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ABSTRACT
Objective One of the challenges in hypertrophic 
cardiomyopathy (HCM) is to determine the pathogenicity 
of genetic variants and to establish genotype/phenotype 
correlations. This study aimed to: (1) demonstrate that 
MYBPC3 c.2149–1G>A is a founder pathogenic variant, 
(2) describe the phenotype and clinical characteristics 
of mutation carriers and (3) compare these patients with 
those with the most frequent pathogenic HCM variants: 
MYBPC3 p.Arg502Trp/Gln.
Methods We reviewed genetic tests performed in HCM 
probands at our institution. We carried out transcript 
analyses to demonstrate the splicing effect, and 
haplotype analyses to support the founder effect of 
MYBPC3 c.2149–1G>A. Carriers with this mutation were 
compared with those from MYBPC3 p.Arg502Trp/Gln in 
terms of presentation features, imaging and outcomes.
Results MYBPC3 c.2149–1G>A was identified in 8 of 
570 probands and 25 relatives. Penetrance was age 
and sex dependent, 50.0% of the carriers over age 36 
years and 75.0% of the carriers over 40 years showing 
HCM. Penetrance was significantly higher in males: 
in carriers older than 30 years old, 100.0% of males 
vs 50.0% of females had a HCM phenotype (p=0.01). 
Males were also younger at diagnosis (32±13 vs 53±10 
years old, p<0.001). MYBPC3 c.2149–1G>A resulted in 
an abnormal transcript that led to haploinsufficiency and 
was segregated in two haplotypes. However, both came 
from one founder haplotype. Affected carriers showed 
a better functional class and higher left ventricular 
ejection fraction (LVEF) than patients with MYBPC3 
p.Arg502Trp/Gln (p<0.05 for both). Nevertheless, the 
rate of major adverse outcomes was similar between 
the two groups.
Conclusions MYBPC3 c.2149–1G>A splicing variant 
is a founder mutation. Affected males show an early 
onset of HCM and with higher penetrance than women. 
Carriers show better functional class and higher LVEF 
than MYBPC3 p.Arg502Trp/Gln carriers, but a similar 
rate of major adverse outcomes.

INTRODUCTION
Hypertrophic cardiomyopathy (HCM) is the 
most common inherited cardiac disease with 

an estimated prevalence of 1 in 500 indi-
viduals.1 HCM is a heterogeneous disease 
with a wide clinical spectrum, characterised 
by increased left ventricular wall thickness 
(LVWT) in the absence of abnormal loading 
conditions.1 2 Although many patients have 
asymptomatic or mildly symptomatic forms 
and normal life expectancy, other patients 
develop malignant phenotypes associated 
with sudden cardiac death (SCD) and end 
stage heart failure. Atrial fibrillation (AF) 

Key questions

What is already known about this subject?
 ► Hypertrophic cardiomyopathy (HCM) is the most 
common inherited cardiac disease, and it is genet-
ically and clinically heterogeneous. Thousands of 
pathogenic variants causing HCM have been de-
scribed but few genotype–phenotype correlations 
have been established because most of the patho-
genic variants are unique or seen in a limited num-
ber of families.

What does this study add?
 ► This study shows that MYBPC3 c.2149–1G>A is a 
founder mutation that alters splicing, changes the 
reading frame and causes a truncated protein. The 
cosegregation of MYBPC3 c.2149–1G>A in eight 
non- related HCM families confirms the pathogenici-
ty of the variant. Most MYBPC3 c.2149–1G>A carri-
ers present a moderate left ventricular hypertrophy, 
but a highly variable expressivity is observed. The 
incidence of major adverse outcomes is similar to 
other HCM variants. Male carriers show an earlier 
onset and a higher penetrance than female carriers.

How might this impact on clinical practice?
 ► The confirmation of MYBPC3 c.2149–1G>A patho-
genicity permits restricting the follow- up of relatives 
to mutation carriers. These will need lifetime sur-
veillance to early identify the development of dis-
ease and treat and prevent its complications.
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and left ventricular outflow tract obstruction (LVOTO) 
are additional common complications.3 HCM is inherited 
with an autosomal dominant pattern, with incomplete 
and age dependent penetrance. A pathogenic variant in 
a sarcomere gene is found in about 35%–50% of HCM 
cases and MYBPC3 is the most frequent affected gene.4–6

More than 2000 pathogenic variants in sarcomeric 
genes have been described until date. Most of them have 
a very low frequency in HCM cohorts or are confined to 
individual families.3 7 An exception is the MYBPC3 p.Ar-
g502Trp variant (c.1504G>T). Representing 1.5%–3% 
of HCM patients, this mutation is the most frequent in 
different HCM cohorts.4 7 8 Two other missense patho-
genic variants have been described at this position, p.Ar-
g502Gln (c.1505G>A) and p.Arg502Leu (c.1505G>T).9

Few specific genotype–phenotype correlations have 
been demonstrated in HCM, probably because most of 
the pathogenic variants are unique or seen in limited 
numbers. However, when founder pathogenic mutations 
are identified, their study represents a unique opportu-
nity to describe clinical phenotypes.10–19 The MYBPC3 
c.2149–1G>A variant has been previously described in a 
single HCM proband, without clinical and segregation 
data.20 In the ClinVar public database, this variant is 
reported in other three non- related HCM patients, but 
there is still no clinical or segregation information avail-
able. The sequence change affects an acceptor splice site, 
so it is expected to result in an absent or disrupted protein. 
However, no functional analyses have been conducted. 
The main objectives of this study were (1) to address 
whether the identified MYBPC3 c.2149–1G>A mutation 
is a founder pathogenic variant, (2) clarify its functional 
consequences and (3) to describe clinical characteris-
tics and phenotype of affected carriers. In addition, we 
compared the phenotype and clinical profile of patients 
with this mutation with a control group of MYBPC3 p.Ar-
g502Trp/p.Arg502Gln carriers, the most frequent HCM 
pathogenic variants in our institution.

METHODS
Study population and genetic analysis
We reviewed all genetic analyses in HCM probands 
performed in our institution between January 2012 and 
August 2019, screening for MYBPC3 variants. Genetic 
analyses in HCM probands were performed by Sanger 
sequencing of the five main sarcomeric genes (MYBPC3, 
MYH7, TNNT2, TNNI3 y TPM1) between January and 
November 2012, and by next- generation sequencing of a 
panel of 25 HCM- related genes from that date onwards. 
All patients signed an informed consent document 
authorising the use of their genetic data for research 
purposes.

Patient and public involvement
Patients were not involved in the design, development of 
the study or the interpretation and writing of the results.

Clinical evaluation
Following current recommendations,1 2 the diagnosis 
of HCM was established by a left ventricular hyper-
trophy ≥15 mm in probands and ≥13 mm in relatives. A 
pedigree was elicited for each proband, and relatives were 
offered clinical and genetic screening if a pathogenic or 
likely pathogenic mutation was identified in the proband. 
HCM patients were followed up and treated according 
to current recommendations. We defined LVOTO as 
the presence of a left ventricle outflow tract pressure 
gradient ≥30 mm Hg at rest. A pressure gradient ≥50 mm 
Hg was considered haemodynamically relevant.1 2 All 
HCM patients, whether they were gene positive or nega-
tive, underwent arrhythmic risk stratification based on 
the presence of recognised arrhythmic risk factors for 
HCM. Since 2014, the 5- year risk of SCD was estimated 
according to the European Society of Cardiology (ESC) 
score.1 21 Any episode of ischaemic stroke, SCD, aborted 
sudden cardiac arrest (SCA), appropriate implantable 
cardioverter defibrillator (ICD) shock, heart failure 
admission, cardiac transplantation or cardiac death was 
recorded as a major adverse outcome.

Cardiovascular magnetic resonance
All probands and relatives that fulfilled the HCM criteria 
at first evaluation were offered scanning by cardiovas-
cular MR (CMR). Patients underwent CMR with a 1.5- T 
Philips Achieva scanner. The CMR study consisted of cine 
steady- state free- precession imaging of left ventricular 
function and late enhancement imaging of myocardial 
scar tissue (3D inversion- recovery turbo gradient echo 
sequence). Images were obtained in short- axis views and 
four- chamber, two- chamber and three- chamber views. 
Late gadolinium enhancement (LGE) was performed 
10 min after a total injection of 0.2 mmol/kg gadoter-
idol. CMR data were analysed by investigators blinded to 
patient’s genotype, using dedicated software (QMass MR 
V.8.1, MEDIS Suite V.3.2). Left ventricular end- diastolic 
and end- systolic volumes, ejection fraction and mass were 
measured from short axis views.22 The presence of LGE 
was determined by visual inspection. Scar size (extent) 
was calculated from LGE sequences as a percentage of 
myocardium by with semi- automated planimetry (manu-
ally corrected) using full- width half- max thresholding.

Splicing analysis
In silico analysis of MYBPC3 c.2149–1G>A was performed 
using Human Splicing Finder (http://www. umd. be/ 
HSF/ HSF. shtml) and MaxEntScan (http:// hollywood. 
mit. edu/ burgelab/ maxent/ Xmaxentscan_ scoreseq. 
html) bioinformatic prediction tools. Additionally, RNA 
isolated from blood samples of one MYBPC3 c.2149–
1G>A carrier and one non MYBPC3 c.2149–1G>A carrier 
was analysed by PCR using a primer pair from exon 22 to 
exon 24 (Fw: 5’- AGCC CCAG ATGC CCCA GAGGA- 3’and 
Rv: 5’- GTAG GCAG GCGG CTCC CACTGTA- 3’), to vali-
date transcript sizes.

http://www.umd.be/HSF/HSF.shtml
http://www.umd.be/HSF/HSF.shtml
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
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Ancestor analysis
To identify the haplotypes sharing MYBPC3 c.2149–1G>A 
variant, six markers: rs7120013, rs4882135, rs671299, 
rs7116652, rs10792299 and rs11605489 (online supple-
mental table S1) and MYBPC3 c.2149–1G>A variant were 
genotyped by Sanger sequencing in available samples, 16 
MYBPC3 c.2149–1G>A carriers and 6 non- carriers. These 
markers covered from 46 to 62 Mb of chromosome 11, 
and segregate at intermediate frequency at population 
level (selected from the 1000 Genomes Browser database, 
www. ncbi. nlm. nih. gov/ variation/ tools/ 1000genomes/). 
Genotype information for those markers was extracted for 
an Iberian population (n=107) from the 1000 Genomes 
Browser database. Haplotypes were reconstructed 
employing family information and the Iberian popula-
tion genotype data to infer most probable haplotypes 
using phase V.2.1 software.23 Reconstructed haplotypes 
were subjected to phylogenetic analysis using minimum 
evolution, bootstrap (1000 replicates) and tree neighbor- 
joining in MEGA V.7 software.24

Statistical analysis
Data are expressed as mean±SD and frequencies or 
percentages where appropriate. We used ordinary least- 
square linear regression to compare continuous variables, 
and χ2 to compare qualitative variables. The penetrance, 
diagnosis age and cumulative probability of an event on 
follow- up was estimated using the Kaplan- Meier method. 
We used log- rank tests and Cox proportional- hazards 
models to compare survival between groups (MYBPC3 
variant and gender). A p<0.05 was considered statistically 
significant.

RESULTS
Study population
A total of 570 HCM probands underwent genetic testing 
at our institution between 2012 and 2019. A MYBPC3 
pathogenic variant was identified in 79 (14.0%). MYBPC3 
p.Arg502Gln (c.1505G>A, NM_00256.3) and MYBPC3 
p.Arg502Trp (c.1504C>T, NM_00256.3) were the most 
frequent variants detected in MYBPC3, identified in 
heterozygosis in 16 unrelated HCM probands (2.8% of 
the HCM probands) and 17 relatives (8 were affected, 
47.0%). The MYBPC3 c.2149–1G>A (NM_00256.3) 
variant was identified in eight unrelated HCM probands 
(all male), representing 1.4% of all probands. We studied 
45 family members and identified 25 MYBPC3 c.2149–
1G>A carriers, 12 (48.0%) of them with HCM phenotype 
and 13 (52.0%) unaffected carriers (figure 1).

Penetrance and age at diagnosis
Overall penetrance in MYBPC3 c.2149–1G>A carriers was 
62.0% and it was age dependent: 50.0% of the carriers 
over age 36 years and 75.0% of the carriers over 40 
years had HCM phenotype. Moreover, in male patients 
older than 30 years, penetrance was 13/13 (100.0 %), 
significantly higher than in females above this age 

(5/10, 50.0%, p=0.01). The mean age at diagnosis was 
37±15 years, significantly lower in males than in females 
(32±13 vs 53±10, respectively, p<0.001). There were no 
significant differences on penetrance and age at diag-
nosis compared with MYBPC3 p.Arg502Trp/Gln carriers 
(log- rank p=0.16 and p=0.60 for penetrance and age at 
diagnosis, respectively). For MYBPC3 p.Arg502Trp/Gln, 
age at diagnosis was also lower in males (28±20 vs 50±19 
years old, p=0.007). However, as opposed to MYBPC3 
c.2149–1G>A carriers, no gender differences (p=0.08) 
on penetrance were observed for carriers of this control 
variant (table 1 and figure 2).

Phenotype, clinical characteristics and outcomes
Phenotype and clinical data from 20 identified MYBPC3 
c.2149–1G>A carriers were used for comparison. The 
reason for diagnosis were symptoms in 6 patients (30.0%), 
and familiar screening or casual finding in 14 (70.0%). 
At first evaluation, 19 affected carriers (95.0%) showed 
asymmetric left ventricular hypertrophy affecting the 
anterior septum, only one patient presented a concentric 
LVH pattern. Mean LVWT was 21±6 mm and 19±5 mm 
measured by echocardiography and CMR, respectively. 
The left atrium was enlarged in 12 of 20 (60.0%) affected 
carriers. LVOTO at rest was detected in three individuals 
at diagnosis, being haemodynamically relevant in two 
cases, although to date none of them has required invasive 
management (table 1). CMR was performed in 18 of the 
20 affected carriers, showing LGE in 15 of them (83%). 
The three patients without LGE were young patients with 
mild phenotypes (maximum LVWT ≤16 mm). Mean LV 
mass was 65±29 g and mean percentage of fibrosis was 
16%±14, with 35.0% of patients showing a percentage of 
fibrosis >15% (table 2).

A great variability on phenotype was detected in patients 
carrying MYBPC3 c.2149–1G>A that varied from normal 
phenotype to severe disease with extensive fibrosis or 
even restrictive phenotype (figure 3A–H).

Follow- up data for MYBPC3 c.2149–1G>A affected 
patients was available for a median of 9 (range 1–34) 
years since diagnosis. After this period, 19 patients 
(95.0%) remained mildly symptomatic (New York Heart 
Association I–II). Four patients (20.0%, 4 males) devel-
oped AF. At least an episode of non- sustained ventricular 
tachycardia was detected in 7 patients (35.0%). Nine 
patients (45.0%) had a major classical SCD risk factor 
(six had a family history of SCD, two had LVWT≥30 mm, 
one had a syncope). The ESC risk score was higher than 
4% in eight carriers (40.0%). These eight patients were 
offered an ICD which was finally implanted in seven 
(35.0%) because of patient’s preferences. One of the 
ICD implants took place in secondary prevention after an 
aborted SCA, as the patient had also previously rejected 
ICD implantation (table 1).

There were six major adverse outcomes registered: one 
patient suffered an aborted SCA and posteriorly appro-
priate ICD shocks, and another patient had appropriate 
ICD shocks. Two patients were admitted for heart failure 

https://dx.doi.org/10.1136/openhrt-2021-001789
https://dx.doi.org/10.1136/openhrt-2021-001789
www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
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and another patient with a restrictive phenotype devel-
oped advanced heart failure and underwent evaluation 
for cardiac transplantation (table 3). The rate of major 
adverse outcomes was 0.82% per year.

Compared with MYBPC3 p.Arg502Trp/Gln, MYBPC3 
c.2149–1G>A patients had higher left ventricular ejec-
tion fraction (LVEF) (p=0.03) and better functional class 
(p=0.04; table 1). No significant differences for CMR 
measures were identified between both MYBPC3 variants 
(table 2). Survival analysis showed similar outcomes in 
both patient groups (HR 0.3, (95% CI 0.3 to 4.9) p=0.706; 
table 3 and figure 4).

Splicing analysis
HSF and MaxEntScan tools predicted that MYBPC3 
c.2149–1G>A alters the acceptor splice site producing an 
abnormal splicing. In this case, intron between exon 22 
and 23 would skip splicing and would be included in the 
mature RNA, changing the reading frame and causing 
a truncated protein. Transcript analysis confirmed that 
MYBPC3 c.2149–1G>A generated an abnormal transcript 
(online supplemental figure S1).

Ancestor analysis
The haplotype reconstruction showed 53 different haplo-
types in the Iberian population. The most probable segre-
gation for MYBPC3 c.2149–1G>A carriers was estimated 
in two haplotypes, H52: GATACGA and H53: AATACGA. 
The phylogeny reconstruction estimated that both 
H52 and H53 may come from common ancestor H16 
(figure 5A). In fact, H52 may come from one recombina-
tion event in H53 haplotype that has recently occurred in 
one of the families (figure 5B).

DISCUSSION
To our knowledge, this is the first study to describe 
the clinical phenotype of the MYBPC3 c.2149–1G>A 
variant, herein demonstrating cosegregation in eight 
non- related HCM families (figure 1). This informa-
tion confirms the pathogenicity of the variant. Hence, 
this variant can be classified as a definite pathogenic 
variant with strong evidence according to the American 
College of Medical Genetics criteria.25 This information 
is essential for patient management because it enables 

Figure 1 MYBPC3 c.2149- 1G>A pedigrees. Symbols denote sex, genetic and disease status: +, carriers; –, non- carriers; ?, 
unknown phenotype; box, male; circle, female; darkened, affected; slashed, deceased; clear symbol, unaffected; without sign, 
not studied. SD, sudden death.

https://dx.doi.org/10.1136/openhrt-2021-001789
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to perform genetic screening in family members and 
narrows the clinical follow- up to be performed only in 
carriers.

Mechanism of pathogenicity and founder effect
MYBPC3 c.2149–1G>A alters the canonical donor 
splice sequence, so it is supposed to generate alterna-
tive splicing. However, to our knowledge, no functional 
studies on this mutation are available. This is the first time 

that RNA analysis is performed, demonstrating that this 
variant alters normal splicing. This G>A change triggers 
intron 22–23 retention, causing a frameshift that leads 
to a truncated protein. Unlike other sarcomeric genes, 
where the majority of pathogenic variants are missense 
with a dominant negative effect, up to 60% of the path-
ogenic variants in MYBPC3 are frameshifts leading to 
haploinsufficiency.26 In fact, all the founder pathogenic 

Table 1 MYBPC3 c.2149–1G>A and MYBPC3 p.Arg502Tr/Gln comparison

MYBPC3
c.2149–1G>A

MYBP3
p.Arg502Trp/Gln

P valueMale Female Total Male Female Total

N 15 5 20 17 7 24

Age at diagnosis (mean±SD, years) 32±13 53±10 37±15 28±20 50±19 35±21 0.650*

Max. LVWT TTE (mean±SD, mm) 21±6 22±6 21±6 21±7 21±6 21±7 0.645

Max. LVWT CMR (mean±SD, mm) 19±4 18±3 19±5 20±6 19±5 20±6 0.981

LVEF (mean±SD, %) 63±9 62±10 63±9 54±15 51±16 54±15 0.032

Left atrial diameter (mm) 44±9 42±8 44±9 41±8 44±8 42±8 0.210

LVOTO ≥30 mm Hg (%) 3 (20.0) 0 3 (15.0) 3 (17.6) 0 3 (12.5) 0.760

Severe LVOTO ≥50 mm Hg (%) 2 (13.3) 0 2 (10.0) 2 (11.7) 0 2 (8.4) 0.800

LGE (%) 10 (66.7) 5 (100.0) 15 (75.0) 12 (70.6) 6 (85.7) 18 (75.0) 0.550

Diagnostic reason 0.242

  Symptoms (%) 6 (40.0) 0 6 (30.0) 5 (29.4) 2 (28.6) 7 (29.2)

  Aborted cardiac arrest (%) 0 0 0 1 (5.9) 0 1 (4.2)

  Familiar screening (%) 8 (53.3) 5 (100.0) 13 (65.0) 5 (29.4) 3 (42.1) 8 (33.3)

  Casual (%) 1 (6.7) 0 1 (5.0) 6 (35.3) 1 (14.2) 7 (29.2)

Symptoms at diagnosis 0.210

  Asymptomatic (%) 9 (60.0) 4 (80.0) 13 (65.0) 12 (70.6) 3 (42.1) 15 (62.5)

  Dyspnoea (%) 2 (13.3) 1 (20.0) 3 (15.0) 4 (23.5) 2 (28.6) 6 (25.0)

  Syncope (%) 1 (6.7) 0 1 (5.0) 0 0 0

  Chest pain (%) 0 0 0 1 (5.9) 0 1 (4.1)

  Palpitations (%) 3 (20.0) 0 3 (15.0) 0 0 0

NYHA functional class 0.049

  I (%) 11 (73.3) 4 (80.0) 15 (75.0) 7 (41.2) 1 (14.3) 8 (33.3)

  II (%) 3 (20.0) 1 (20.0) 4 (20.0) 7 (41.2) 4 (57.1) 11 (45.9)

  III (%) 1 (6.7) 0 1 (5.0) 2 (11.7) 1 (14.3) 3 (12.5)

ABPR (%) 0 0 0 3 (17.6) 1 (14.3) 4 (16.7) 0.053

Atrial fibrillation (%) 4 (26.7) 0 4 (20.0) 4 (23.5) 2 (28.6) 6 (25.0) 0.723

NSVT (%) 4 (26.7) 3 (60.0) 7 (35.0) 6 (35.3) 2 (28.6) 8 (33.3) 0.540

SCD score 0.119

  >4 (%) 7 (46.7) 1 (20.0) 8 (40.0) 4 (23.5) 1 (14.3) 5 (20.9) 0.152

  >6 (%) 3 (20.0) 0 3 (15.0) 2 (11.7) 0 2 (8.4) 0.300

ICD indication 0.874

  Primary prevention (%) 5 (33.3) 1 (20.0) 6 (30.0) 6 (35.3) 3 (42.1) 9 (37.5)

  Secondary prevention (%) 1 (6.7) 0 1 (5.0) 2 (11.7) 0 2 (8.4)

*Log- rank estimate.
ABPR, abnormal blood pressure response to exercise; CMR, cardiac MR; ICD, implantable cardioverter defibrillator; LGE, late 
gadolinium enhancement; LVEF, left ventricle ejection fraction; LVOTO, left ventricular outflow tract obstruction; LVWT, left ventricular 
wall thickness; NSVT, non- sustained ventricular tachycardia; ; NYHA, New York Heart Association; SCD, sudden cardiac death; TTE, 
transthoracic echocardiography.
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variants previously described in MYBPC3 are truncated 
variants.10–19 On the other hand, the mechanisms of path-
ogenicity of MYBPC3 p.Arg502Trp and p.Arg502Gln are 
unclear. Previous studies have shown that MYBPC3 p.Ar-
g502Trp alters the predicted electrostatic properties of 
the C3 domain of the protein and may directly disrupt the 
interaction of MYBPC3 with other sarcomeric proteins.27

The haplotype analyses performed in our study 
supports a founder origin of MYBPC3 c.2149–1G>A, as 
all the analysed carriers, related and unrelated, shared 
the same haplotype along 16 Mb. Actually, two haplo-
types carrying MYBPC3 c.2149–1G>A were identified in 

one single family, which likely corresponds to a recent 
recombination event as all other family members share 
the same MYBPC3 c.2149–1G>A haplotype. All carriers 
are from the same geographical area, the South region 
of Madrid (Spain). The opposite to founder mutation 
occurs with MYBPC3 p.Arg502Trp variant, where several 
different haplotypes appear segregating with the variant.9 
Therefore, the high frequency of this variant seems to be 
explained by recurrent mutation of this residue rather 
than a founder effect. Further evidence that supports 
that MYBPC3 codon 502 may be a mutational hotspot 
is the existence of two other HCM mutations that alter 

Figure 2 Penetrance. Comparison between MYBP3 c.2149–1G>A and MYBPC3 p.Arg502Trp/Gln variants and between sex 
for each variant. (A) Full study population. (B) MYBP3 c.2149–1G>A sex analysis. (C) MYBPC3 p.Arg502Trp/Gln sex analysis. 
HCM, hypertrophic cardiomyopathy.

Table 2 MYBPC3 c.2149–1G>A and MYBPC3 p.Arg502Tr/Gln cardiac MR data

MYBPC3
c.2149–1G>A

MYBP3
p.Arg502Trp/Gln P 

valueMale Female Total Male Female Total

N 10 4 14 12 6 18

LVEDV (mean±SD, mL) 188±47 144±18 175±45 195±57 178±39 190±51 0.407

LVESV (mean±SD, mL) 83±26 55±18 75±27 98±33 86±53 94±39 0.128

EF (mean±SD, %) 56±12 63±8 58±11 49±14 55±17 51±15 0.163

LV mass (mean±SD, g) 151±47 91±15 134±48 161±72 103±16 142±65 0.669

LV mass index (mean±SD, g per m2) 78±36 50±6 65±29 84±36 53±5 77±34 0.399

Fibrotic mass (mean±SD, g) 38±49 12±7 31±43 39±42 37±26 38±36 0.620

Fibrotic mass index (mean±SD, g per m2) 27±39 7±5 18±30 20±21 22±21 21±20 0.798

% fibrosis (mean±SD, %) 17±17 12±6 16±14 20±14 28±17 23±15 0.195

LVEDV, left ventricular end- diastolic volume; LVESV, left ventricular end- systolic volume; EF, ejection fraction.
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arginine 502 to either glutamine or to leucine and the 
fact that variants at this position are frequent in HCM 
cohorts from different countries.4 7–9

Penetrance, phenotype and clinical characteristics
Although the penetrance of MYBPC3 c.2149–1G>A was 
incomplete and age- dependent as in most MYBPC3 vari-
ants, penetrance was particularly high in young males, 
reaching 100.0% in carriers older than 30 years, and 
significantly higher in males than females. Also, males 
were younger at the time of diagnosis. Similar gender 
differences have been described for other MYBPC3 vari-
ants.17–19 28 This delay in developing the disease in women 
may be secondary to genetic and endocrine factors that 
may influence phenotypic expression. Other suggested 
explanations are the lack of attention to early clinical signs 
and fewer indications for medical screening programmes 
in women.28 In our study, all affected female carriers of 
MYBPC3 c.2149–1G>A were diagnosed after the age of 40 

during family screening and most of them were asympto-
matic at diagnosis. Therefore, the older age at diagnosis 
in females in our cohort is better explained by a later- age 
onset disease than by a delayed diagnosis.

Our imaging data show that MYBPC3 c.2149–1G>A 
patients present an HCM phenotype with left ventricular 
thickening affecting anterior septum, preserved LVEF, 
frequent left atrial enlargement and extensive LGE with 
35.0% of patients showing relevant fibrosis. However, 
expressivity was highly variable, ranging from frequent 
non- affected carriers all the way to a few patients with a 
severe phenotype and adverse outcomes. This observa-
tion may support the relevance of modifier genes and 
epigenetics and internal/external environmental factors 
that still are not well understood.29

MYBPC3 c.2149–1G>A affected carriers showed higher 
LVEF and a better functional class compared with p.Ar-
g502Trp/Gln affected carriers. However, the rate of 

Figure 3 Cardiac MR (CMR) images showing phenotype variability in MYBPC3 c.2149- 1G>A carriers. (A–D) CMR images 
of two brothers: A, B is a 48- year- old female carrier with normal phenotype and C, D is her 49- year- old affected brother with 
septal hypertrophy of 22 mm and extensive LGE. (E, F) CMR images showing a severe left ventricle hypertrophy with extensive 
LGE in a 21- year- old carrier with severe systolic disfunction. (G, H) CMR images showing a restrictive phenotype with severe 
atrial enlargement and fibrosis. LGE, late gadolinium enhancement.

Table 3 Major clinical outcomes in MYBP3 c.2149–1G>A and MYBPC3 p.Arg502Trp/Gln affected carriers

MYBPC3
c.2149–1G>A

MYBP3
p.Arg502Trp/Gln Log- rank

p valueMale Female Total Male Female Total

N 15 5 20 17 7 24

Appropriate ICD shock 2 (13.3) 0 2 (10.0) 1 (5.8) 0 1 (4.2) 0.700

Heart failure admission 1 (6.7) 1 (20.0) 2 (10.0) 1 (5.8) 2 (28.6) 3 (12.5) 0.670

Advanced heart failure 1 (6.7) 0 1 (5.0) 0 1 (14.3) 1 (4.2) 0.620

Ischaemic stroke 0 0 0 2 (11.8) 1 (14.3) 3 (12.5) 0.190

Aborted SCA 1 (6.7) 0 1 (5.0) 2 (11.8) 0 2 (8.3) 0.630

Cardiac death 0 0 0 0 1 (14.3) 1 (4.2) 0.620

Major events 5 1 6 7 5 12 0.730

ICD, implantable cardioverter defibrillator; SCA, sudden cardiac arrest.
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major adverse outcomes was similar between the two 
groups. It is believed that founder mutations give rise to 
benign or intermediary phenotypes and disease course 
to withstand negative selection pressure, most of the 
carriers surviving the reproductive age. This allows these 
variants to perpetuate through multiple generations.30 
Nevertheless, 20.0% of MYBPC3 c.2149–1G>A affected 
carriers showed a severe phenotype. Also, the propor-
tion of patients in our cohort showing a high estimated 

risk of SCD (40.0% according to ESC risk score, 50.0% 
according to American College of Cardiology/American 
Heart Association guidelines) as well as the proportion of 
patients undergoing ICD implantation (35.0%) and inci-
dence of appropriate ICD shocks (10.0%) is higher than 
described in other recent HCM cohorts.15 17 31 Hence, the 
MYBPC3 c.2149–1G>A variant should not be considered 
a benign mutation with a mild phenotype. Although vari-
ants affecting the position 502 of MYBPC3 are a frequent 

Figure 4 Survival free from major clinical outcomes. Comparison between MYBPC3 c.2149–1G>A and MYBPC3 p.Arg502Trp/
Gln variants.

Figure 5 Haplotype reconstruction analysis. (A) phylogeny reconstruction of MYBPC3 haplotypes. Tree Neighbor- Joining in 
MEGA7. (B) segregation of H52 and H53 haplotypes in a family carrying MYBPC3 c.2149–1G>A.
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cause of HCM worldwide, data relating phenotype and 
clinical outcomes is scarce.8 9 Future studies with larger 
patient cohorts would help clarify genotype- phenotype 
relations for these frequent variants.

LIMITATIONS
The study is limited by the relatively small numbers of 
MYBPC3 c.2149–1G>A affected carriers, which challenges 
to describe a conclusive genotype–phenotype relation for 
this pathogenic variant.

CONCLUSIONS
MYBPC3 c.2149–1G>A is a founder pathogenic variant 
generating an alternative splicing that leads to a trun-
cated MYBPC3 protein. Male carriers show an early 
onset and a high penetrance of HCM. Carriers show 
better LVEF and functional class than MYBPC3 p.Ar-
g502Trp/Gln carriers but have a similar rate of major 
adverse outcomes.
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