
Nonlinear social evolution and the emergence 
of collective action
Benjamin Allen a,*, Abdur-Rahman Khwaja a, James L. Donahue a, Theodore J. Kellya, Sasha R. Hyacinthea, Jacob Proulxa, 
Cassidy Lattanzio a, Yulia A. Dementieva a and Christine Sample a

aDepartment of Mathematics, Emmanuel College, Boston, MA 02115, USA
*To whom correspondence should be addressed: Email: allenb@emmanuel.edu
Edited By: David Rand

Abstract
Organisms from microbes to humans engage in a variety of social behaviors, which affect fitness in complex, often nonlinear ways. The 
question of how these behaviors evolve has consequences ranging from antibiotic resistance to human origins. However, evolution with 
nonlinear social interactions is challenging to model mathematically, especially in combination with spatial, group, and/or kin 
assortment. We derive a mathematical condition for natural selection with synergistic interactions among any number of individuals. 
This result applies to populations with arbitrary (but fixed) spatial or network structure, group subdivision, and/or mating patterns. In 
this condition, nonlinear fitness effects are ascribed to collectives, and weighted by a new measure of collective relatedness. For weak 
selection, this condition can be systematically evaluated by computing branch lengths of ancestral trees. We apply this condition to 
pairwise games between diploid relatives, and to dilemmas of collective help or harm among siblings and on spatial networks. Our 
work provides a rigorous basis for extending the notion of “actor”, in the study of social evolution, from individuals to collectives.
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ganism’ fitness depending on the combined actions of multiple others. We provide a mathematical modeling approach to analyzing 
natural selection with complex interactions and population structures. Our approach highlights the role of collectives—groups of in
dividuals whose actions combine to affect the fitness of others. We derive a mathematical condition that shows how the behavior of 
collectives—like that of individuals—is shaped by natural selection. Applying this condition to interactions between family members, 
and among local communities in a network, illuminates the critical roles played by synergy and genetic relatedness in the evolution of 
collective behavior.
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Introduction
The evolution of social behavior—behavior that affects the fitness 
of others—has been a focus of inquiry since the origins of evolu
tionary biology (1, 2). Examples range from pairwise interactions 
such as food sharing (3), grooming (4), and contests over mating 
or food (5), to large-scale collective actions such as pack hunting 
(6), living bridges (7), biofilm formation (8), and fruiting body ag
gregation (9). Understanding how these behaviors evolve requires 
linking their costs and benefits—for those interacting and others 
in the population—to the long-term fate of genes involved.

Social evolution has been investigated using a variety of 
theoretical approaches, including kin selection (10–12), multilevel 
selection (13–16), evolutionary game theory (17–19), and popula
tion genetics (20, 21). A particularly influential approach is inclu
sive fitness theory (10, 22–25), which quantifies selection on social 

behavior in terms of the fitness effects an actor has on itself and 
on others, weighted by genetic relatedness. These approaches il
luminate how the evolution of social behavior depends on pat
terns of genetic assortment (10, 26, 27), which in turn emerge 
from the population’s family (11, 27, 28), group (14, 16, 29), spatial 
(22, 30), and/or network structure (31–35).

The simplest interactions to analyze are those in which each in
dividual has a well-defined, additive effect on the fitness of each 
other individual. In this case, the aggregate effect on each individ
ual’s fitness depends linearly on the phenotypes of those involved. 
However, real-world social behavior is often nonlinear (6, 36–41). 
The effects of multiple actors may combine synergistically 
(more than the sum of separate contributions) (36), antisynergisti
cally (less than the sum) (37, 38), or may switch between synergis
tic and antisynergistic regimes (6, 39, 40). Nonlinear social 
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evolution has consequences ranging from cancer treatment (42) 
and antibiotic resistance (43) to the origins of human society (41).

Nonlinear interactions are integral to the evolutionary game 
theory (17, 18, 44–46), population genetics (20, 21, 47, 48), and 
multilevel selection (14, 16, 49, 50) approaches to social evolution, 
and have been incorporated into some inclusive fitness ap
proaches (26, 27, 51). However, nonlinear interactions are challen
ging to model mathematically, with computational complexity 
growing as the number of interacting agents increases (27, 46, 
52). In particular, nonlinearity makes it difficult to ascribe inclu
sive fitness quantities to individual actors (12, 25, 53). These chal
lenges are multiplied in populations with complex, heterogeneous 
structure (54–56).

Here, we derive a condition to determine the outcome of selec
tion involving nonlinear interactions among any number of indi
viduals. This condition—Eq. 10 below—is derived from a general 
modeling framework (57) that allows for heterogeneous spatial 
or network structure and arbitrary mating patterns. As in classical 
inclusive fitness theory (10), our condition involves a sum of fit
ness effects caused by an actor, weighted by their relatedness to 
each affected individual. However, since nonlinear effects are col
lectively produced, the actors here are collectives—arbitrary sub
sets of the population. This provides a way of understanding 
nonlinear social evolution in terms of competing individual and 
collective interests.

Modeling framework
We build upon a general mathematical framework for natural se
lection (57), allowing for arbitrary spatial structure, mating pat
terns, and fitness-affecting interactions (Fig. 1).  This framework 
encompasses classical models of well-mixed populations (58– 
60), as well as models with heterogeneous spatial structure (55) 
and nonrandom mating (61), but excludes models with changing 
population size or structure.

States and transitions
Taking a gene’s-eye view, we imagine a population of alleles, of 
types A or a, competing at a single genetic locus. Each allele lives 
at a particular genetic site, within an individual. Haploids contain 
one site each, diploids two. Sites may also be labeled with add
itional information such as sex, spatial location, and/or group 
membership.

The sites are indexed by a fixed set G, of size n. The allele occu
pying each site g ∈ G is indicated by a binary variable xg, equal to 1 
if g contains A and 0 if a. The overall population state is captured 
by collecting all variables xg into a binary vector, x.

In each state x, individuals may interact, migrate, mate, repro
duce, and/or die. On the gene level, some alleles are replaced by cop
ies of others. The new allele in each site g is either survived or copied 
from an allele previously occupying some site α(g) (Fig. 1a). Here, α is 
a parentage map (57) from G to itself, indicating the site from which 
each allele is inherited. Additionally, some (possibly empty) subset 
U ⊆ G of sites undergo mutation, interchanging A and a. This results 
in a new state, x′, whereupon the process repeats.

The probability that parentage map α and mutation set U occur 
in state x is denoted by px(α, U). These probabilities capture all 
consequences of social interaction, competition, mating, and re
production on the transmission of alleles to the next state. 
Sampling a pair (α, U) in each state x, and constructing the next 
state x′ accordingly, yields a Markov chain representing natural 
selection.

Mutation and selection parameters
The mutation rate is quantified by a parameter 0 ≤ u ≤ 1. For u = 0, 
mutation is absent, and either A or a ultimately becomes fixed, 
with probabilities depending on the initial state. For u > 0, the 
Markov chain converges to a unique stationary probability distri
bution over states.

Another parameter, δ ≥ 0, quantifies the intensity of selection. 
For neutral drift (δ = 0), the probabilities p(α, U) do not depend on 
the state x. Some of our results apply to arbitrary selection inten
sity. Others pertain to weak selection (δ ≪ 1), meaning that social 
interactions have small—but still potentially nonlinear (62)— 
effects on fitness.

Reproductive value
Even under neutral drift, some sites may contribute more than 
others to the future gene pool. We quantify this by assigning each 
site g a reproductive value, vg (63). Under neutral drift, a site’s repro
ductive value must equal the total reproductive value of itself (if it 
survives) and its offspring. This leads to the recurrence relation

vg =
􏽘

α
p(α)

􏽘

h∈α−1(g)

vh. (1) 

Equation 1, together with the normalization 
􏽐

g∈G vg = n, uniquely 

determines all reproductive values, vg (57). A homogeneous popu

lation, which looks the same from the perspective of any individual, 
has all reproductive values equal to one.

Quantifying selection
We quantify selection on two time-scales. On the scale of a single 
time-step, we define the fitness increment of each site g in state x 
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Fig. 1. Modeling framework. a) We consider a population of alleles at a specific locus. Alleles can be of type A or a. Each allele resides in a particular 
genetic site, within an individual. Each time-step, some alleles are replaced by copies of others, as a result of interaction, reproduction, mating, and/or 
death. This is recorded in a parentage map, α, indicating the parent allele of each site in the new state. b) The process of selection is represented as a 
Markov chain. State transitions are determined by sampling a parentage map α from a probability distribution, which depends on the current state and 
captures all effects of social interaction, spatial structure, mating pattern, and so on. With mutation, there is a unique stationary distribution over states. 
c) Multilateral genetic assortment is quantified by collective relatedness rS,g, which characterizes the likelihood that site g contains allele A when all sites 
in set S do. d) Under neutral drift, collective relatedness can be computed using the expected branch lengths, ℓS, of the tree representing S’s ancestry. The 
smaller the coalescence length ℓS, the more likely that sites in S contain the same allele.
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as the expected change in reproductive value from g to g’s pro
geny:

wg(x) = −vg +
􏽘

α
px(α)

􏽘

h∈α−1(g)

vh. (2) 

Overall, selection in a given state x is quantified by the expected 
change, Δ(x), in the total reproductive value of A alleles, 
􏽐

g∈G xgvg. This change can be computed using a variant of the 

Price equation (64):

Δ(x) =
1
n

􏽘

g∈G

wg(x)(xg − x̅), (3) 

where x̅ = 1
n

􏽐
h∈G xh is the (unweighted) frequency of A.

On the time-scale of the entire selection process, we say that 
selection favors allele A if, in the low-mutation limit, A has greater 
stationary frequency than a. Equivalently, selection favors A if, for 
u = 0, A is more likely to replace a than vice versa, when starting 
from a single mutant. We prove (SI Appendix, Theorem 3.3) that 
selection favors A if and only if

dE[Δ(x)]
du

􏼌
􏼌
􏼌
􏼌
u=0

>0, (4) 

where E denotes expectation over the stationary distribution, 
echoing similar results in other frameworks (22, 24, 65).

Results
Collective relatedness
With nonlinear interactions, selection depends on multilateral 
patterns of genetic assortment (26, 27, 48, 51, 55). To quantify 
these patterns, we define the collective relatedness, rS,g, of a set 
S of sites to a single site g:

rS,g = lim
u→0

E xS xg − x̅
( 􏼁􏼂 􏼃

E x̅(1 − x̅)
􏼂 􏼃 . (5) 

Above, xS =
􏽑

h∈S xh has value 1 if all sites in S contain allele A, and 
0 otherwise. The numerator in Eq. 5 quantifies whether g is more 
or less likely than an average site to contain allele A, when all of S 
does. The denominator is the expected allelic variance in the 
population. Equation 5 generalizes standard pairwise relatedness 
measures—based on covariance (11), identity-by-descent (22), 
and geometry (66)—and builds upon previous efforts to extend re
latedness beyond pairs (26, 27, 51, 67).

Collective relatedness is difficult to calculate for arbitrary se
lection intensity. For neutral drift (δ = 0), however, it can be com
puted using coalescent theory (68, 69). The key quantity is the 
coalescence length, ℓS, defined as the expected total branch length 
of a tree representing the ancestry of set a S (Fig. 1d). Tracing 
one step back in time leads to the recurrence relation

ℓS = |S| +
􏽘

α
p(α)ℓα(S). (6) 

Equation 6, together with ℓS = 0 for singleton sets S, uniquely de
termines all coalescence lengths (70). If mutation rates vary over 
sites, the coalescence lengths are scaled accordingly; see SI 
Appendix, Eq. 4.8. Employing a well-known relationship between 
coalescence length and identity-by-descent probability (70, 71), 
we derive (SI Appendix, Eq. 4.15) a formula for neutral collective 
relatedness in terms of coalescence lengths:

rS,g =
ℓ̅S − ℓS∪{g}

ℓ̅
. (7) 

Above, ℓ̅S is the average of ℓS∪{h} as h runs over all sites in G, and ℓ̅ is 

the average of ℓ{h,k} over all pairs h, k ∈ G.

Main result
To obtain a condition for selection, we write the fitness incre
ments, wg(x), uniquely in the polynomial form (72)

wg(x) =
􏽘

S⊆G

cS,gxS. (8) 

Each coefficient, cS,g, represents a synergistic effect on g’s fitness 

that arises only if all sites in S contain allele A. As S runs over all 
subsets of G, the terms cS,gxS form the building blocks of any non

linear dependence of wg on the state x. Substituting this represen

tation into Eq. 3 yields

E[Δ(x)] =
1
n

􏽘

g∈G

􏽘

S⊆G

cS,gE[xS(xg − x̅)]. (9) 

Dividing by E[x̅(1 − x̅)], taking u→ 0, and applying Eqs. 4 and 5, we 
arrive at our main result (SI Appendix, Theorem 5.1): Selection fa
vors allele A if and only if

􏽘

g∈G

􏽘

S⊆G

cS,grS,g > 0. (10) 

This condition has two complementary interpretations. The first 
is recipient-centered: for a given site g, the sum 

􏽐
S⊆G cS,grS,g char

acterizes the expected fitness effect of all social interactions expe
rienced by an A allele in this site. A is favored if the total effect on 
A alleles, over all sites g, is positive. The second is actor-centered: 
for a given set S of sites, the sum 

􏽐
g∈G cS,grS,g has the form of an in

clusive fitness effect (10), in that S’s contribution, cS,g, to the fitness 

of each site g, is weighted by collective relatedness, rS,g. However, in 

contrast to standard inclusive fitness theory, the actor, S, is not an 
individual but a collective—a set of genetic sites that can synergis
tically affect the fitness of themselves and others.

Equation 10 is valid for any selection intensity, but difficult to 
evaluate because the collective relatedness coefficients, rS,g, de
pend on the selection process. For weak selection, however, col
lective relatedness can be computed at neutrality using Eqs. 6
and 7 (SI Appendix, Theorem 5.2). This provides a method to 
evaluate weak selection on any nonlinear fitness-affecting behav
ior, with arbitrary spatial, network, group, and/or mating struc
ture. If the synergistic fitness effects cS,g vanish for sets S above 
a fixed size, this computation takes polynomial time.

Phenotypic condition
For diploids, we derive an equivalent condition at the level of phe
notypes. We consider a fixed set I of individuals. AA individuals 
have phenotype 1, aa’s have phenotype 0, and Aa’s have pheno
type 1 with some probability h (representing the degree of genetic 
dominance) and 0 otherwise. Overall, an individual i, with genetic 
sites i1 and i2, has phenotype 1 with probability

φi = h(xi1 + xi2 ) + (1 − 2h)xi1 xi2 . (11) 

In analogy with Eq. 5, we define the collective relatedness of a set J 
of individuals to an individual i:

rJ,i = lim
u→0

E
􏽑

j∈J φj

􏼐 􏼑
(x̅i − x̅)

􏽨 􏽩

E x̅(1 − x̅)
􏼂 􏼃 , (12) 

where x̅i = (xi1 + xi2 )/2 is the frequency of allele A in individual i. 

This leads to a phenotypic analog of Eq. 10 (SI Appendix, 
Theorem 5.5): selection favors allele A if
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􏽘

i∈I

􏽘

J⊆I

cJ,irJ,i > 0, (13) 

where cJ,i is a synergistic effect on i’s fitness that arises when all 

individuals in set J have phenotype 1.

Games between diploid relatives
As a first example, let us consider an interaction between diploid 
relatives, represented by the game matrix

C D
C
D

b − c + d −c
b d

􏼒 􏼓
. (14) 

In this game, Cooperators (C) pay cost c to provide benefit b to the 
other player, while Defectors (D) do not. Additionally, both players 
receive a synergistic effect, d, if they play the same strategy. 
Allowing b, c, and d to be arbitrary, any 2 × 2 matrix game can be 
written in the form of Eq. 14, up to an additive constant that 
does not affect selection.

Given a representative pair of interaction partners, i, j ∈ I, with 
respective phenotypes φi and φj (1 for C, 0 for D), the expected pay
off to i is

fi = −cφi + bφj + d(φiφj + (1 − φi)(1 − φj)). (15) 

Under weak selection, the fitness increment of each individual i is 

proportional to fi − f̅ , where f̅ is population average payoff. 
Applying Eq. 13, weak selection favors cooperation if

−cr{i},i + br{j},i + d 2r{i,j},i − r{i},i − r{j},i

􏼐 􏼑
> 0. (16) 

We quantify the kin relationship between partners by the prob
abilities, p1 and p2, that their maternally inherited and paternally 
inherited alleles, respectively, descend from the same allele copy 
in a recent common ancestor. For example, maternal half-siblings 
have p1 = 1/2 and p2 = 0, while full cousins have p1 = p2 = 1/8. 
Computing neutral collective relatedness according to Eq. 12
with the aid of Eq. 7 (SI Appendix, Section 8.6), we find that (i) self- 
relatedness is r{i},i = 1/2 for diploids; (ii) relatedness to partner is 

r{j},i = r/2, where r = (p1 + p2)/2 is Wright’s (73) coefficient of rela

tionship (one-half for full siblings, one-eighth for cousins, etc.); 
and (iii) the pair’s collective relatedness to each partner is

r{i,j},i =
1 + r

4
+

h −
1
2

􏼒 􏼓

(r − p1p2)

6
, (17) 

where h is the degree of dominance for the Cooperator phenotype. 
Substituting into Eq. 16, weak selection favors cooperation if and 
only if

−c + br +
2d h −

1
2

􏼒 􏼓

(r − p1p2)

3
> 0. (18) 

This condition augments Hamilton’s rule (10)—that cooperation 
is favored if the benefit, multiplied by relatedness to the target, 
exceeds the cost—with an additional term capturing the joint ef
fects of synergy and genetic dominance. If h = 1/2 (no domin
ance) or d = 0 (no synergy), the third term vanishes and 
Hamilton’s rule, br > c, is recovered. The factor r − p1p2 in the 
third term is nonnegative, and strictly positive unless partners 
are clones (p1 = p2 = 1) or unrelated (p1 = p2 = 0). Cooperation is 
therefore promoted if it is synergistic (d > 0) and mostly domin
ant (h > 1/2), or antisynergistic (d < 0) and mostly recessive 
(h < 1/2). Although we have described this scenario in terms of 
cooperation, Eq. 18 applies to any two-player, two-strategy 
game played by diploid relatives. This result extends previous 
analyses of evolutionary games between relatives, as we discuss 
in SI Appendix, Section 8.7.

Collective Action Dilemma
To illustrate the application of Eq. 10 to collective help or harm, we 
introduce the “Collective Action Dilemma” (Fig. 2). A collective S, 
of size m, may help or harm a target g, inside or outside of S. 
Members of S may contribute, or not, to this action. If all contrib
ute, g receives a “benefit” b (positive for help, negative for harm); 
otherwise, no benefit is received. This action costs c/m to each of 
S’s members, for a total cost of c > 0. Costs may be unconditional, 
meaning each contributor in S pays independently of others; or 
conditional, meaning contributors assess support for collective 
action (e.g. via quorum-sensing (74)) and pay only if the benefit 
would be achieved. This scenario resembles a threshold public 
goods game (45), except that the benefit goes to a specific target ra
ther than being divided equally among collective members. For 
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Fig. 2. Collective Action dilemma. A collective S, of size m, may help or harm a target g. There are two heritable strategies: (C)ontribute or (D)o not 
contribute. If all members of S contribute, g receives benefit b; otherwise no benefit is received. a) For unconditional costs, each Contributor in S pays cost 
c/m. b) Applying Eq. 10, selection favors collective action if brS,g > crself . c) If the target g belongs to S, then rS,g is replaced by S’s intrarelatedness rS. d) 
Conditional costs are only paid if the benefit would be achieved. e) Action is favored if brS,g > crS. f) If the target belongs to S, the condition becomes 
brS > crS, which reduces to b > c.
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targets outside S, action represents collective altruism (b > 0) or 
spite (b < 0).

Applying Eq. 10, we obtain a collective form of Hamilton’s rule 
(10): collective action is favored if

brS,g > crself (unconditional costs)
brS,g > crS (conditional costs). (19) 

Above, rself = (1/m)
􏽐

h∈S r{h},h is the average self-relatedness 

among S’s members, and

rS = lim
u→0

xS − xSx̅
E x̅(1 − x̅)
􏼂 􏼃 (20) 

is the common value of rS,g for all members g of S. Analogous con

ditions apply at the phenotype level, using Eqs. 12 and 13.
For collectives of two or more, rS < rself . This means, intuitively, 

that collective action is more easily selected when costs are con
ditional. If the target belongs to S, then rS,g = rS, and action is fa
vored for unconditional costs if brS > crself , and for conditional 
costs if brS > crS, or simply b > c.

Well-mixed haploid population
We first consider the Collective Action Dilemma in a haploid, well- 
mixed population of size N (Fig. 3a). Using Eqs. 6 and 7 (SI Appendix, 
Section 7.3), we compute rself = 1, rS = (N − m)/(m(N − 1)), and rS,g = 
−1/(N − 1) for g outside of S. Since rS.g < 0, collective help to out
siders is never favored according to Eq. 19. Harm to outsiders is 
favored if b < −(N − 1)c for unconditional costs, or mb < −(N − m)c 
for conditional costs, but these conditions become infeasible for 
large N. Collective help to a member (with unconditional costs) 
is favored if (N − m)b > m(N − 1)c. In particular, the benefit must ex
ceed m times the cost. Interestingly, this condition applies even if 
intermediate benefits arise when only some in S contribute (SI 
Appendix, Theorem 7.1).

Diploid siblings
J.B.S. Haldane famously quipped that he would jump into a river to 
save two brothers, or eight cousins. But what if Haldane must col
laborate with one or more siblings to save another (28, 75)? We re
present this as a Collective Action Dilemma, with a collective J of 
full siblings and a target sibling i outside the collective.

For unconditional costs, applying Eq. 19 at the phenotype level, 
collective J is favored to help individual i if brJ,i > crself . Evaluating 
Eq. 12 by way of Eq. 7, we obtain (SI Appendix, Section 8.4) 
rself = 1/2, and rJ,i = 1/4 for i outside of J. Substituting, weak selec
tion favors J to collectively help i, with unconditional costs, if 
b > 2c. Thus, two of Haldane’s siblings will sacrifice themselves 
to save four, three to save six, and so on. This condition applies 
even if intermediate benefits accrue when only some in J contrib
ute, because the relatedness to the target sibling, rJ,i = 1/4, is inde
pendent of the collective’s size.

For conditional costs, help is favored if brJ,i > crJ, or equivalently, 
b > 4crJ. The values of rJ are given in Table 1. For large collectives, rJ 

approaches 1/4; in this case, help to a sibling is favored whenever 
there is a net benefit, b > c.

Collective action on networks
Network structure—representing spatial or social relationships— 
profoundly affects the evolution of social behavior (31, 32, 35). 
Exact results have been derived for pairwise interactions (32, 33, 
35), but are difficult to obtain for interactions beyond pairs (34, 
54, 56, 76). A general finding is that network structure promotes 
selection for cooperative behavior among neighbors (31, 32, 35) 
and in localized groups (34, 54, 56, 76). However, little theory exists 
for how spatial collectives evolve to act toward outsiders, or to
ward different members within the collective.

Here, we analyze the Collective Action Dilemma with uncondi
tional costs on networks, played by a given collective S and target 
node g. Strategies reproduce via death–Birth updating (31, 32, 35): 
First, a node is chosen, with uniform probability, to be replaced. 
Then, a neighbor is chosen with probability proportional to 
(payoff) × (edge weight) to reproduce into the vacancy.

Condition for selection
The collective Hamilton’s rule, Eq. 19, does not directly apply on 
networks, because death–Birth updating induces two additional 
effects on fitness. First, since higher degree nodes have more op
portunities to reproduce, each node h has reproductive value pro
portional to its degree, dh (77). Second, when a site becomes 
vacant, the neighbors competing to fill the vacancy are two-step 
neighbors of each other (31, 32). Consequently, any effect on h’s 
payoff induces a compensating effect on h’s two-step neighbors 

a b c d

Fig. 3. Collective action on networks. We analyze the Collective Action Dilemma, with unconditional costs, on a fixed network of size N. a) In a well-mixed 
population, represented by a complete graph, a collective of size m is favored to help a member if (N − m)b > m(N − 1)c, and favored to harm an outsider if 
b < −(N − 1)c. b) For a large (N ≫ 1) cycle network, a connected collective of four or more nodes is favored to help its own boundary nodes if b > 2c, and the 
neighbors of these boundary nodes if b > 4c; neither help nor harm are favored to other nodes. c) On a windmill network with k ≫ 1 blades, a blade is 
favored to help the hub if kb > 7c. This can occur even if the benefit is a small fraction of the cost. In contrast, help to a node within the blade is only favored 
if 41b > 56c. Harmful behavior is favored toward nodes in other blades if b < −14c. d) The “spider” network displays similar behavior, but help is more 
readily favored to the inner node of a leg (25b > 21c) than to the outer node (b > 2c). Results in panels b–d refer to large populations (N ≫ 1); results for finite 
N are derived in SI Appendix, Sections 9.5–9.7, and shown in Fig. S1.
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(33). Including these effects in Eq. 10, weak selection favors S to 
help or harm g if (SI Appendix, Eq. 9.9)

bdg rS,g − r(2)
S,g

􏼐 􏼑
>

c
m

􏽘

h∈S

dh rh − r(2)
h

􏼐 􏼑
. (21) 

Above, r(2)
S,g is the mean collective relatedness of S to two-step ran

dom walk neighbors of g, rh = r{h},h is the self-relatedness of node h, 

and r(2)
h = r(2)

{h},h is the mean relatedness of h to its own two-step 

neighbors. The left-hand side of Eq. 21 compares the effect of col
lective action on the target g (weighted by collective relatedness 
from S) to that on g’s two-step neighbors. The right-hand side 
makes the same comparison for costs paid. Equation 21 can be re
written in Hamilton-like form as

bκS,g > c, κS,g =
mdg rS,g − r(2)

S,g

􏼐 􏼑

􏽐
h∈S dh rh − r(2)

h

􏼐 􏼑 , (22) 

where κS,g is the cost–benefit threshold—also known as scaled re

latedness (24) or compensated relatedness (33)—for S to act on g.
If rS,g > r(2)

S,g—meaning S is more related to g than to g’s two-step 
neighbors—then κS,g is positive, and S can be favored to help g for 
sufficiently large benefit. If rS,g < r(2)

S,g, then κS,g is negative and only 
harm can be favored.

Simple networks
Applying Eq. 21 to theoretical network families reveals key fea
tures of spatial collective action (Fig. 3; SI Appendix, Sections 9. 
5–9.7 and Fig. S1). First, collective help is most strongly favored 
to targets near the collective’s boundary. For example, on a large 
cycle (Fig. 3b), a collective of four or more connected nodes is fa
vored to help its own boundary node if b > 2c, or the immediate 
neighbors of a boundary node if b > 4c. Second, help is never fa
vored (on any network) to interior members two or more steps 
from the collective’s boundary, because then rS,g = r(2)

S,g = rS and 
the left-hand side of Eq. 21 vanishes. Third, extreme collective al
truism—with benefit much less than the cost—can be favored to 
highly connected neighbors (Fig. 3c and d). Such “hubs” have 
high reproductive value, making them critical for the spread of al
leles. Fourth, collective harm can be favored to distant targets, 
when the collective is more related to the target’s two-step neigh
bors than to the target itself (Fig. 3c and d).

Spatial networks
For a more realistic model of 2D spatial structure, we turn to 
Delaunay networks (78), formed by placing random points in a 
square and linking neighbors (Fig. 4). Delaunay networks have 
been used to model cancer cells in solid tumors, which cooperate 
by producing growth hormones (40). They can also represent, for 
example, the spatial layout of chambers in communal nests of so
ciable weavers (Philetairus socius)—wherein males collectively 

maintain the nest and disperse locally within it (80)—or microbes 
on solid substrates that produce beneficial diffusible goods (81).

For localized collectives in Delaunay networks, we find that 
spatial structure promotes help to the majority of collective mem
bers (Fig. 4c), in line with previous findings from spatial public 
goods games (34, 56, 76). However, in some cases, spatial structure 
can inhibit help to a collective’s interior sites. This is because 
these interior sites are less relevant to whether the contributor al
lele spreads beyond the collective.

To those outside the collective (Fig. 4d), spatial structure can 
promote help to neighbors, and in rare cases neighbors-of- 
neighbors, but usually promotes harm to more distant targets. 
Costly help and harm both become less favored as collective size 
increases.

The same patterns emerge in observed spatial networks (80) of 
chambers in sociable weaver nests (Fig. S2). Our findings accord, 
for example, with the observation that microbial public goods pro
duction is favored only when diffusion is limited (81), or that soci
able weavers localize their nest-maintenance efforts to areas near 
their home chamber (80).

Complexity of selection
The condition for selection, Eq. 10, involves a sum over all subsets 
and sites in the population. In full generality, the number of terms 
grows exponentially with the population size. However, four fac
tors can substantially reduce the number of terms.

First, in realistic scenarios, the vast majority of collectives S will 
have negligible relatedness, rS,g, and/or potential for synergistic 
effects, cS,g, to all or most targets g. In spatially structured popula
tions, for example, only nearby individuals are likely to have suf
ficient collective relatedness and synergistic potential to 
contribute significantly to selection. In theoretical models, one 
need only consider collectives S that are involved in the interac
tions being modeled, which are typically a small fraction of all 
possible subsets.

Second, for models with symmetry (82), only one term is 
needed for each class of collectives. For example, all sets of three 
consecutive nodes on the cycle (Fig. 3b) comprise a class, since 
they are equivalent by rotation. Each such class can be repre
sented by a single term in Eq. 10, dramatically reducing the num
ber of terms.

Third, in empirical contexts, statistical significance criteria can 
be used to eliminate terms. As a statistical analog of the polyno
mial representation in Eq. 8, one may form the polynomial regres
sion model (SI Appendix, Section 11)

Wg =
􏽘

S∈Sg

cS,g xS + ϵg,x. (23) 

Above, Wg is the realized fitness increment of site g, equal to the 

total reproductive value of g’s offspring minus g’s own reproduct
ive value, and Sg is a user-defined set of subsets thought to play a 

Table 1. Collective intrarelatedness, rJ, of m full siblings in a diploid population.

# of siblings, m 1 2 3 4 5 m→ ∞

Arbitrary dominance, h 1
2

17+2h
48

57+12h−4h2

192
209+38h+12h2−24h3

768
801+104h+88h2−32h3−80h4

3072
1
4

Recessive (h = 0) 1
2

17
48

19
64

209
768

267
1024

1
4

No dominance (h = 1
2)

1
2

3
8

31
96

19
64

433
1536

1
4

Dominant (h = 1) 1
2

19
48

65
192

235
768

881
3072

1
4

Collective relatedness is computed using Eqs. 7 and 12 in SI Appendix, Section 8.4.
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causal role in g’s fitness. The cS,g may then be estimated via 

least-squares regression. Terms that do not meet a significance 
threshold may be removed from Sg, and hence also from Eq. 10. 

Symmetry (82) may be used to further reduce the number of terms 
in Eq. 23.

Fourth, suppose that alleles affect phenotypes by only a small 
amount, ϵ. This is a stronger assumption than weak selection in 
the sense used here (62). In this case, the synergistic effects cS,g 

of a collective S of size m are of order ϵm. The phenotypic condition, 
Eq. 13, can then be approximated to any order k in ϵ by disregard
ing collectives larger than size k (SI Appendix, Section 5.6). In par
ticular, to first order in ϵ, only singleton “collectives” contribute, 
and Eq. 13 reduces to the approximate condition

􏽘

j∈I

􏽘

i∈I

c jir ji > 0. (24) 

In this approximation, the inner sum, 
􏽐

i∈I c jir ji > 0, can be under

stood as the inclusive fitness effect of individual j (10, 22). Thus, if 
phenotypic differences are very small, Eq. 10 reduces to the condi
tion that the total inclusive fitness effect of all individuals is posi
tive. The larger the phenotypic differences, however, the more 
significantly larger collectives contribute to selection in Eq. 10.

Discussion
Our work provides mathematical and conceptual tools for under
standing natural selection with nonlinear social interactions. In 
particular, Eq. 10 shows how selection for social behavior depends 
on genetic assortment (quantified by rS,g) and synergy (quantified 
by cS,g). Evaluating this condition—by means of Eqs. 6 and 7—al
lows for systematic analysis of weak selection in models of non
linear social behavior.

Our results apply to a broad class of models, with haploid or 
diploid genetics, and any fixed spatial structure, mating pattern, 
and/or fitness-affecting interactions. In contrast to approaches 
that analyze change from a given population state (26, 27, 48, 
64), Eq. 10 applies to the overall selection process, from mutant 
appearance to fixation.

Many social behaviors of interest—including collective actions 
such as biofilm formation (8)—alter the population structure it
self. It will therefore be important to extend Eq. 10 to populations 
with dynamic structure. A promising first step is provided by Su 
et al. (83), who generalize the formalism of sites and parentage 
maps to dynamic structures.

Synergy and collective actors
The evolution of social behavior is most often studied at the level 
of individual actors. Inclusive fitness theory, in particular, adopts 
an actor-centric perspective by quantifying selection in terms of 
an individual’s effects on the fitness of itself and others (10, 25, 
84). This actor-centric perspective can be useful in guiding intu
ition (25, 84, 85). However, in nonlinear interactions, fitness effects 
do not cleanly separate into distinct contributions from individual 
actors (25, 84–87). While it is possible to assign fitness effects to in
dividuals using linear regression (88, 89), the resulting regression 
coefficients have limited interpretive value (85–87).

Our approach resolves this difficulty by extending the notion of 
“actor” to collectives. Any synergistic effect, cS,g, arising whenever 
an allele is shared among set S, is ascribed to S collectively rather 
than to its members.

Nonlinear social interactions generally involve overlapping col
lectives at multiple scales (Fig. 5). The dependence of a site g’s fit
ness on the state x, in Eq. 8, may involve linear terms, c{h},g xh, 
ascribed to individual sites, quadratic terms, c{h,j},g xhxj, ascribed 
to pairs, cubic terms ascribed to triples, and so on. Similarly, a syn
ergistic or conditional interaction between two collectives, S and 
T, gives rise to fitness effects, cS∪T,g, ascribed to the joint collective, 
S ∪ T.

Collective inclusive fitness
The overall contribution of a collective S to selection can be quan
tified by its “collective inclusive fitness effect” wIF

S =
􏽐

g∈G cS,grS,g. 
As in standard inclusive fitness theory (10), this effect can be de
composed into a term, rS

􏽐
g∈S cS,g, accounting for S’s interest in 

its own members’ fitness, plus terms cS,grS,g accounting for S’s 
interest in the fitness each external target g. Selection favors an 
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Fig. 4. Collective action on spatial networks. a–b) Delaunay networks (78) are a model of 2D spatial structure, formed by randomly placing points in a 
square and joining neighbors together. We identified network subcommunities using a spatial variant of the Girvan–Newman algorithm (79) (SI 
Appendix, Section 9.8.1). We then computed the cost–benefit thresholds κS,g, in the Collective Action Dilemma, from each subcommunity S to each target 
node g. Collective action is favored if bκS,g > c; larger values indicate greater propensity for action (positive for help, negative for harm). These are 
compared to the corresponding well-mixed thresholds, κ = (N − m)/(m(N − 1)) for members and κ = −1/(N − 1) for outsiders, to determine the effects of 
network structure. c) We generated 50 Delaunay networks of size 16, comprising 298 subcommunities. Spatial structure promotes help, in the sense 
κS,g > (N − m)/(m(N − 1)), to 86% of internal targets. The remaining 14% tend to be further inside the collective, away from the boundary. (Percentages 
exclude “collectives” of size one, which necessarily have κS,g = 1 to their one member.) d) Spatial structure promotes help (κS,g > 0) to 17% of external 
targets, of which 94% of which are neighbors of the collective and the rest are two-step neighbors. Harm is promoted (κS,g < −1/(N − 1)) to the majority of 
external targets. Selection for costly help or harm to outsiders decreases with collective size.
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allele if the total inclusive fitness effect of all collectives is posi
tive, 

􏽐
S⊆G wIF

S > 0.
In some circumstances, it has been shown that selection leads in

dividuals to act as if maximizing inclusive fitness (90, 91). Does this 
principle apply to collective actors? The answer is no in general, for 
two reasons. First, with multiple alleles, there is no guarantee that 
selection will favor one over all others. Rather, nontransitive com
petition (92, 93) may lead to evolutionary cycles or chaos (94), 
with no quantity maximized. Second, even if an allele is favored 
over all others, it does not necessarily follow that this allele causes 
any collective—let alone all of them—to act as if maximizing inclu
sive fitness. This is because Eq. 10, in the form 

􏽐
S⊆G wIF

S > 0, aggre
gates over the inclusive fitness interests of all collectives. When 
these interests diverge—as in conflict over worker reproduction in 
ant colonies (95)—selection averages over these interests, without 
leading to maximizing behavior for any of them (Fig. 5).

There is one case where selection leads to maximizing behav
ior. If a mutant allele affects the actions of only a single class of 
collective (e.g. three consecutive nodes on a cycle), this allele is fa
vored if wIF

S > 0, where S can be any representative of this class (SI 
Appendix, Theorem 10.1). Over many such mutations, with the 
actions of all other collectives held fixed, selection would lead col
lectives in this class toward maximizing behavior. However, this 
result requires the unrealistic assumption that mutations affect 
only one class of collectives while leaving fixed the behavior of 
all others—including these collectives’ members and subsets. 
Without this assumption, Eq. 10 implies that selection leads not 
to maximizing behavior, but to conflict and compromise over 
competing individual and collective prerogatives.

Collective adaptation
Although collective maximizing behavior is selected only in un
realistic scenarios, our results highlight a route to collective adap
tation (96, 97) in a more flexible sense. The greater the collective 
intrarelatedness, rS, and capacity for synergistic fitness effects, 
cS,g, the more a set S is predicted to evolve collective behaviors 
that align with its inclusive fitness interests. We see this principle 
at work in spatial networks (Fig. 4), wherein local subcommunities 
—especially smaller ones—can evolve collective behaviors that 
benefit the group and its immediate neighbors, even at cost to in
dividual members.

An even stronger capacity for collective adaptation is predicted 
in reproductively isolated groups, underscoring a key finding of 
multilevel selection theory (13–16, 96–98). Such groups have 

high intrarelatedness, rS, and many possibilities for synergistic be
havior (37, 41, 96). In our framework, collective adaptation does 
not require competition between groups; on the contrary, cooper
ation can be selected between groups that are closely related (high 
rS,g for neighbors g of S; see Fig. 4d). What is required instead is 
synergistic fitness effects, i.e. nonzero cS,g for the group S in ques
tion. If, in contrast, all fitness effects are linear (cT,g = 0 for all non
singleton sets T), then inclusive fitness effects vanish for all 
nonsingleton collectives, and any intragroup cooperation is ex
plainable in terms of individual-level adaptations.

Collective individuality
By conceptualizing collectives as actors on par with individuals, 
our framework may be useful in understanding the “paradox 
of the organism” (99, 100)—that organisms persist as integrated 
adaptive units despite the potential for intraorganismal conflict. 
Considering multicellular organisms as collectives of cells, Eq. 10
enables simultaneous analysis of selection pressures at organismal 
and suborganismal levels. Viewed in this light, the origin of multi
cellularity (101, 102) and other transitions in individuality (103, 
104) may be understood as the emergence of radical new forms of 
collective action. In this sense, all action is collective action.
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