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Abstract

Objective: High-dimensional databases make it difficult to apply traditional learning algorithms to biomedical applications.
Recent developments in computer technology have introduced deep learning (DL) as a potential solution to these difficulties.
This study presents a novel intelligent decision support system based on a novel interpretation of data formalisation from
tabular data in DL techniques. Once defined, it is used to diagnose the severity of obstructive sleep apnoea, distinguishing
between moderate to severe and mild/no cases.

Methods: The study uses a complete database extract from electronic health records of 2472 patients, including anthropo-
metric data, habits, medications, comorbidities, and patient-reported symptoms. The novelty of this methodology lies in the
initial processing of the patients’ data, which is formalised into images. These images are then used as input to train a con-
volutional neural network (CNN), which acts as the inference engine of the system.

Results: The initial tests of the system were performed on a set of 247 samples from the Pulmonary Department of the Álvaro
Cunqueiro Hospital in Vigo (Galicia, Spain), with an AUC value of ≈ 0.8.

Conclusions: This study demonstrates the benefits of an intelligent decision support system based on a novel data formal-
isation approach that allows the use of advanced DL techniques starting from tabular data. In this way, the ability of CNNs to
recognise complex patterns using visual elements such as gradients and contrasts can be exploited. This approach effectively
addresses the challenges of analysing large amounts of tabular data and reduces common problems such as bias and vari-
ance, resulting in improved diagnostic accuracy.
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Introduction
In industry, and more specifically in the biomedical field, it is
increasingly common to find issues with high-dimensionality
databases. Addressing these challenges using machine learning
approaches is becoming increasingly complex,1 as it is often
necessary to make use of techniques focused on feature selec-
tion,2–4 on the determination of underlying factors that group
and represent these features (such as exploratory factor ana-
lysis,5 among others), or even to analyse potentially existing
multicollinearity issues. In addition, the increase in the
amount of data typically makes it more difficult to identify
appropriate separation boundaries in conventional learning
models, increasing bias and variance6–9 and reducing the
ability of the model to generalize efficiently to new data sets.

In the last decade, with its significant technological
advances and available computational capacity, the field of
deep learning (DL)10–14 has emerged as a promising solution
to address those challenges. This field is based on the use of
deep neural networks, which have a larger number of learning
parameters compared to other more conventional techniques
and approaches. In addition, and in contrast to these techni-
ques and approaches, it is important to note that these architec-
ture types donot require such an exhaustive data pre-treatment
process.10 This is because they have capabilities to identify
underlying patterns and relationships between data automatic-
ally during the training process, which significantly reduces
the need for initial data preprocessing.

Moving beyond tabulated data sets, in recent years spe-
cific architectures have been developed that have demon-
strated outstanding capabilities for handling unstructured
data (such as images or sounds).14 In this sense, architec-
tures such as convolutional neural networks (CNNs)14–19

or recurrent neural networks14,20 could be mentioned.
CNNs have been widely used for image classification.

However, there are many fields in which the data are pre-
sented in tabular format, and it is not common to use this
architecture type directly for their processing. Salehinejad
et al.21 and Zhu et al.22 have focused on the transformation
of tabulated data into images, matching each variable or
feature to a pixel or family of pixels with a certain intensity
or hue value. In this way, by transforming tabulated data into
images that encapsulate and agglutinate the initial informa-
tion, it would be possible to train models based on CNNs.

Obstructive sleep apnoea (OSA),23–26 on the other hand, is a
pathology having a high prevalence worldwide. Detecting
potential patients suffering from this pathology is a major chal-
lenge for specialist doctors, since its symptoms are not very
specific (snoring, tiredness, etc.), and they are also common
in the general population. The professionals in charge of ana-
lysing these patients usually consider a wide range of variables
of a diverse nature which can be structured in the form of a
table, ranging from anthropometric measurements and
general data to the medical history of pathologies, medications,
and symptoms reported by the patients themselves. In recent

years, there has been an increased development of intelligent
decision support systems applied to the healthcare field,27–37

and particularly to the diagnosis of OSA.38–45 However,
none of those posed systems have explored solutions that
involved the processing of existing databases without prior pre-
treatment and filtering. Traditionally, the approaches that use
simpler neural network architectures also require data pretreat-
ment to make possible improving network processing.

To solve the problems described above, solutions have
been proposed in recent years aiming to transform tabulated
data into new data structures, which would make it possible
to represent all the information contained in the problem
and to optimize the use of networks with greater processing
capacity. Thus, on the one hand, pre-processing (almost
always associated with a certain loss of information and
an increase in uncertainty) would be avoided, and on the
other hand, all the data of the problem would be collected
into a single structure.

In this work, developed in the context presented above, a
unique proposal is addressed which focuses on the transform-
ation of tabulated data of heterogeneous nature into images,
which are subsequently made available for the training of a
CNN acting as an inference engine within an intelligent deci-
sion support system. All that is exemplified by means of a set
of medical data from the Respiratory Sleep Disorders Unit of
the Pulmonary Department of the Álvaro Cunqueiro Hospital
in Vigo, on patients suspected of suffering from OSA.23–26

Our proposal offers an advanced alternative by propos-
ing the management of high-dimensional tabular data by
transforming it into images, allowing the exploitation of
visual elements such as colour gradients and contrasts,
which can be analysed more efficiently by advanced DL
approaches. This improves the handling of dimensionality,
reduces problems associated with bias and variance,6–9 and
improves versatility and accuracy by allowing the inclusion
of new information and complex relationships between data
that are not as easily traced with traditional learning models.

The article is organized in five sections. In Materials and
methods section, the starting database is introduced, and the
conceptual design of the intelligent decision support system
addressed is presented, explaining the various stages as well
as the information flow. After that, the implementation of
the system is detailed. In Case study section, a practical case
study is presented. After that, in Discussion section a discus-
sion of the results obtained is provided. Finally, in
Conclusions section, the conclusions and future lines of devel-
opment are addressed.

Materials and methods

Database

The database used in this work contains information on
2472 patients suspected to be potential OSA cases, and it
was collected between years 2015 and 2022 at the Álvaro
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Cunqueiro Hospital in Vigo (Galicia, Spain). The database
used in this study was not created specifically for this study
but was derived from information obtained from routine
clinical practice at the Respiratory Sleep Disorders Unit
of the Álvaro Cunqueiro Hospital in Vigo. It includes a
variety of information, including general and demographic
data, comorbidities (other diseases present), previous treat-
ments, symptoms reported by the patient, as well as the
results of specific diagnostic tests related to OSA.
Therefore, we can state that this study is retrospective in
nature and no further data collection is required for its
evaluation. All patients in the database are over 18 years
of age and no specific exclusion criteria were applied for
analysis.

This study was approved by the Ethics Committee of
Galicia (code 2022/256, 2 July 2022). Written informed
consent was waived due to the retrospective nature of the
study. All data were fully anonymised.

For practical reasons, the database can be split in two
parts, depending on the degree of subjectivity associated
with their data fields:

• Group 1: Accommodates information usually available in
the patients’ digital health records (general and anthropo-
metric data, habits, previous pathologies, and prescribed
drugs), having a lower degree of associated subjectivity.

• Group 2: This refers to information obtained through
interviews and attempt to collect the symptoms reported
by the patient.

Figure 1 shows a detail of the different variables contem-
plated in each group with their respective nature (numerical
or categorical).

All patients included in the database underwent specific
sleep studies (mainly cardiorespiratory polygraphs), which
allowed to characterize the presence of the disease through
the determination of a specific metric, the apnoea–hypop-
noea index (AHI).24 This index expresses the ratio respect-
ively of the number of apnoea and of hypopnoea events
throughout the sleep hours. Regarding its interpretation, it
is usual to consider four levels: non-OSA case (AHI < 5),
mild OSA case (5≤AHI < 15), moderate OSA case (15≤
AHI < 30), and severe OSA case (AHI≥ 30).24

Figure 1. Database summary. The data available in the database can be divided into two groups, depending on the degree of subjectivity
involved. Group 1 presents information that is commonly available in digital health records, such as demographic data or comorbidities,
among others. Group 2 presents information related to the symptomatology reported by the patient in interviews with health professionals.
Each variable is classified according to its nature, being either categorical or numerical.
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In this work, a single threshold set at 15 will be consid-
ered, so that it will constitute a binary classification
problem:

• Non-OSA or mild OSA cases (AHI < 15) → 1527
patients (i.e. 61.77%).

• Moderate and severe OSA cases (AHI≥ 15) → 945
patients (i.e. 38.23%).

From the total set of patients, we randomly selected, consid-
ering the usual percentage reflected in the literature, 10% of
the data to build the test data set (152 patients with AHI≥
15, and 95 patients with AHI < 15), in order to analyse the
generalization capabilities of the system. The remaining
data will be used for model training (1375 patients with
AHI≥ 15, and 850 patients with AHI < 15).

Conceptual design

Figure 2 shows the flow diagram of the intelligent decision
support system proposed in this work, which basically acts
as a binary classifier, allowing to distinguish between

patients suffering from moderate or severe OSA (AHI≥
15) from those who do not suffer from the disease or are
mild cases (AHI < 15).

As shown in Figure 2, three main stages are identified,
which are described below.

Stage 1: compilation of the patient’s information. The first
stage in this intelligent system refers to the process for com-
piling the patient’s information, which has been already
commented and introduced in Figure 1 of Database section.

Stage 2: data processing. Once the patient’s information has
been collected and structured, it is processed by the system.
The first step involves the transformation of the initial infor-
mation, which is in tabular format, into an image that con-
denses and agglutinates such patient’s information.
Subsequently, this image is used as input for a CNN,
obtaining as output the Apnea Score, an indicator related
to the hazard the patient has of being a moderate or
severe OSA case.

Figure 2. Flow diagram of the decision support system. It shows how the information advances through the different stages. Stage 1 deals
with the collection of patient data. Stage 2 then deals with a new formalization of the data, representing it as an image, and then the
inference process using a CNN. Finally, Stage 3 deals with the interpretation of the results obtained in Stage 2 and the generation of
recommendations.
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The database used for CNN training was described in
Database section. Before addressing such training, it is
necessary to state that the database is also processed by
transforming each patient’s data into a corresponding
image. Starting from these images and the label associated
with each of them, it is then possible to carry out the train-
ing of the CNN.

As already mentioned, this is a binary classification
problem. The labels of the dataset were determined by
setting a threshold value for the interpretation of AHI.
Although a specific threshold value was set at 15, it is
important to note that in the future, if deemed necessary
by the medical team, as many other threshold levels could
be established as necessary.

Stage 3: generation of alerts and decision-making. By repre-
senting the patients’ data encoded as images, it is possible
to carry out their processing using a CNN, obtaining the
Apnea Score value as its output.

In this last stage, the interpretation of the obtained Apnea
Score value is addressed, determining the final label asso-
ciated with the study patient. Based on this information,
the medical team will be able to make the appropriate deci-
sions regarding that patient.

Implementation of the system

Once the architecture of the intelligent decision support
system has been introduced, this section deals with its
implementation through a specific software artefact.

The implementation of the system has been carried out
using the MATLAB© software (version R2023a, Natick,
MA, USA), supported by the App Designer module46 for
the development of the graphical interface, the Deep
Learning Toolbox47 for the design and implementation of
deep neural networks, and an auxiliary script that allows
implementing the elbow method48 which is useful in this
work to determine the optimal number of clusters using
the k-means algorithm.

The equipment used for training the models consists of
an Intel© Core© i9-10980HK CPU at 2.40 GHz, with an
NVIDIA GeForce RTX 3070 Laptop GPU, and 32 GB of
RAM.

A screenshot of the main screen of the developed tool is
shown in Figure 3. As can be seen in it, there are three main
areas: the Initial data collection panel where patient infor-
mation is collected, the Data processing panel where the
data is transformed into images and the Apnea Score is
determined with the help of a CNN, and the Alert
Generation & Decision Making panel where the Apnea
Score is interpreted and the relevant alerts are generated.

Information compilation. The patient-related data previously
presented in Figure 1 are loaded into the application

through the form shown in Figure 3, in the Initial data col-
lection (1) panel.

It is important that the user verifies that no data have
been omitted, or potential errors have happened that could
reduce the precision of the system and increase the existing
uncertainty level.

Data processing. Once the data have been entered into the
form, they are processed by the intelligent system, as
shown in Figure 3 in the Data Processing (2) panel.

First, the patient’s data (initially structured in tabular
format) is transformed into an image (this process is
carried out in the Tabular Data to Image (2.1) panel of
Figure 3). After that, the resulting image is processed by
a CNN, obtaining as an output the Apnea Score (this
process is carried out in the Convolutional Neural
Network (2.2) panel of Figure 3).

Construction of the image. The image construction
process consists of three phases which run sequentially,
as shown in Figure 4.

A detailed description of each of the phases is presented
below. It is important to clarify that, in order to facilitate the
image construction process, all numerical variables have
been rescaled to the interval [0,1] by using a MIN–MAX
type normalization. Likewise, the categorical variables
have been re-encoded, transforming their different possible
values into numbers. The binary variables are the simplest,
assigning 1 or 0 to them depending on whether or not the
patient presents each variable. In other cases in which the
variables are categorical and not binary, as occurs with
certain symptoms shown, Likert-like scales are used.
These scales assign a score to each possible value, which
is subsequently readjusted within the interval [0,1]. In this
way, all the variables vary between 0 and 1 before the
image is constructed, which is very convenient.

1. Phase 1: An empty 180× 180 pixels image with three
channels (R,G,B) is created. It is proposed to use
square-shaped images since most CNN architectures
rely on this image type, which will facilitate compatibil-
ity when using standard architectures (such as
AlexNet,15 VGG,49 ResNet,50 etc.). Furthermore, this
way the width and height of the image will be of
equal importance, allowing the network to treat the dif-
ferent parts of the image in a uniform way. In any case,
any other image size could be used as long as, after the
appropriate rescaling, and avoiding deformations in the
image proportions, it fits the CNN input layer size.

2. Phase 2: As shown in Figure 4, in this phase the image is
divided into four sectors, each one of them associated to
a characteristic or metric. These sectors are rectangular
in shape, which favours their processing by CNNs. This
is because the filters used in the convolution process are
usually square or rectangular, which facilitates their
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application to orthogonal shapes, ensuring that the
filters cover the different areas evenly, resulting in a
more efficient process.
(a) Sector 1: The indicated zone, depending on the

patient’s sex (man or woman), is painted with a
pre-assigned colour value, randomly generated
for each class.

(b) Sector 2: The indicated zone is painted with a colour
value which depends on the frequency that the
patient presents apnoea incidents {No, Sometimes
(twice or less per week), Often (more than twice
per week) and Daily}. To calculate the colour
value, two different values are established in the
endings which are associated to the extreme values
of the variable. In the case of the colours

corresponding to the intermediate values, a chro-
matic gradient is implemented that extends
between the extreme colour tonalities, assigning
colour values in a proportional way, assuming that
those values are equidistant in the chromatic space.

(c) Sector 3: The indicated zone is painted depending
on the value that the patient presents in the
Epworth scale. To calculate the colour value, two
different values are established in the endings,
associated to the extreme values. The remaining
values are calculated similarly to what was
already commented in the previous point.

(d) Sector 4: It is painted according to the patient’s age,
body mass index (BMI), and neck perimeter, as
shown in Equation (1). The colour’s R, G and B

Figure 3. Screenshot of the main interface of the tool. The interface presents three main panels: Panel (1) is related to the collection of
patient data; Panel (2) has two sub-panels, Panel (2.1) related to the transformation of the tabulated data into an image and Panel (2.2)
related to the inference process; Panel (3) presents an interpretation of the results obtained and provides a recommendation regarding the
patient’s condition.
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components are, respectively, functions of the
patient’s age, BMI and neck perimeter measure-
ment.

f (numerical feature) = (rescaled feature) · 255 (1)

3. Phase 3: Once the size of the image and the colours of
the different sectors have been defined, that image is
enriched with various patient characteristics as shown
in Figure 4, and as detailed below. For this purpose, dif-
ferent sub-sectors are defined:
(a) Sub-sector 1.1: This sub-sector is divided into two

rows with six rectangles each, on which each of the
symptoms reported by the patient are represented
(for more information about them, refer to Database
section, Figure 1). These symptoms, as already

mentioned, are expressed using scales. Thus, each
box is coloured with a colour depending on the
value, using a chromatic gradient. As in previous
cases, the extremes of the colour gradient are
predefined.

(b) Sub-sector 1.2: This sub-sector represents the
drugs taken by the patient. To do this, it is
divided into six rectangles, assigning a drug type
to each one of them. The drug types are expressed
as binary categorical data, and were previously
discussed in Database section. If the patient
takes the specific drug type, the corresponding
rectangle is painted with a randomly pre-assigned
colour.

(c) Sub-sector 1.3: The process is similar to that
already discussed for sub-sector 1.2. The sub-sector

Figure 4. Process for the transformation of tabulated data into an image. The process consists of three main stages: In Stage 1, an empty
image of 180× 180 pixels is created, which will act as a container for the information; in Stage 2, four large sectors are created, which are
coloured according to different clinical criteria (sex, detected apnoea, Epworth scale, age, body mass index, and neck circumference); in
Stage 3, several sub-sectors are created on the previously created sectors, which will contain the information of the remaining variables
(symptoms, drugs, previous pathologies, habits, and anthropometric data) and other additional information generated by clustering
processes using k-means.

Casal-Guisande et al. 7



is divided into two rows with six rectangles each, on
which each of the pathologies suffered by the patient
is represented (for more information on these, refer
to Database section, Figure 1). The patient’s dis-
eases are expressed as binary variables. Thus, if
the patient suffers from that disease, the correspond-
ing rectangle is painted with a pre-assigned colour,
previously randomly generated.

(d) Sub-sector 2.1: This sub-sector is related to patient’s
alcohol consumption. If the patient drinks alcohol, a
rectangular bar with a size proportional in height to
the associated alcohol consumption in grams of
alcohol will be painted. In addition, the colour of
the bar varies according to whether the consumption
is occasional or daily, assigning a specific colour for
each type of consumption.

(e) Sub-sector 2.2: The smoking habit is represented in
this sub-sector. If the patient smokes (or smoked in
the past), a rectangular bar of a size proportional to
the number of cigarette packs smoked per year will
be painted. Likewise, the colour of the bar will be
determined according to whether the patient is cur-
rently a smoker or has quit smoking, assigning a
specific colour for each case.

(f) Sub-sector 3.1: The size of this sub-sector is pro-
portional to the patient’s neck perimeter measure,
and it is represented in the B-channel of the
image, assigning the maximum value of 255 to
the corresponding pixels.

(g) Sub-sector 3.2: The size of this sub-sector is propor-
tional to the patient’s BMI, and it is represented in
the G-channel of the image, assigning the
maximum value of 255 to the corresponding pixels.

(h) Sub-sector 3.3: The size of this sub-sector is propor-
tional to the patient’s age, and it is represented in the
R-channel of the image, assigning the maximum
value of 255 to the corresponding pixels.

(i) Sub-sectors 4: For the calculationof these sub-sectors it
is necessary to clarify that the clustering of several
groups of data was previously carried out, using the
k-means method,51 and determining the optimal
number of clusters through the elbow method.52 In
the case of sub-sector 4.1, general and anthropometric
data (sex, age, BMI, and neck perimeter measure), in
sub-sector 4.2 habits (alcohol and tobacco consump-
tion), in sub-sector 4.3 diseases, in sub-sector 4.4
drugs taken, and in sub-sector 4.5 the symptoms evi-
denced, are respectively considered. After performing
the clusteringprocess, for each case, in eachof the clus-
ters the percentageof patients beingmoderate or severe
OSA cases (i.e. having an AHI≥15) is calculated.
Then, in sub-sectors 4.1–4.5 the associated percentage
is represented depending on the cluster to which the
patient belongs in each case, represented in the image
by means of a colour value, using for that a chromatic
gradient. As in previous cases, the extremes of the
colour gradient are pre-defined. On the other hand,
for the determination of sub-sector 4.6 the clustering
of the percentages reflected in sub-sectors 4.1–4.5 is
addressed. K-means51 is also used for the clustering
of the percentages, combined with the elbow
method.52 In the latter case, a vector of random
colours (representedby itsRGBcode), asmanyasclus-
ters, is generated, assigning to sub-sector 4.6 the colour
corresponding to each cluster in each case. Table 1 pre-
sents a summary of the data used in each sub-sector,
together with the optimal number of clusters obtained
after using the elbow method.52

Convolutional neural network: Apnea Score. Once the
image has been obtained, its processing by the CNN is
addressed. However, prior to that it is necessary to proceed
to the training of the said CNN. To achieve this, we start
with a set of 2225 images (90% of the initial database). The
remaining images, corresponding to a 10% fraction of the
dataset, are kept for testing purposes with the objective of
evaluating the generalization capabilities of the model.

To exemplify the operation of the system, in this work it
has been decided to use GoogleNet53 as the CNN architec-
ture of choice, adapting its output for two classes. To speed
up and simplify the training of the network, we start with a
pre-trained network on the ImageNet dataset,54 so that its
weights are not randomly initialized. In any case, if
deemed appropriate in the future, any other CNN

Table 1. Data clustering. The data sets associated with each of the
clusters generated in the third stage of the tabular data to image
transformation process are presented, together with the optimal
number of clusters obtained using the elbow method.

Sub-sector Initial data

Optimal
number of
clusters

4.1 General and anthropometric
data

9

4.2 Habits (alcohol and tobacco
consumption)

9

4.3 Diseases 24

4.4 Drugs taken 6

4.5 Symptoms 104

4.6 Percentages of moderate or
severe OSA case patients
associated with sub-sectors
4.1, 4.2, 4.3, 4.4 and 4.5

53
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architecture could be used if the results obtained are consid-
ered as satisfactory.

The network was trained using MATLAB Deep
Learning Toolbox. The training configuration of the
model is shown next in Table 2. A cross-validation strat-
egy6 was used for training with a k equal to 10 folds. In
each of the 10 iterations, the model was trained using
nine folds as the training set and its performance was eval-
uated on the remaining fold, which acted as the validation
set. Figure 5 shows the ROC curves and AUC values for
each of the folds, allowing the stability of the model to be
validated, with minimal differences between them. During
the iterations of the k-fold cross-validation, the model that
performed best in its validation fold was selected. This
model is considered to be representative of the maximum
performance obtained during the cross-validation process.

Once the network has been trained, the Apnea Score is
obtained at its output in the presence of new images. As
already mentioned, this indicator represents the risk of a
patient being a moderate or severe OSA case. It is a value
within the interval [0,1], although for practical reasons it
will later be re-scaled between 0 and 100.

In order to facilitate the interpretation of the results
obtained at the CNN output, it is necessary to establish a
threshold level that allows discrimination between the two
classes (“Non-OSA or mild OSA case” and “Moderate or
severe OSA case”).

To achieve this, a graphical optimization process will be
undertaken, aimed to highlight the threshold value that
maximizes the associated Matthews correlation coefficient
(Mcc) value55–57 on the test dataset. Equation 2 shows the
expression of the Mcc. The acronyms in the equation are
as follows: TN= true negatives, FN= false negatives, TP

= true positives and FP= false positives.

Mcc = TN · TP− FN · FP
�����������������������������������������������������

(TP+ FP) · (TP+ FN) · (TN + FP) · (TN + FN)
√

(2)

The use of Mcc has been chosen instead of other metrics, such
as precision, since the data set used is unbalanced. This coeffi-
cient is a particularization of the Phi coefficient,55–57 and only
shows successful values when satisfactory results are obtained
for the four characteristic values in the confusion matrix.

Figure 6 represents the different Mcc values associated
with the different threshold values. It is observed that
Mcc is maximized for a threshold value of 0.68, with an
associated Mcc value of 0.48.

Figure 7 shows the ROC curve of the CNN on the testing
dataset, highlighting the point of optimal performance,
associated with the threshold value of 0.68 previously cal-
culated. At this point, values are shown for the sensitivity
of 0.76, and for the specificity of 0.73.

In addition to the determination of the Apnea Score in
Panel 2.2 of Figure 3, a new visualization is also presented
that combines the image agglutinating the patient’s data
with a superimposed colour map based on the gradient-
weighted class activation mapping (Grad-CAM)
method.58 Its use is intended to highlight those regions
having the greatest influence on the predictions, with the
goal of improving the image. In any case, it is important
to clarify that its use is not intended to identify which inde-
pendent variables have a greater influence on the prediction.

Comparison with other conventional machine learning
models. Although this article focuses on explaining the

Table 2. Training configuration of the network.

Hyperparameter Value Comment

Optimizer Adam –

Mini-batch size 128 –

Max epochs 40 –

Learning rate 0.0001 –

Validation
frequency

Each iteration –

Validation patience 50 Determines the maximum number of occurrences where the loss on the validation set can either
match or exceed the previously recorded minimum loss, subsequently leading to the
termination of the neural network training process.

Output network Best validation
loss

Selects those parameters of the neural network corresponding to the training iteration with the
lowest validation loss.
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design and development of a new model of an intelligent
system, it may be useful, especially in assessing its potential
and benefits, to make a comparison of the model presented
with others already existing in the state of the art. This is
only an illustrative analysis, since it is clear that an exhaust-
ive comparison should be made, tested, validated, and con-
trasted with models at similar stages of maturity. However,
as noted above, an estimate of the results on a given set will
serve as a representative example of its usefulness.
Therefore, this section presents a complementary analysis
of some of the most widely used machine learning
models in the field of defining intelligent decision support
systems. For this purpose, and given the enormous diversity
of models, we have chosen to select the most representative
of three broad groups of models, which are not exclusive
but complementary, following the recommendations of
Peter Flach.59 These groups include models that can be
categorized as geometric, probabilistic, or logical. To
make the comparison practical and effective, several tests
were carried out using the MATLAB Classification
Learner app,60 which groups together models from the
groups described above. The data set is the one already dis-
cussed in Database section, reserving 10% of the data for
testing and training the models with the remaining 90%
using a cross-validation strategy with k equal to 10 as
described above.

To ensure homogeneity in the comparison, the data pre-
processing was similar to that used before image construc-
tion: all numerical variables were rescaled to the interval
[0,1] using a MIN–MAX type normalization. Similarly, cat-
egorical variables were recoded by transforming their differ-
ent possible values into numbers. Binary variables were
treated in a simple way, assigning 1 or 0 depending on
whether the patient had the characteristic or not. In other
cases, where the variables were categorical but not binary,
as in the case of certain symptoms, Likert scales were used.

Table 3 gives a summary of the different algorithms used
in the training process, using the default settings in the
MATLAB Classification Learner app, and the results
obtained on the test set, expressed in terms of AUC. As
can be seen, k-neighbour models, support vector machines
(SVM), naïve Bayes, decision trees, and even basic artificial
neural network models have been used.

From the analysis of the results shown in Table 3, it can
be seen that none of the models studied reaches ROC curves
above 0.8, with only the bagged trees model exceeding the
0.75 AUC threshold. All the models that exceed 0.7 AUC
can be considered as moderately successful in classifica-
tion, although they are worse than the proposed model.
Models above 0.75, such as bagged trees, obtain better
results, reflecting, for example, the usefulness of the use
of ensemble strategies. However, all the values are still

Figure 5. ROC Curves for each fold in cross-validation (k= 10).
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lower than those of our proposal, which achieves an AUC
close to 0.8, showing a higher prediction accuracy, although
its validation and development are still in the initial stages.

Generation of alerts and decision making. Once the Apnea
Score is determined, its value is interpreted based on the
threshold value calculated in the previous section, thus
obtaining the label associated with the patient (“Non-OSA
or mild OSA case” and “Moderate or severe OSA case”).

This information is displayed in the Alert generation and
Decision Making panel (3) shown in Figure 3.

Case study
To facilitate the understanding of the operation of the intel-
ligent system, and to highlight its potential in clinical deci-
sion making, this section presents a practical case study. It
should be noted that the case study is only a proof of
concept and is in no way a comprehensive validation of
the applicability and usability of the method.

A detailed description of the architecture of the intelli-
gent system (see Figure 2 for more information) and its
implementation has been presented in Materials and
methods section of this paper. Regarding its implementa-
tion, Figure 4 and Table 1 are fundamental to understand

the process of image generation from tabular data, which
is the main novelty and strength of the present work. It is
also important to point that a reasoning system based on a
DL model, namely a CNN, is used. This model is based
on GoogleNet, although any other CNN with adequate
behaviour could be valid. A summary of the hyperpara-
meters used during the training of this model is presented
in Table 2. On the other hand, once the model has been con-
textualized, its performance measures need to be addressed.
In this regard, Figures 6 and 7 are crucial: the first deter-
mines the threshold for interpreting the score obtained at
the CNN output, which allows to distinguish between
patients with moderate-to-severe cases and those with
mild or no cases, while the second shows the ROC curve
of the CNN over the test set, highlighting the operating
point. It is important to note that a dataset from the
Pulmonary Department of the Hospital Álvaro de Vigo
was used, and if a different database was used, the thresh-
olds would have to be revised and updated accordingly.

Compilation of the patient’s data

Table 4 shows the data of the patient to be studied. It is
important to clarify that this data was not used in the train-
ing of the system, and that the patient presented an AHI

Figure 6. Determination of the optimal cut-off point for the CNN. This is a graphical optimization process where the Matthews correlation
coefficient is calculated for each threshold on the score obtained at the CNN output on the test set.
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value of 6.4 at the sleep tests. This indicator will be consid-
ered later to analyse the insights generated by the intelligent
system.

Once the data have been collected, they are entered into
the application to be processed by the intelligent system, as
shown in Panel 1 of Figure 8.

Data processing

Once the data have been entered into the application, their
processing is addressed. In Panel 2.1 of Figure 8 the data
transformation process is carried out, representing them as
an image. A detailed description of the image generation
process is given in Data processing section. Subsequently,
in Panel 2.2 the image is processed by the CNN, thus
obtaining the Apnea Score which shows a value of 50.97
for this case.

Also, an image is shown with a superimposed colour
map highlighting certain areas that have been key to the
proposed prediction. In this case, those areas result to be
Cluster 1: general and anthropometric data, habits, and
symptoms. For more information on the image and its dif-
ferent zones, it is recommended to revisit Figure 4. It is
important to remember that the purpose of using

Grad-CAM in our case is not to identify which independent
variables have the greatest influence on prediction, but to
identify which areas of the image are most important for
prediction.

Generation of alerts and decision making

Finally, the interpretation of the Apnea Score is addressed,
which presents a value lower than the previously calculated
threshold, so the system indicates that the patient, either is
not, or is a mild OSA case, as can be seen in Panel 3 of
Figure 8.

Taking into account the system recommendation, it
seems that the patient does not suffer from the disease, or
suffers mild case of it. This is a plausible prediction, and
one that fits with the real results, given that the patient
resulted in an AHI value of 6.4 in the sleep test.

Discussion
When working with inductive reasoning models such as
those at the very basis of DL techniques, we must deal
with the categorization of the dimensionality of the starting
datasets. In particular, DL tools are especially designed for

Figure 7. ROC curve on the testing dataset and operation point. The operating point was obtained through a graphical optimization
process based on the Matthews correlation coefficient.
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the management, processing and inference on these (some-
times huge) volumes of data, resulting in the identification
of very specific generalization models that tend to overfitting,
or even to over-optimistic predictive estimations. This work
focuses its main contributions on a new proposal for data for-
malization based on the elaboration of images with graphical
matrix samples of data volumes of high dimensionality, in
the sense of the number of independent variables or charac-
teristics. In this way, statistically significant relationships
between variables can be represented and qualified using
visual elements such as colour gradients or contrasts,
which are more easily analysed and traced by advanced
DL models than by conventional learning models.

It is a work, therefore, of data formalization so that we
develop the capability to represent the information present in
the original data in a more compact and traceable way
without giving up the ontological meaning of the new structure,
or quasi-symbol, that represents such information. Thus, in this
article these new structures will be images obtained from the
initial data. The logical and, as was said, ontological nature
of the image as a representation of information is evident,
claiming that it may contain a figurative representation of the
information present in the original data. Figurative must be
understood regarding its form and colour, with all the available
nuances (brightness, contrast, tone, etc.), while keeping its
association with each part of the same information present,
implicitly or explicitly, in the initial data.

But the very fact of formalization would not be enough
to improve the capability for fine-tuned generalization and
capture of the complexity of DL models without resourcing
to network topologies, such as CNNs with high and reputed
capabilities for processing data structures in image form.
These networks take advantage of a discrete image layout
to apply convolution operations that transform and adapt
that image according to certain filters, in such a way that
they are able to realize complex patterns between these
images and their corresponding labels in supervised learn-
ing strategies. It is precisely this combination that stands
out in this work. Formalizing a dataset, creating an image
that without excessive loss or conditional uncertainty repre-
sents the initial information, and using the set of images in
convolutional network training not only represents a unique
evolution in inductive intelligent systems, but also extends
and facilitates their use by avoiding the inherent problems
associated with the excessive dimensionality of the
datasets.

In general, when working with tabular data in traditional
learning models, as the volume of data increases, it
becomes difficult to find clear and logical boundaries in
the instance space, which can accentuate bias and variance.
In this sense, by transforming data into images, better
dimensionality management is achieved, reducing the bias
and variance6–9 associated with traditional models. If we
add to this the use of DL models, generally based on

Table 3. Comparison with other conventional machine learning models.

Model Comment
AUC in
test

Coarse decision tree Maximum number of splits= 4; split criteria=Gini’s diversity index 0.68

Medium decision
tree

Maximum number of splits= 20; split criteria=Gini’s diversity index 0.72

Fine decision tree Maximum number of splits= 100; split criteria=Gini’s diversity index 0.67

Bagged trees Decision tree-based assembly; maximum number of splits= 2224; number of learners= 30 0.76

Naïve Bayes — 0.70

SVM C parameter (box constraint level)= 1; kernel scale mode= automatic; kernel= Linear 0.75

SVM C parameter (box constraint level)= 1; kernel scale mode= automatic; kernel= quadratic 0.72

SVM C parameter (box constraint level)= 1; kernel scale mode= automatic; kernel= cubic 0.67

Coarse KNN Number of neighbours= 100; distance= Euclidean 0.74

Medium KNN Number of neighbours= 10; distance= Euclidean 0.67

Narrow neural Number of fully connected layers= 1; number of neurons= 10; activation function= ReLU; iteration
limit= 1000

0.68
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Table 4. Data of the study patient.

Group 1 General and anthropometric data

Sex Woman

Age 30 years old

BMI 55.27

NCL 38 cm

Habits of the patient

Smoker No

Packs-per-year index –

Drinking habits No

Grams of alcohol –

Diseases

Hypertension No

Resistant hypertension No

ACVA No

ACVA less than a year ago No

Diabetes No

Ischaemic heart disease No

COPD No

Need for home oxygen-therapy No

Rhinitis No

Depression Yes

Atrial fibrillation No

Heart failure No

Drug treatments

Benzodiazepines Yes

Antidepressants Yes

Neuroleptics No

Antihistamines No

Morphic No

Relaxing/hypnotic drugs Yes

(continued)
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convex optimization problems,8 which work with large
chains of summands in regression and classification pro-
cesses, we can overcome many of the difficulties associated
with the same process using traditional statistical models.

Having said this, we can specify the innovative features
that will be included in our proposal:

• Image shape: The shape is one of the elective character-
istics of the data structure created. Its choice is not
random, but is due to the nature and own operation of
the filters in the convolution operations, usually referred
to Cartesian operations understood as matrix multiplica-
tions on larger square or rectangular matrices. Hence, the
prioritized and logical choice is to use square or rect-
angular images. Furthermore, square shapes in input
images are generally more relevant in this case, due to
the usual architecture pre-training processes. This facil-
itates compatibility with such standard architectures
(such as AlexNet,15 VGG,49 ResNet,50 etc.), which sig-
nificantly reduces training times and the required com-
putational capacity.

• Data layout: Once choice for the image’s external shape
has been justified, the choice of the internal arrangement
should be reasoned. In this work it is proposed that each
variable be represented in the image through the use of a
rectangle of variable area positioned in a certain region
of such image, with the objective of emulating a grid
structure. In this way, it tries to contribute to reducing
the computational complexity, since if the image con-
tains orthogonally separable regions, it will be easier
to process them and to favour the feature extraction by
optimizing the convolution filters. In addition, the
choice of GoogleNet is also very convenient, as it
addresses an implicit optimization of computational
resources by incorporating 1× 1 convolution
filters,53,61 which allows to reduce the dimension
before applying larger filters and the structures of the
inception modules. Therefore, the inclusion of orthogon-
ally separable zones in the images can theoretically
improve the efficiency and accuracy of GoogleNet,
although its design also focuses on optimizing the gen-
eralization. In addition, different colours (which have
been randomly selected) have been used in each of the

Table 4. Continued.

Group 2 Interview

Intra-sleep awakening Frequently (>2 times/week)

Snore awakening No

Asphyxia awakening No

Short-of-breath awakening No

Unrefreshing sleep Daily

Daily tiredness Daily

Lack of focus Often (>2 times/week)

Perceived drowsiness Often (>2 times/week)

Morning dullness Often (>2 times/week)

Nocturia Sometimes (≤2 times/week)

Snorer No

High-intensity snorer No

Evidenced apnoeas No

Epworth scale 16

Note. The data are summarised in two groups, firstly in Group 1, those related to the digital health record, and secondly in Group 2, those related to the
patient’s symptomatology.
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rectangles to represent the different casuistry, increasing
the formalization capabilities of the structure. As before,
the reason for this is not accidental. The convolution
filter or kernel slides through the image sequentially
depending on values such as the stride and the size of
the filter itself. Analysing these values, it is considered
that a regular arrangement of rectangular-shaped infor-
mation structures categorized by their colour would
always remain under the influence of the kernel’s
sliding process, adjusted in any case by the set stride
value and, as said, the size of the filter. This guarantees
the representativeness of the collected information, i.e.,
edges and colours would be gathered under the influence
of the size and characteristics of colour kernels ensuring
their influence on the generalization process. Certainly,
the distribution of these rectangular structures could

even be parameterized under the condition of a further
optimizable hyper-parameter in the training and valid-
ation process of the network.

• Implicit data formalization: The process of transforming
the tabulated data into the image is carried out in four
phases. After creating an empty image in the first
phase, in the second phase four rectangular sectors are
defined on the image. Each of them represents informa-
tion of great relevance in the diagnostic process accord-
ing to established medical criteria. Thus, Sector 1
represents the patient’s sex (several studies suggest
that man sex is an important OSA-related risk factor).
Sector 2 represents the evidenced apnoeas; in this
sense, sleep tests aim to quantify the number of
apnoea–hypopnoea events that the patient presents
during sleep, and this is why, a priori, this variable is

Figure 8. Screenshot of the software application in the case study.
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considered of great importance since it could help to
identify those patients who present this type of events
more frequently. Sector 3 represents the Epworth
scale, an indicator that aims to evaluate daytime sleepi-
ness in adults; this is a highly relevant metric, as it can
reveal individuals with poor quality, non-refreshing
sleep. Finally, Sector 4 represents a composition of
age, body mass index and neck perimeter; these are
anthropometric data of great relevance in the diagnosis
of OSA. Once this has been done, in Phase 3 the rest of
the variables are represented by using smaller rectangles
over the different sectors, grouped according to their typ-
ology in different sub-sectors (e.g. symptoms, drugs
taken, previous diseases, habits, etc.). Lastly, in Phase 4
the image gets enriched with information obtained
through a previous clustering process supported by the
use of the k-means method. The use of unsupervised learn-
ing models, in this case through clustering approaches,
allows the identification of latent patterns in the data,
grouping similar observations. By incorporating not only
these groupings, but also the relationships between them,
a more complete and detailed representation of the starting
data is achieved, adding an additional layer of complexity
to themodel. By doing so, it is possible to find relationships
that may not be evident in the starting data set, that are dif-
ficult to capture with traditional learning models, and that
can be easily integrated into an image, thus facilitating
the construction of a more robust model that is less
prone to be affected by noise and overfitting.

Furthermore, it is important to clarify that the network top-
ology to be used is not a fundamental issue, at least in this
paper. We have chosen to use GoogleNet, although any
other topology could be used. This is because this proposal
focuses on the utility of converting tabular data into images,
rather than on the selection of a particular network to
process these images. It would be possible to use simpler
topologies than GoogleNet, or more computationally
complex ones, which would influence the network’s
ability to detect greater complexity in image construction,
which the authors believe strengthens this proposal, since
it would be possible to translate large amounts of data
into more complex images that can be analysed by a CNN.

It is also worth highlighting the results obtained from a
comparison of the intelligent system with other learning
models, representative of the groups of algorithms categor-
ized as geometric, probabilistic, or logical. Although the
methodology presented is at a first proof-of-concept stage,
the comparison shown in Table 3 suggests that the predict-
ive capacity of our proposal is at least equal to or better than
that of other widely used models. This allows us to assess
its potential for growth and improvement, and to establish
a measure of its technical relevance.

Finally, once the images have been created, a tool such as
Grad-CAM is used to improve the data layout and avoid the

optimization of the parameterization described above. Its
use makes it easier to visualize the areas that the network con-
siders important formakingpredictions,without attempting to
determine the influence of the independent variables of the
problem or to explain in detail why. When using a CNN as
an inference engine in an intelligent system, one must
assume an inherent difficulty in interpreting its predictions,
a difficulty related to the complexity of the model itself.62,63

Although there are other explanatory artificial intelligence
tools that could be useful, such as SHAP (SHapley Additive
exPlanations),64 which offer a more detailed approach to the
influence of data on predictions, in general they all take an
inductive approach to knowledge that is ephemeral and
context-dependent, which does not fit the purpose of this
work. In this framework, Grad-CAM is used to illustrate
these relationships in a visual way, providing insight into spe-
cific activations,without pretending tooffer an exhaustive jus-
tification from amedical point of view,which could be useful:

• Validating the representation of the features: Through
the visual inspection process, it is possible to determine
if the features incorporated into the images are being cor-
rectly captured and used by the model in the predictions.

• Identifying problem areas in the image and model errors:
Visual inspection, together with the model predictions,
facilitates the identification and correction of possible
inconsistencies between the tabulated features and the
generated visual representations, which contributes to
continuous model improvement.

Conclusions
In this paper we have described the design, development,
and proof of concept of an intelligent system to predict pos-
sible sleep apnoea cases. In contrast to other works in the
same line, a novel model of formalization and representa-
tion of information based on the accommodation of high-
dimensional data into new structures in the form of two-
dimensional images has been proposed. This approach
has not only lowered the harmful effects associated with
datasets with a large number of initially independent vari-
ables, but has also improved the adaptation of DL models
to the inductive capture of the nonlinear relationships of
these variables with the proposed categories. The results
derived from the proof of concept show high classification
accuracy with ROC curve areas close to 0.8, determining
classifiers of substantial diagnostic reliability. This value
was compared with those obtained by applying various
state-of-the-art models, none of which achieved a similar
result to our proposal. This opens up a set of unique and
potentially achievable opportunities to represent massive
datasets in perfectly identifiable structures that could be
processed by deep network topologies, which as observed
in the results will improve the generalization capabilities
of these on the initial data.
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However, we must consider several limitations that
could impact the interpretation and application of our
findings:

• Reduced dimensionality and overfitting: Working in
more limited dimensionality spaces reduces training
times and datasets but introduces a tendency towards
inevitable overfitting. This overfitting can increase as
the complexity of the generated image rises, depending
on the size of the initial dataset. In an overly optimistic
framework, this might unnecessarily augment the com-
plexity of the model and lead to poor results in test
runs. To mitigate these effects, strategies such as apply-
ing regularization techniques or incorporating validation
during the model training phase, using dropout layers
during training, or even optimizing stride and padding
values during training could be employed.

• Challenges in data formalization and image creation: The
process of image creation itself is not devoid of challenges.
The definition of shape, internal composition, and colour
of the images follows a parallel rationale to the use of
kernels in convolution layers. However, a detailed analysis
of these elements, their sequencing in the network archi-
tecture, and their internal stride settings might suggest
the need for different shapes, compositions, or even
colours. The choice of the correct geometric arrangements
and colour schemes can significantly affect the efficiency
with which the different convolution filters identify and
interpret the initial features, potentially affecting the accur-
acy of the algorithm. For example, inappropriate colour
coding could obscure important distinctions between
classes, leading to misclassifications. The objective param-
eterization of the layout and the establishment of effective
shape factors are crucial. These adjustments will allow for
the incorporation of new hyperparameters aimed at
improving network performance.

• Choice of convolutional network model: This proposal
focuses on the utility of converting tabular data into
images, rather than on the selection of a particular
network to process these images. The choice of architecture
is important because different network topologies have dif-
ferent capabilities for capturing andmodelling features from
complex images. It would be possible to use topologies that
are simpler than GoogleNet, or more computationally
complex, which would affect the ability of the network to
recognize greater complexity in image construction.

• Interpretation of model predictions: The ability to inter-
pret the predictions of highly complex models such as
DL is virtually non-existent.62,63 Knowing the reason
for the predictions and their implications is a very rele-
vant issue in medical settings, such as the diagnosis of
obstructive sleep apnoea. In this proposal, Grad-CAM
has been used to facilitate the visualization of the most
relevant areas of the images in the inference process
with a CNN. However, although Grad-CAM provides

a useful visualization of the features highlighted by the
CNN in its prediction, it does not provide a direct inter-
pretation, nor does it attempt to explain why. The tech-
nique shows active areas related to network output but
does not explain why these areas are medically relevant,
which was not the purpose of this work, although it
could certainly limit the usefulness of our methodology
in contexts where interpretability is mandatory. To
achieve this, one could opt for the use of other explain-
able artificial intelligence (XAI) approaches,65 although
these generally take an inductive and ephemeral
approach to knowledge. That is, they would allow statis-
tical reasoning between predictor and predicted vari-
ables, but they would not be able to create permanent,
unchanging, and structural knowledge.

Each of these limitations points towards specific areas for
future research, where methodological and architectural
adjustments can potentially enhance the robustness and
applicability of our model in clinical and research contexts.
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