in place of CT scans.

Multi-class classification

can also be performed to
test the proposed technique’s
robustness. Also the balanced
dataset might contain
duplicate images.

3.2.2. RGB ordering

3.3. Condorcet’s Jury Theorem

Our dataset consists of grayscale images. In this study, we have used
the pre-trained networks to extract the high-level features from the
COVID-19, Pneumonia, and Normal CXR images. These networks have
been previously trained on the large-scale ImageNet Database [37].
The problem is that the ImageNet database contains RGB images and
the trained weights are also on those RGB images. This is because the
network’s input layer expects images to be RGB ordered. We have not
modified the model’s architecture because the weights were trained
using a specific input set. The rest of the weights would essentially be
meaningless if we were to replace the first layer with our own.

CNNs are designed to extract higher-level features as they go deeper
using the lower-level features extracted from the preceding layers. By
removing or altering the initial layers of a CNN, we are disrupting that
hierarchy of features because the subsequent layers will not receive
the features they are supposed to as their input. The second layer has
been trained to expect the features of the first layer. By replacing the
first layer with random weights, we are essentially throwing away any
training that has been done on the subsequent layers, as they would
need to be retrained. They could not recall any information they had
acquired during their initial training.

So, In our case, we made our model function with those grayscale
images because our dataset contains those. The image has been altered
to seem like RGB ordered [38]. A third dimension was added, and the
image array was repeated three times. The model’s performance should
be the same as on RGB images because we will have the same image
across all three channels if we do this.

Condorcet’s Jury Theorem is a mathematical theorem for calculating
the relative probability of a group’s accumulative decision-making. It
states that if a majority of independent members in a group, individ-
ually, can make the correct decision rather than making a random
choice, they are better at decision-making than just one member of
that group [22]. This theorem in applications with Neural Networks
helps ensemble the output of multiple trained deep learning models
with good outcomes to give results better than any individual models.

Condorcet’s Jury theorem applies to the following hypothetical
situation: assume we have to choose between options + or —. Assume
one of the two choices is ‘right,” but we do not know which one [39].
Furthermore, imagine there are n models in a set, and the entire set
must make a decision. A majority vote is one feasible way. So, each
model has a vote X;, which has a value of either +1 or 1 based on its
calculated weights, and the group choice is either + or — depending on
whether S, = Y| X; is positive or negative.

3.3.1. Theorem

If individual votes X;,i = 1,...,n are independent of one an-
other, and each voter makes the correct decision with probability p >
%, then as n — oo, the group’s chance to reach a correct decision by
majority vote approaches 1 as n increases [40]. Fig. 3 shows that as
the number of voters increases (value of n), the likelihood of reaching
the right choice by majority vote increases.

3.3.2. Proof

This is a consequence of the law of large numbers. Let a = p —
1/2 > 0. Since the problem is fair in + and -, we may, without loss
of generality, assume the correct answer is + [22].



G. Srivastava et al.

Then EX, is > 0 as shown in Eq. (1) and the weak law of large
numbers states that % converges in probability to EX, = 2a, where by
converging in probability we mean that for any ¢;,e, > 0 there is N
large enough such that for every n as shown in Eq. (2).

EXI:—(%—0>+(%+0):211>0 (€8]

Sn
n>N,P||——-EX|[<¢ |>1-¢ 2)
n

Taking e, = 2a, we see in Eq. (3) the probability of a correct decision
tends to be 1.

P(S,,>O)=P<%>O>ZP<

The probability, Py, that a model will deliver the correct answer,
we calculated using Condorcet’s jury theorem [41] as shown in Eq. (4).

S,
" _2qa
n

< 2a> -1 3

N
N! . N—i
Py = — ) pa-pN 4
N ;((N_i),ﬁ(p)( ») @
where, N = the number of models, p = the probability of an individual
model being right m = the number of models required for a majority
Proof Based on the optimal Bayes classifier is available in the
supplementary section of the manuscript.

4. Proposed work
4.1. Method overview

In deep learning, Ensembling is used to counter the high variance
problem of neural networks, where multiple models are trained, and
their predictions are added to improve results [42]. As observed in
recent research, Ensemble methods give more accurate solutions as they
add some bias to the prediction, which balances out the variance cre-
ated by using just one neural network trained on the same dataset [43].
Many algorithms may combine various classifiers, with the majority
vote being the most straightforward [44]. Despite its simplicity, it has
been suggested that the majority vote is the optimal technique if the
mistakes among the classifiers are not connected.

Each classifier casts a single vote, and the class with the most votes
wins in hard voting (also known as majority voting). The ensemble’s an-
ticipated target label is the distribution mode of the labels’ predictions.
However, it is not always true that increasing the number of voters will
improve the likelihood that the final choice will be correct. The group’s
overall prediction can occasionally be less accurate if we include a
less reliable voter. In 1785, Marquis de Condorcet proposed several
similar assumptions [22]. First, the theorem assumes that everyone in
the group wants to choose by a majority vote. Second, each voter has
an independent probability p of selecting one of the two possibilities
that will result in the right choice. Third, the theorem asks how many
voters we should include in the group. The result depends on whether
p is greater than or less than 1/2.

The relative likelihood of a particular group of individuals reaching
the right conclusion is the subject of Condorcet’s jury theorem, a
political science theory. The theorem has not yet been proven in neural
networks, as per our best knowledge. We argue, however, that this
theorem is true when trained models cast a vote. A model’s presence
in the voter pool will improve the likelihood that the majority vote
will be accurate if it is more accurate than the other models. However,
the likelihood that the majority vote will be accurate declines as a less
accurate model is introduced to the group.
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Fig. 1. Modified pre-trained DCNN Model Architecture used for extracting features
from CXR images.

4.2. Deep feature extraction and model training

In this manuscript, we have used pre-trained networks — Incep-
tionV3, InceptionResNetV2, ResNet50V2, DenseNet121, DenseNet201
[45-48] to extract high-level deep features from the CXR images.
Furthermore, we have modified these architectures to work with the
CXR dataset. From Fig. 1, after extracting the deep features, we flatten
the dimensions, freezing all layers except the final layer of the network.
After flattening, we get a feature vector consisting of all extracted
features. To classify these features into their respective classes, we fed
this obtained feature vector to a multi-layer perceptron network of a
fully connected dense layer consisting of 1024 neurons.

These pre-trained networks tend to overfit when trained on rela-
tively limited datasets since they are deep and massive networks. These
pre-trained networks have already undergone training using the Ima-
geNet database, which is a far larger dataset than the collection of chest
X-ray images. So, we utilized a dropout layer to prevent the model from
overfitting. Dropout is a regularization technique simulating several
neural networks’ concurrent training with various architectures. For
the input layer, the dropout (p) value should be kept at about 0.2 or
lower [49]. This is because dropping the input data can adversely affect
the training. p > 0.5 is not advised, as it culls more connections without
boosting the regularization. For intermediate layers, choosing p = 0.5
for large networks is ideal [49]. This is because the regularization
parameter, p(1 — p) in Eq. (5), is maximum at p = 0.5.

2,
1 n
ER=§<’—ZPiwiIi) + 20 (1=p) w}I} ®
i=1 i=1

So, we have added a dropout layer of 0.5 value to remove 50% of
neurons in each iteration to avoid overfitting. Finally, to map these
classified features to their respective classes, we have added a dense
layer consisting of three neurons and the softmax activation function
for classification purposes.

4.2.1. Loss function

Since our dataset has multi-class, categorical Cross-Entropy is the
loss function we have utilized here. Cross-Entropy refers to the variance
between two probability distributions, so the cross-entropy loss changes
according to the difference between the predicted probability and the
actual label [50]. Egs. (6) and (7) explains the computation of the
cross-entropy loss function:

Leg=— 2 t;log (p;), for n classes, (6)
i=1

where ¢, is the truth label and p; is the Softmax probability for the ith

class.

N
1 N N

J(w)=—N;[y,-log(yi)+(1—y,.)log(l—yi)] @

Where model parameters, such as the neural network’s weights, are

denoted by w, y; is the actual output label, and J; is the predicted output
label.



G. Srivastava et al.

4.2.2. Optimizer

To optimize our DCNN models, we have employed an Adam opti-
mizer. Adam is intuitively a combination of RMSProp and Stochastic
Gradient Descent with Momentum. It uses the moving average of the
gradient in place of the gradient itself, like in SGD with momentum,
and it uses squared gradients to scale the learning rate like in RMSProp.
Adam optimizer uses an exponentially decaying average of past gradi-
ents (m,) and past squared gradients (v,) as defined in Egs. (8) and (9)
respectively. The term f;, and f, are the forgetting factors for the mean
and non-centered variance of the gradient, respectively. Through the
experiments, the authors identified that the fair values of g, and g, are
0.9 and 0.999, respectively.

nyzmmhr+u—ﬁﬂ[§%] ®
sL]?
v, = ﬂZUt—l + (1 - ﬂz) [m:l (9)
t

4.2.3. Classifier

The softmax activation function and a multi-layer perceptron net-
work are used to classify the obtained feature vector. Softmax function
applies on a vector of logits, that the last fully connected layer of the
CNN outputs. It transforms these logits into relative probabilities to
sort out the desired classes in multiclass classification [51,52]. Softmax
function is defined in Eq. (10).

e

o1 €

(10)

6(2); =

where, ¢ = softmax, Z = input vector, ¢ = standard exponential
function for input, K = number of classes in the multi-class, ¢* =
standard exponential function for output.

4.2.4. Learning rate schedule: ReduceLROnPlateau

ReduceLROnPlateau is used for model training here as a learning
rate scheduler. It watches a quantity and reduces the learning rate if
no progress is noticed after a ‘patience’ number of epochs [53]. When
the decay is considered, the learning rate may be calculated as shown
in Eq. (11).

M
11
1+dn an

M1 =

Where 7 is the learning rate, d is a decay parameter, and » is the
iteration step.

When a measure stops improving, this callback reduces the learning
rate. This callback tracks a quantity and reduces the learning rate by
a “factor” value if no progress is noticed after a “patience” number of
epochs, as shown in Eq. (12).

new [r =Ir x factor 12)
4.3. Proposed ensemble methods

Two different voting schemes are common among voting classifiers:

1. In soft voting, every individual classifier provides a probability
value that a specific data point belongs to a particular target
class. The predictions are weighted by the classifier’s importance
and summed up. Then the target label with the greatest sum of
weighted probabilities wins the vote.

2. In hard voting (also known as majority voting), every individ-
ual classifier votes for a class, and the majority wins. In statistical
terms, the predicted target label of the ensemble is the mode of
the distribution of individually predicted labels.

The authors proposed two ensemble techniques: Domain Extended
Transfer Learning (DETL) Ensemble, which is based on soft voting, and
Majority voting, based on Condorcet’s Jury Theorem.
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Algorithm 1: Algorithm for Domain Extended Transfer Learning
Ensemble model training

input: Training set (§1), Validation set (52), Testing set (53)

& — iteration step & «

A — iteration step A «

output: : Classification as COVID-19, Normal or Pneumonia
CXR

begin:

while £ =1<a do

1. Set the input layer of CNN Model ¢&;

2. Set the head layers CN Ngagten, CN Ngenses €N Naropout

3. Initialize the CNN parameters: y, ¢, and f

4. Train the CNN and compute the initial (w*)

while 1=1<¢edo

5. Randomly select a mini-batch (size : ) from 61

6. Forward propagation and compute the loss using
Eq. (13)

1
J= Z (5 X (Yexpected - Youtput )2) (13)

7. Back propagate the error and update the weights
using Eq. (14) with adam optimizer

0J

w,=W, -
n n rl*am’

(14)

8. Repeat steps 5 to 7 until the total loss becomes
minimum.

end
9. Save CNN weights (»*) as model:.h5
return model;.h5
end
while £ =1 <a do
| 10. Freeze all layers of model ¢ except the output layer
end
11. Concatenate the output layer of all trained models
12. Set the dense layer (CN Ngepge)
13. Set the output layer of the Ensemble Model
while 1 =1<¢ do
| 14. Train the ensemble model.
end

4.3.1. Domain Extended Transfer Learning (DETL) ensemble

In this proposed approach, first, we train the N number of the best-
performing model. We can discover the value of N by experimenting
with various models on the provided dataset. Because specific models
may perform well on a dataset while others do not, experimenting is the
best technique for choosing models. We now train and save the weights
of all models one by one. After training all the models, we freeze all
the layers except the top one and concatenate the output layers of
all models, followed by a dense layer of 32 neurons, and finally, a
three-neuron output layer for classification. This proposed approach is
demonstrated graphically in Fig. 2.

The detailed training procedure of the DETL model can be seen in
Algorithm 1 where 61, 52, and 63 refer to the training, validation, and
testing sets, respectively. a is the total no. of models to be trained to
create a final ensemble model. y is the learning rate of a model. It
usually has a value close to zero. ¢ is the total number of iterations for
which the CNN model has been trained (also known as epochs). g is a
second customizable hyper-parameter with values of 2" (also known as
batch size). (ow*) are the CNN weights.

4.3.2. Majority voting based on condorcet’s jury theorem

Condorcet’s Theorem in Neural Networks: Given a set of models
that must choose between a right conclusion with probability 0 < p < 1
and a wrong one with probability 1 — p, Condorcet’s jury theorem [54]
states:
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Fig. 2. Flowchart of the training procedure for both phases in DETL-based ensemble model. The first phase is the training of DCNN models and saving their weights. The second

phase is training the last layer after concatenating the base classifiers.
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Fig. 3. Condorcet’s Jury Theorem Curve depicting the probability of majority vote to
be right vs. the no. of voters.

1. If p > 1/2 (i.e., each model is more likely to classify correctly
than incorrectly), increasing the number of models improves the
likelihood that the majority selects correctly. The probability
of a correct decision approaches one as the number of models
increases, as shown in Fig. 3.

2. if p < 1/2 (such that each model is less likely to vote erroneously
than correctly), adding additional models reduces the likelihood
that the majority selects appropriately, and the probability of a
correct judgment is maximized for a model of size one.

In this proposed Algorithm, we input the a« number of trained
classifiers. We then record the predicted output labels by supplying
each image in the testing test to all the classifiers. We now generate X
number of arrays for X number of labels after recording the expected
labels of each model for each image. Here, in our case, the value of X
is 3 since we have 3 output labels, i.e., normal, covid, and pneumonia.
We then iterate through each of the classifier’s output score array and
count the number of votes for all normal, covid, and pneumonia classes.
Finally, we iterate over all the arrays and store the majority vote count
in the final score f array. This proposed approach is demonstrated in
Fig. 4.

The majority voting based on Condorcet’s Jury Theorem is used
to calculate the final score as per Algorithm 2. The notations used in
Algorithm 2 are 6 referring to the testing set. « is the total number of
trained classifiers used in the voting ensemble. g is the length of the

testing set. In the output, we get a classification of the input image as
either Normal, COVID-19 infected, or pneumonia infected.

Algorithm 2: Algorithm for final score calculation from Majority
Voting Based on Condorcet’s Jury Theorem

Input:
trained models (a)
testing set (5)
size of the testing set (#)
Output: : Classification as COVID-19, Normal or Pneumonia
CXR
begin:
1. Predict the score of each « and store it in an array of length
B
2. Initialize normal(n), covid(c) and pneumonia(p) arrays of
length equal to length of # with Os.
while i < a do
while j <i do
3.If j==0then n++
4.If j==1then c + +
5.If j == 2 then p+ +
end
end
6. Initialize final score f
while i < # do
if n[i] >= c[i] and n[i] >= p[i] :
f.append(0)
elif c[i] >= n[i] and c[i] >= pli] :
f.append(1)
elif p[i] >= n[i] and p[i] >= c[i] :
f.append(2)
end
7. Calculate the final score between original labels and final
predicted labels based on Condorcet’s Jury Theorem.

5. Experimental results
5.1. Dataset division

The authors divided the entire dataset into an 80% training set and
the remaining 20% into a 50% validation set and a 50% testing set. As
a result, we end up with 80% training data, 10% cross-validation data,
and 10% final testing data, as shown in Table 2.
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Fig. 4. Flowchart for majority voting score calculation of Ensemble model based on Condorcet’s Jury Theorem.

Table 2
Class distribution of the dataset into training, validation, and testing set used to evaluate
the proposed method.

Normal COVID-19 Infected Pneumonia infected
Training set 2616 1025 1326
Validation set 327 128 165
Testing set 327 128 165

For training the base models i.e., InceptionV3, InceptionResNetV2,
ResNet50V2, DenseNet121 and DenseNet201, we have used 80% of
the total dataset. For training our meta learner (i.e., DETL Ensemble
model), we cannot directly input the dataset as we did in our base
models because the ensemble model requires input at five places while
only one output is generated. So, we modified our training, validation,
and testing set to provide the images as five inputs at a time. As
a convention, we use different data partitions to train our base and
meta learners. The base models are trained on an 80% training set,
and the meta learner is trained on the remaining validation set to
avoid overfitting. However, the overfitting in our trained DETL-based
ensemble model did not occur, so we trained our meta learner on the
training set itself.

The Jury based ensemble model does not require separate training
as it just calculates the majority vote from trained base models and
outputs the final prediction based on Condorcet’s Jury Theorem. So,
we have used the same data partitioning to train our base models.

5.2. Faster training algorithm

The input layer of a neural network is composed of artificial input
neurons and brings the initial data into the system for further process-
ing by subsequent layers of artificial neurons. The input layer in CNN
contains image data and is represented as a three-dimensional matrix.

As a convention, we fed the batches of images into the model in
every iteration. For example, suppose we take a batch size of 32,
and the total number of images is 3200; one epoch will run for 100
iterations. In each iteration, firstly, the batch of 32 images will be

converted to a 3-dimensional array as the input layer of a CNN takes
a 3d matrix as input. Then the network calculates the predicted value
and the loss by subtracting it from the actual output value. The error
is then calculated, and the network propagates to update the weights.

In this whole procedure, the conversion of images to array is repet-
itive as it will start repeating from epoch 2. So, in this faster training
algorithm, we convert all the images to an array before training itself
and feeding it into the model. However, this will require some memory
to store the 3d matrix in an array, but it can save much computational
cost while training in a smaller dataset.

5.2.1. Algorithm

This algorithm illustrates the pre-processing steps of the dataset for
faster training. The notations used in Algorithm 3 are 51, §2, and 63
referring to the training, validation, and testing datasets, respectively.
u is the total no. of classes we have. Because we have three classes, the
value of u here is 3. € is the total no. of images in each class. The final
dataset and label arrays are a and g, respectively. The image’s width
and height are the w and A.

The algorithm defines the directories, initializes the dataset and
label array, and sets the input image’s width and height (refer to steps
1, 2, and 3 of Algorithm 3). Then, after reading each image, iterating
through all the images in each class, the images are transformed into
an array (refer to steps 5-7 of Algorithm 3). The image is then adjusted
to the width and height specified in the input (refer to step 8 of
Algorithm 3). After each image has been RGB ordered and added to
the dataset array, a label is added to the label array. In our appli-
cation, the labels 0, 1, and 2 represent normal CXR, COVID-infected
CXR, and Pneumonia-infected CXR, respectively (refer to steps 10 of
Algorithm 3).

5.3. Experimental setup

Tensorflow was used to implement the proposed method in Python.
To evaluate the working of the code, minor epochs of training are
done on a personal computer with an Intel(R) Core(TM) i7-6500U
CPU 2.50 GHz, Nvidia 940M GPU with computational capability 5.0,
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Algorithm 3: Dataset Preprocessing Algorithm for faster training

input: Chest X-Ray images
¢ — iteration step for y classes & «
A —> iteration step for e classes 4 <
output: : Training set (51), Validation set (562), Testing set (63)
begin:
1. Read the directories
2. Initialize « and g
3. Set w and h
4. Initialize i = 0
while ¢ =1 < u do
while 1=1<edo
5. Read the image
6. Convert the image into an array
7. Resize the image to w X h
8. Apply RGB Ordering to the image. Now the image
dimensions are w X h X 3
9. Append the array into the «
10. Append i in f
end

11. i+ +
end

12. Split the dataset into 80% 61 and 20% dump Set
13. Split the dump set to 50% 62 and 50% &3.

and 16 GB RAM. To obtain our final findings, we completed the
whole training phase on Kaggle using a GPU Tesla P100-PCIE-16 GB
computing capability: 6.0 and 16 GB GPU RAM. To achieve the best
training, validation, and testing accuracy, each Model, was trained for
1000 epochs.

5.4. Results

5.4.1. Gradient-weighted class activation mapping visualization

While deep learning has achieved remarkable accuracy in image
classification, model interpretability remains one of the most prominent
issues. Deep learning models are frequently considered “black box”
approaches, with no clear understanding of where the network looks
in the input image and how it arrived at its final output. This poses an
intriguing question about how we can trust a model’s judgments if we
cannot fully evaluate how it arrived at those conclusions.

Selvaraju et al. [55] developed a Gradient-weighted Class Activation
Mapping (Grad-CAM) to assist deep learning practitioners in visually
debugging their models and accurately comprehending where they are
looking in an image. Grad-CAM generates a heatmap representation for
a specified class label (either the top, predicted label, or an arbitrary
label we select for debugging). This heatmap may visually check where
the CNN is looking in the image. Grad-CAM leverages any target idea’s
gradients, which flow into the final convolutional layer to create a
coarse localization map highlighting the image’s essential locations
for concept prediction. We can visually validate where our Model is
looking with Grad-CAM, ensuring that it looks at the correct patterns
in the image and activates around them. Fig. 5 shows where the
Model looks in Normal, COVID-19, and Pneumonia CXR images while
predicting their output labels.

5.4.2. Classifier performance

In the CXR Dataset, the authors did a 3-class classification to test the
proposed technique. We used multi-class classification instead of binary
classification since discriminating between three groups (COVID-19,
Normal, and Pneumonia) is more challenging. This is because CXR
infected with pneumonia and CXR infected with COVID-19 have a lot
more parallelism. We will need some of the CXR dataset’s finest pre-
trained models to put the proposed method to the test. Because various
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Fig. 5. Grad-CAM Visualization of COVID-19, Pneumonia and Normal CXR Images with
Heatmap and Saliency maps generated by Grad-Cam.

Table 3
Validation (VA) and testing (TA) accuracies of various pre-trained DCNN models
without and with scheduled learning rate (LRS).

Without LRS With LRS

Classifier VA (%) TA (%) VA (%) TA (%)
VGG16 94.69 95.65 95.49 95.1
VGG19 91.79 94.04 92.91 92.59
Xception 95.81 93.4 95.17 94.52
InceptionV3 95.17 96.3 95.65 96.45
InceptionResNetV2 95.81 95.97 96.14 97.42
ResNet50 87.44 86.63 87.28 87.76
ResNet50V2 96.46 96.62 97.26 97.9
ResNet101V2 96.78 96.77 95.17 94.36
ResNet152V2 95.97 96.62 94.85 95.65
DenseNet121 96.94 95.97 97.26 97.75
DensetNet169 95.97 95.16 95.81 96.13
DensetNet201 96.94 94.84 95.49 97.26
EfficientNetB1 92.59 94.36 95.65 95.97

models behave differently on different datasets, we cannot choose such
models directly. Therefore, we experimented with various pre-trained
models with varied parameters and chose the best.

On multi-class classification, InceptionV3, InceptionResNetV2,
ResNet50V2, DenseNet121, and DenseNet201 performed exceptionally
well. In addition, we used these models with a scheduled learning rate
as a callback. This considerably improves the accuracy. The validation
and testing accuracies with and without the learning rate schedule are
shown in Table 3. The first column of Table 3 represents the classi-
fier, whereas the second and third column represents the validation
accuracy (VA) and final testing accuracy (TA) without Learning Rate
Schedule (LRS), and the fourth and fifth column represents the VA and
TA with LRS respectively.

To optimize our DCNN models, we have used an Adam optimizer
with an initial learning rate of 0.001, the exponential decay rate for
the first moment as 0.9, the exponential decay rate for the second
moment as 0.999, and an epsilon value of 1e—7. Experimentation has
determined that the learning rate and other hyperparameters are the
most ideal settings per Table 4. These hyperparameters are selected
utilizing the Grid search technique for model tuning and optimization.
The batch size is set at 32, and the model training is halted at 1000
epochs. As a consequence, the best model weights are preserved. To
conserve the finest weights, the authors employed an early stopping
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Table 4

Hyperparameters used to train the DCNN and the proposed models.
Hyper-parameters Values
Optimizer Adam
Dropout 0.5
Batch Size 32
Exponential Decay rate for 1st momentum (8,) 0.9
Exponential Decay rate for 2nd momentum (f,) 0.999
Epsilon () le-7
Initial Learning rate (a) 0.001
Factor 0.1
Patience 10
Total no. of Epochs 1000
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== DenseNet121 DenseNet201
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Fig. 6. Accuracy VS Epochs curve of top performing DCNN models during the training
procedure employed before proposed ensemble method.

callback. When a monitored parameter stops improving, early stopping
stops the training.

The accuracy of the developed DCNN models is related to the
number of epochs. The accuracy value rises when the number of epochs
increases from 1 to 1000. Around epoch 650, the accuracy of various
implemented models appears to be constant, as shown in Fig. 6. The
magnitude of loss is also dependent on the number of epochs. When
the number of epochs is increased from 1 to 1000, the value of loss
decreases as shown in Fig. 7.

After Ensembling the top-performing models using the proposed
DETL approach, the final ensemble model’s accuracy increased signif-
icantly. The loss and accuracy curves of the Proposed DETL Ensemble
method are shown in Figs. 8 and 9 respectively.

Furthermore, we have ensembled the top-performing models using
Condorcet’s jury theorem, improving the model accuracy significantly.
According to Condorcet’s Jury Theorem, if each classifier votes with a
probability p > % then the final ensemble model’s chance to reach a
correct decision by majority vote approaches 1. Our 5 selected voters
are InceptionV3, InceptionResNetV2, ResNet50V2, DenseNet121 and
DenseNet201. We can observe their initial accuracy from Table 3. From
Table 5, we can see that when the no. of voters was 2, initially, the
accuracy was 95.33%. As we increased the no. of voters, the accuracy
also increased.

From Table 3, we can also observe that the highest accuracy among
all the voters is of ResNet50V2. According to the theorem, when a voter
with a high probability is added, the chances of getting the decision
right by a majority vote increase. So, from Table 5, we can see that
when the ResNet50V2 is added to the group of voters, the accuracy
increases by a margin of 2.41%.

From Fig. 11 and Table 5, it has been proved that in neural net-
works application, Ensembling N no. of DCNN classifiers based on

10
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Fig. 7. Loss VS Epochs curve of top performing DCNN models during the training
procedure employed before proposed ensemble method.
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Fig. 9. Accuracy VS Epochs curve of DETL ensemble model during the training
procedure.

Condorcet’s Jury Theorem, the accuracy increases as the no. of DCNN
classifiers increases. The proposed DETL and Jury Ensemble method
shows a trailblazing accuracy of 97.26% and 98.22%, respectively.
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From Fig. 13 we can see the area under the curve for pre-trained
DCNN models on 3-class classification. The confusion matrix and ROC
98 curve of the proposed DETL-based ensemble model can also be seen in
Fig. 10.
-
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Fig. 11. Curve depicting the proof of Condorcet’s Jury Theorem in Neural Networks.
Chances of getting the right decision increase as more no. of accurate voters are added.

Table 5
Accuracy of Condorcet’s Jury Theorem based ensemble model with N
no. of classifiers.

No. of
classifiers

Classifiers

Jury’s VA

Jury’s TA

2

InceptionV3

95.97

95.33

InceptionResNetV2

3 InceptionV3 97.42 97.74
InceptionResNetV2

ResNet50V2

4 InceptionV3 97.58 97.90
InceptionResNetV2
ResNet50V2

DenseNet121

5 InceptionV3 97.90 98.22
InceptionResNetV2

ResNet50V2

DenseNet121

DenseNet201

Tables 6 & 7 compare the proposed DETL and Jury Ensemble model’s
accuracy and other evaluation metrics against other models.

A confusion matrix is a critical metric used to accurately and easily
depict how a model is working on classifying the positive and negative
cases compared to the actual data. Fig. 12 shows the confusion matrices
of top-performing models, where the rows depict instance classes and
the columns represent actual classes. In Fig. 14, we can also see the
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models and methods. As a result, we cannot make direct comparisons
between our model and those research. So, to better its correctness,
we compare our model to earlier studies and their accuracy in the
3-class classification of CXR images with their dataset information.
Our proposed DETL ensemble model and Ensemble approach based on
Condorcet’s Jury Theorem beats the accuracy of various state-of-the-art
models and approaches provided in earlier studies, as shown in Table 9.

5.5.2. Based on efficiency

Convolutional neural networks have recently shown outstanding
results in various computer vision applications. However, due to the
high computational cost of CNN models, it is crucial to choose the
models wisely based on both accuracy and efficiency. The training
time is calculated by multiplying the time per epoch by the number
of epochs required to achieve the specified degree of accuracy.

If X;,i =1,..., N is the training time taken for N no. of classifiers
and Y; is the training time for the ensemble model, then the total time
taken for training DETL ensemble model is shown in Eq. (15).

N
Y X)+Y, (15)
i=0

If X;,i =1,..., N is the training time taken for N no. of classifiers, and «
is the training time for calculating the final score based on Condorcet’s
Jury Theorem. The total training time taken for the final ensemble
model is calculated as Eq. (16).

N
DX +a
i=0

where « is negligible, we can ignore it, and the total training time can
be considered as shown in Eq. (17).

N N
Y X)+ar D (X))
i=0 i=0

(16)

a7
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Table 6

Table reports the validation accuracy (VA), testing accuracy (TA), Precision, and Recall for top-performing DCNN models and the proposed methods.
Classifier/Ensemble VA TA Normal Normal COVID-19 COVID-19 Pneumonia Pneumonia

Precision Recall Precision Recall Precision Recall

InceptionV3 95.65 96.45 0.98 0.97 0.94 0.98 0.95 0.95
InceptionResNetV2 96.14 97.42 0.98 0.98 0.99 0.98 0.95 0.96
ResNet50V2 97.26 97.90 0.98 0.99 1.00 0.98 0.96 0.96
DenseNet121 97.26 97.75 0.98 0.99 0.98 0.98 0.97 0.96
DenseNet201 95.81 97.26 0.97 0.99 0.98 0.98 0.96 0.94
DETL Ensemble Model 98.55 97.26 0.97 0.98 1.00 0.98 0.96 0.94
Jury Ensemble Model 97.90 98.22 0.98 1.00 0.99 0.98 0.98 0.95

Table 7
Table reports the sensitivity, specificity, and F1-score of Normal, COVID-19, and Pneumonia class for top-performing DCNN models and the proposed methods.
Classifier/ Normal Normal Normal COVID-19 COVID-19 COVID-19 Pneumonia Pneumonia Pneumonia
Ensemble Sensitivity Specificity F1-Score Sensitivity Specificity F1-Score Sensitivity Specificity F1-Score
InceptionV3 96.96 97.55 97 97.56 98.55 96 94.64 98.21 95
Inception 97.87 97.58 98 98.37 99.79 99 95.84 98.23 96
ResNetV2
ResNet50V2 98.78 97.58 98 97.56 100 929 96.42 98.67 96
DenseNet121 98.78 97.56 98 97.56 99.59 98 95.84 98.89 96
DenseNet201 98.78 96.86 98 97.56 99.58 98 94.04 98.67 95
DETL Ensemble 98.48 96.20 98 98.37 100 99 94.04 98.67 95
Model
Jury Ensemble 99.69 97.56 98.79 98.37 99.79 98.77 95.23 99.34 96.67
Model
InceptionV3 InceptionResNetV2 ResNet50V2
- 300 300 300
° 4 6 ° 1 6 ° 0 4
250 250 250
200 200 200
- 1 120 2 150 - 0 121 2 1 - - 1 120 2 -
-100 -100 -100
~ 6 3 -50 ~- 7 0 50 ~- 6 0 50
) ' | ‘ -0 ) ' -0
0 1 0 1 0 1
DenseNet121
300 300
1 3 4
250 250
- 200 200
120 2 i 1 120 2
- 150 - 150
-100 -100
1 50 ~- 8 2 -50
' ' \ ' ' -0
1 2 0 1 2
0 - Normal CXR
1 - COVID-19 Infected CXR
2 - Pneumonia Infected CXR
Fig. 12. 3-class Confusion Matrix of top performing DCNN models with class 0 as Normal, class 1 as COVID-19, and class 2 as Pneumonia Class.
Table 8 Table 8 demonstrates the computational requirements of top-performing

Computational efforts of the examined methods.

Method Training Time

InceptionV3 1h 24 min 34 s
InceptionResNetV2 3 h 22 min 36 s
ResNet50V2 1 h 19 min 27 s
DenseNet121 1 h 29 min 29 s
DenseNet201 2 h 25 min 33 s

DETL Ensemble Model

47 min 16 s

12

deep learning models and the DETL-based ensemble model.
6. Discussion

The Coronavirus (COVID-19) pandemic has created havoc on hu-
manity, killing millions and creating severe physical and mental health
problems. Therefore, COVID-19 detection using Artificial Intelligence
and Computer-Aided Diagnosis has lately been the topic of various
research to prepare humanity for the fast and efficient detection of
the virus and its variations. To achieve this objective, the authors have
proposed a novel method of detecting COVID-19 from CXR images.



G. Srivastava et al.

InceptionV3

Receiver operating characteristic for multi-class data
10 cd

InceptionResNetV2

Receiver operating characteristic for multi-class data

Computers in Biology and Medicine 149 (2022) 105979

ResNet50V2

Receiver operating characteristic for multi-class data

- - /'
-, -, -
- - -
- 4 - f -
08 -7 08 e 08 e
-4 ’,’ -4 ’,’ < ’,’
2 06 = 2 06 = 2 06 = ¢
p=] - ] - 5 -
G -5 G % G el
S -’ o - o -
< 04 - = 04 - = 04 i
v L v ’/ v e
= A 2 s 2 r
02 # — ROC curve of class 0 (area = 0.99) 02 # —— ROC curve of class 0 (area = 0.99) 02 "= ROC curve of class 0 (area = 0.98)
,f' = ROC curve of class 1 (area = 0.99) ,” = ROC curve of class 1 (area = 0.99) ,/’ = ROC curve of class 1 (area = 0.99)
el —— ROC curve of class 2 (area = 0.99) e —— ROC curve of class 2 (area = 0.98) 7 —— ROC curve of class 2 (area = 0.99)
0.0 - 0.0 . 0.0 =
0.0 0.2 04 06 08 10 0.0 0.2 04 06 08 10 0.0 02 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate
DenseNet121 DenseNet201
Receiver operating characteristic for multi-class data Receiver operating characteristic for multi-class data
10 - - 10 p —
- -
f’ //
o 08 l = o 08 = s
] = K] -3
-4 22 < ,,’
s 08 = g 06 —
= 7 y=] o7
@ - @ -
& -7 & G
v 04 = = 04 =
E] -, > -
= -z = -2
02 »7 — ROC curve of class 0 (area = 0.99) 02 »7 — ROC curve of class 0 (area = 0.98)
- -
Pid = ROC curve of class 1 (area = 1.00) -7 = ROC curve of class 1 (area = 1.00)
e —— ROC curve of class 2 (area = 0.98) i —— ROC curve of class 2 (area = 0.98)
- .
0.0 - 0.0 -
0.0 02 04 06 08 10 0.0 02 04 06 08 10

False Positive Rate

False Positive Rate class 0 - Normal CXR

class 1 - COVID-19 Infected CXR
class 2 - Pneumonia Infected CXR

Fig. 13. 3-class ROC plots of top performing DCNN models with class 0 as Normal, class 1 as COVID-19, and class 2 as Pneumonia Class.

Table 9
Comparative study between the proposed and existing methods/models.

Author Method/Model Dataset Accuracy (%) Sensitivity (%) Specificity (%)

Ismael [27] ResNet50 + SVM 380 CXR images 94.7 91 98.89

Tang et al. [28] EDL-COVID COVIDx 95 96 -

T. Ozturk [56] DarkCovidNet 1127 CXR images 87.02 85.35 92.18

Toannis D. [57] Transfer Learning 1427 CXR images 96.78 98.66 96.46

E. Luz [58] EfficientNet Family 13770 CXR images 93.9 96.8 -

E. Hussain [59] CoroDet 7390 CXR images 94.2 94.2 96.2

A. I. Khan [60] CoroNet 921 CXR images 95 - 97.5

Chuchan et al. [61] Transfer Learning 5232 CXR images 96.39 99.62 -

Brunese [62] Transfer Learning 6523 CXR images 97 96 98
with VGG-16

R. Abdrakhmanov [63] Few-Shot Learning 6207 CXR images 97.7 - -
Approach

D. Shome [64] Covid-transformer 6207 CXR images 92 - -

F. J. Montalbo [65] Truncating fined-tuned 6207 CXR images 97.41 - -
vision-based models

E. Matsuyama [66] Fine-tuned 6207 CXR images 87 - -
ResNet50

Proposed method Proposed DETL 6207 CXR images 97.26 98.37 100
Ensemble Model

Proposed method Condorcet’s Jury Theorem 6207 CXR images 98.22 98.37 99.79

Based Ensemble Model

In this manuscript, the authors have proposed two approaches
to detect COVID-19: Domain Extended Transfer Learning (DETL) En-
semble model and Condorcet’s Jury Based Ensemble model. In the
DETL-based ensemble model, the authors have done the training in
two phases. Firstly, the base learners are trained, and then the meta
learner, i.e., the ensemble model, is trained. The proposed ensemble
model takes the outputs of sub-models, i.e., the base learners, as input
and attempts to learn how to best combine the input predictions to
make a better output prediction. In the second proposed approach, the
authors have employed Condorcet’s Jury Theorem to ensemble the base
learners. Then, the majority votes are calculated based on the predicted
outcomes from all the voters (i.e., models).

Both approaches have shown a remarkable performance on the CXR
dataset. The DETL ensemble model has demonstrated an accuracy of
97.26%, whereas the Jury theorem-based ensemble model has shown
an accuracy of 98.22%. The authors also proved that Condorcet’s Jury

13

Theorem is valid while ensembling the N number of classifiers in
Neural Networks.

7. Conclusion and future directions

COVID-19 detection through Computer-Aided Diagnosis with the
help of Deep Learning models is ongoing research. Many implementa-
tions are proposed on this as everyone on this planet was alarmed about
the coronavirus situation around them. With 5.9 million deaths caused
by this virus and still counting, and a massive 420 million population
of people infected by COVID, early detection and prevention is our best
chance against it until we find a permanent cure for this deadly virus.

In this manuscript, the authors have proposed an ensemble model
based on Condorcet’s Jury Theorem. A DETL-based ensemble model has
also been proposed as a soft voting ensemble approach to compare it
with Condorcet’s Jury Theorem-based ensemble model as hard voting.
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Fig. 14. 3-class Confusion Matrix depicting the performance of Condorcet’s Jury
Theorem based ensemble model.

Condorcet’s Jury Theorem is an old game theory mathematical theorem
for decision making. The authors demonstrated that the theorem holds
while ensembling the N number of classifiers in Neural Networks. With
the help of the theorem, the authors proved that a model’s presence in
the voter pool would improve the likelihood that the majority vote will
be accurate if it is more accurate than the other models. The proposed
Ensemble model has been used to combine the results of various CNN
models to improve this system’s collective accuracy and efficiency in
detecting COVID-19 in CXR images.

Also, the proposed method detects COVID-19 in patients where the
disease has already progressed. However, the effect of stage/severity
of the disease on classification is an unexplored field and leaves scope
for researchers to work. In the future, this study can help researchers
assess the top-performing models in recognizing the complex pattern of
Chest X-ray images. Other classification problems, especially biomed-
ical imaging, can benefit from the proposed Ensemble approaches.
The proposed Ensemble model may also be used to detect other lung
abnormalities. We also believe the facilitation of this model in medical
equipment and GUI will be extremely helpful for the hospitals and
doctors for efficient detection of COVID-19.
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