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This article develops a new mathematical method for holistic analysis of nonlinear dynamic compartmental 
systems in the context of ecology. The method is based on the novel dynamic system and subsystem partitioning 
methodologies through which compartmental systems are decomposed to the utmost level. The dynamic system 
and subsystem partitioning enable tracking the evolution of the initial stocks, environmental inputs, and 
intercompartmental system flows, as well as the associated storages derived from these stocks, inputs, and flows 
individually and separately within the system. Moreover, the transient and the dynamic direct, indirect, acyclic, 
cycling, and transfer (diact) flows and associated storages transmitted along a given flow path or from one 
compartment, directly or indirectly, to any other are analytically characterized, systematically classified, and 
mathematically formulated. Further, the article develops a dynamic technique based on the diact transactions 
for the quantitative classification of interspecific interactions and the determination of their strength within 
food webs. Major concepts and quantities of the current static network analyses are also extended to nonlinear 
dynamic settings and integrated with the proposed dynamic measures and indices within the proposed unifying 
mathematical framework. Therefore, the proposed methodology enables a holistic view and analysis of ecological 
systems. We consider that this methodology brings a novel complex system theory to the service of urgent and 
challenging environmental problems of the day and has the potential to lead the way to a more formalistic 
ecological science.
1. Introduction

Compartmental systems are mathematical abstractions of networks 
that model behaviors of continuous physical systems composed of dis-

crete living and nonliving homogeneous components. Based on conser-

vation principles, system compartments are interconnected through the 
flow of energy, matter, or currency between them and their environ-

ment. Therefore, formulating flows and associated storages accurately 
and explicitly is critically important in quantifying compartmental sys-

tem function. Various mathematical aspects of compartmental systems 
are studied in the literature [2, 27]. While many fields utilize com-

partmental modeling, this approach proves particularly well-suited for 
analysis of ecological systems to address environmental phenomena.

Due to the current technological advancements as well as scien-

tific understandings of population and industrial growth and resource 
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demands, environmental issues have assumed center stage in human 
communities. On the other hand, in spite of this increased attention 
to the environment, traditional ecology has an applied nature and is 
still in the empirical stage of development. In the mainstream frame-

work of traditional ecology, a first principles-based formal theory has 
yet to emerge. This disconnect narrows the scope of applicability of the 
field and reduces its ability to deal with complex organism-environment 
relationships. To that extent, ecology and environmental science are 
limited in their capacity to realistically model and analyze complex sys-

tems. Mathematical theories and modeling have significant potential to 
lead the way to a more formalistic and theoretical ecoscience devoted 
to the discovery of basic scientific laws. More exact, precise, and inci-

sive environmental applications can then be materialized based on this 
understanding.
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Sound rationales have been offered in the literature for ecological 
network analysis, but these are for special cases, such as linear and 
static models. One such static approach called the environ theory has 
been developed by [34, 38] based on economic input-output analysis of 
[31, 32] introduced into ecology by [20]. Ecological networks and com-

plexity in living systems are analyzed also in the context of information 
theory, thermodynamics [24, 44, 45, 46], and hierarchy theory [1], yet 
only for static systems. Several software have been developed to com-

puterize these static methods [5, 8, 15, 28, 40, 47].

Although the steady-state analysis is well-established, dynamic anal-

ysis of nonlinear compartmental systems has remained a long-standing, 
open problem. For example, Finn’s cycling index—a celebrated ecosys-

tem measure that quantifies cycling system flows defined in static eco-

logical network analyses over four decades ago—has still not been made 
applicable to ecosystem models that change over time [17]. The indirect 
effects in ecosystems have also long been a well-established empirical 
fact [35, 36, 37, 42, 48, 49]. Theoretical explorations of the concept 
began as early as the 1970s, and it has been a topic of scholarly con-

versation for the past five decades [10, 16, 26, 33, 39]. Despite the 
urgent need, the indirect flow and storage transfers have never been 
formulated before. There are earlier approaches in the literature for the 
analysis of dynamic ecosystems, but these are either essentially closed-

form abstract formulations [19], or designed for special cases, such as 
linear systems with time-dependent inputs [23]. In addition, there are 
also agent-based techniques for dynamic compartmental system analy-

sis [29, 30, 41]. These are, however, computational methods that rely 
on network particle tracking simulations.

In ecosystem ecology, food webs provide a framework to link com-

munity structure with flows of energy and material through trophic 
interactions and, therefore, relate biodiversity with ecosystem function. 
Temporal variation in web architecture and nonlinearity are discussed 
in the literature [14, 51]. It is suggested that the dynamic nature of 
food webs is affecting ecosystem attributes. Nonlinearity and dynamic 
behavior, such as extinction in food webs, however, has yet to be 
addressed methodologically. Not only food webs, but today’s major 
environmental and ecological phenomena and problems–human im-

pact, climate change, biodiversity loss, etc.– all involve change, which 
demonstrates that the need for dynamic methods for nonlinear system 
analysis is not only appropriate, but also urgent [7, 22].

This is the first manuscript in the literature that potentially ad-

dresses the disconnect between the current static and computational 
methods and applied ecological needs. We consider that the methodol-

ogy proposed herein, in effect, brings a novel complex system theory to 
the service of pressing and challenging environmental problems of the 
day. Due to its theoretical and mathematical nature, it has the potential 
to lead the way to a more formalistic ecological science. The proposed 
methodology is a comprehensive approach in the sense that the major 
concepts and quantities in the current static ecological network analy-

ses are extended from static to nonlinear dynamic settings, as well as 
integrated effectively with the proposed dynamic measures in this uni-

fying mathematical framework. This novel and unifying approach leads 
to a holistic analysis of ecosystems.

Aligned with the mathematical theory introduced recently by [11], 
the proposed comprehensive method is composed of the novel dynamic 
system and subsystem partitioning methodologies. The system partitioning 
methodology yields the subthroughflow and substorage vectors and matri-

ces that represent the flows and storages generated by the initial stocks 
and individual environmental inputs in each compartment separately. 
Therefore, the system partitioning enables dynamically decomposing 
composite compartmental flows and storages into subcompartmental 
segments based on their constituent sources from the initial stocks and 
environmental inputs. In other words, this methodology enables dy-

namically tracking the evolution of the initial stocks and environmental 
inputs, as well as the associated storages derived from these stocks and 
inputs individually and separately within the system.
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The transient flows transmitted along a given flow path and the as-

sociated storages generated by these flows in each compartment on the 
path are then formulated through the subsystem partitioning methodol-

ogy. Therefore, this methodology allows for the dynamic decomposition 
of arbitrary composite intercompartmental flows and associated stor-

ages into the transient subflow and substorage segments along a given 
set of subflow paths. Consequently, the subsystem partitioning enables 
dynamically tracking the fate of arbitrary intercompartmental flows and 
associated storages within the subsystems. Moreover, the spread of an 
arbitrary flow or storage segment from one compartment to the en-

tire system can be determined and monitored. For the quantification 
of intercompartmental flow and storage transfer dynamics, the direct, 
indirect, acyclic, cycling, and transfer (diact) flows and associated stor-

ages transmitted from one compartment, directly or indirectly, to any 
other are also analytically characterized, systematically classified, and 
mathematically formulated.

In a nutshell, the system and subsystem partitioning methodologies 
dynamically determine the distribution of the initial stocks, environ-

mental inputs, and arbitrary intercompartmental flows, as well as the 
organization of the associated storages derived from these stocks, in-

puts, and flows individually and separately within the system. In other 
words, the proposed method as a whole enables tracking the evolution 
of the initial stocks, environment inputs, and arbitrary intercompart-

mental system flows, as well as associated storages individually and 
separately. The dynamic quantities such as the subthroughflows, sub-

storages, and transient and diact flows and storages are systematically 
introduced through the proposed method for the first time in the litera-

ture. Equipped with these measures, the proposed methodology serves 
as a quantitative platform for testing empirical hypotheses, ecological 
inferences, and, potentially, theoretical developments. The method also 
constructs a foundation for the development of new mathematical sys-

tem analysis tools as quantitative ecological indicators. Multiple such 
dynamic diact measures and indices of matrix, vector, and scalar types 
which may prove useful for environmental assessment and management 
were systematically introduced by [9].

The temporal variations of trophic interactions in food webs is an 
important topic in ecology as outlined above [14, 51]. The conditions 
or states of communities in food webs, such as extinction, can be dy-

namically regulated by the temporal variations and seasonal shifts. The 
present manuscript develops also a novel mathematical technique based 
on the diact transactions for the dynamic classification of interspecific 
interactions, and notably, for the determination of their strength within 
food webs. This technique effectively addresses the nonlinearity in and 
dynamic architecture of the food chains and webs.

The proposed methodology is applicable to any conservative com-

partmental system of naturogenic or anthropogenic nature. The method 
can be used, for example, to analyze models designed for material flows 
in industry [3]. It can also be used to analyze mass or energy trans-

fers between species of different trophic levels in a complex network or 
along a given food chain of a food web in nonlinear dynamic settings 
[4, 18, 21]. Although the motivating applications are ecological and 
environmental for this paper, the applicability of the proposed method 
extends to other realms, such as economics, pharmacokinetics, chemical 
reaction kinetics, epidemiology, biomedical systems, neural networks, 
social networks, and information science—in fact, wherever dynamical 
compartmental models of conserved quantities can be constructed. An 
input-output analysis in economics was developed several decades ago, 
but only for static systems [31, 32]. The proposed methodology in the 
context of economics, in particular, can be considered as the mathemat-

ical foundation of the dynamic input-output economics.

The proposed method is applied to two models in Section 3 to illus-

trate its efficiency and wide applicability. In the first case study, a linear 
ecosystem model introduced by [23] is analyzed. The second case study 
concerns nutrient transfer within a nutrient-producer-consumer ecosys-

tem [19]. Analytical and numerical solutions for the substorages, sub-

throughflows, transient and diact transactions, and residence times 
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are presented for both models. The interspecific interactions in the non-

linear model and their strength are also analyzed through the proposed 
mathematical classification technique.

This paper is organized as follows: the mathematical method is in-

troduced in Section 2.1, the transient and diact flows and storages are 
formulated in Section 2.5, system analysis and measures are discussed 
in Section 2.7, results and case studies are presented in Section 3, and 
discussion and conclusions follow in Section 4 and 5.

2. Methods

A new mathematical theory for the dynamic decomposition of non-

linear compartmental systems has recently been introduced by [11]. In 
line with this theory, a mathematical method for the dynamic analysis 
of nonlinear ecological systems is developed in the present paper.

The proposed theory is based on the novel system and subsystem 
partitioning methodologies. The system and subsystem partitioning deter-

mine the distribution of the initial stocks, environmental inputs, and 
intercompartmental flows, as well as the organization of the associ-

ated storages derived from these stocks, inputs, and flows individually 
and separately within compartmental systems. The proposed method, 
therefore, as a whole, yields the decomposition of all system flows and 
storages to the utmost level. The method together with the correspond-

ing concepts and quantities will be introduced in this section.

The terminology and notations used in this paper are adopted from 
[11] as follows:

𝑛 number of compartments

𝑡 time [t]
𝑥𝑖(𝑡) total material (mass) [m] (or energy, currency) in 

compartment 𝑖, 𝑖 = 1, … , 𝑛, at time 𝑡
𝑓𝑖𝑗 (𝑡, 𝑥) nonnegative flow from compartment 𝑗 to 𝑖, at time 

𝑡 [m∕t]
𝑦𝑖(𝑡, 𝑥) = 𝑓0𝑖(𝑡, 𝑥) environmental (𝑗 = 0) output from compartment 𝑖

at time 𝑡
𝑧𝑖(𝑡, 𝑥) = 𝑓𝑖0(𝑡, 𝑥) environmental input into compartment 𝑖 at time 𝑡

The governing equations for the compartmental dynamics are

�̇�𝑖(𝑡) = 𝜏𝑖(𝑡, 𝑥) − 𝜏𝑖(𝑡, 𝑥) (2.1)

for 𝑖 = 1, … , 𝑛. The state vector 𝑥(𝑡) = [𝑥1(𝑡), … , 𝑥𝑛(𝑡)]𝑇 is a differen-

tiable function of compartmental storages with the initial conditions 
of 𝑥(𝑡0) = 𝑥0 = [𝑥1,0, … , 𝑥𝑛,0]𝑇 where the superscript 𝑇 represents ma-

trix transpose. The total inflow, 𝜏𝑖(𝑡, 𝑥), and outflow, 𝜏𝑖(𝑡, 𝑥), are called 
the inward and outward throughflows at compartment 𝑖, respectively, and 
formulated as

𝜏𝑖(𝑡, 𝑥) =
𝑛∑
𝑗=0
𝑓𝑖𝑗 (𝑡, 𝑥) and 𝜏𝑖(𝑡, 𝑥) =

𝑛∑
𝑗=0
𝑓𝑗𝑖(𝑡, 𝑥) (2.2)

for 𝑖 = 1, … , 𝑛. The nonlinear differentiable function 𝑓𝑖𝑗 (𝑡, 𝑥) ≥ 0 rep-

resents nonnegative flow rate from compartment 𝑗 to 𝑖 at time 𝑡. In 
general, it is assumed that 𝑓𝑖𝑖(𝑡, 𝑥) = 0, but the following analysis is also 
valid for nonnegative flow from a compartment to itself. Index 𝑗 = 0
stands for the environment. We further assume that 𝑓𝑖𝑗(𝑡, 𝑥) has the fol-

lowing special form:

𝑓𝑖𝑗 (𝑡, 𝑥) = 𝑞𝑥𝑖𝑗 (𝑡, 𝑥)𝑥𝑗 (𝑡) (2.3)

where 𝑞𝑥
𝑖𝑗
(𝑡, 𝑥) is a nonlinear function of 𝑥 and 𝑡, and has the same prop-

erties as 𝑓𝑖𝑗 (𝑡, 𝑥). We will call 𝑞𝑥
𝑖𝑗
(𝑡, 𝑥) = 𝑓𝑖𝑗 (𝑡, 𝑥)∕𝑥𝑗 (𝑡) the flow intensity

directed from compartment 𝑗 to 𝑖 per unit storage or the flow distribution 
factor for system storages in the context of the proposed methodology 
[12].

Combining Eqs. (2.1) and (2.2) and separating environmental in-

puts and outputs, the system of governing equations takes the following 
standard form:
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�̇�𝑖(𝑡) =

(
𝑧𝑖(𝑡, 𝑥) +

𝑛∑
𝑗=1
𝑓𝑖𝑗 (𝑡, 𝑥)

)
−

(
𝑦𝑖(𝑡, 𝑥) +

𝑛∑
𝑗=1
𝑓𝑗𝑖(𝑡, 𝑥)

)
(2.4)

with the initial conditions 𝑥𝑖(𝑡0) = 𝑥𝑖,0, for 𝑖 = 1, … , 𝑛. There are 𝑛 equa-

tions; one for each compartment. The condition, Eq. (2.3), guaranties 
non-negativity of the compartmental storages, that is 𝑥𝑖(𝑡) ≥ 0 for all 𝑖. If 
an environmental input or initial condition is positive, that is, 𝑧𝑖(𝑡, 𝑥) > 0
or 𝑥𝑖,0 > 0, the corresponding storage value is always strictly positive, 
𝑥𝑖(𝑡) > 0.

The proposed methodology is designed for conservative compartmen-

tal systems. A dynamical system is called compartmental if it can be 
expressed in the form of Eq. (2.4). The compartmental systems will be 
called conservative if all internal flow rates add up to zero when the sys-

tem is closed, that is, when there is neither environmental input nor 
output:

𝑛∑
𝑖=1
�̇�𝑖(𝑡) = 0 when 𝑧(𝑡, 𝑥) = 𝑦(𝑡, 𝑥) = 𝟎 for all 𝑡 (2.5)

where 𝟎 is used for both the 𝑛 × 𝑛 zero matrix and zero vector of size 𝑛
[11].

For notational convenience, we define a direct flow matrix function 
𝐹 of size 𝑛 × 𝑛 as

𝐹 (𝑡, 𝑥) =
(
𝑓𝑖𝑗 (𝑡, 𝑥)

)
and the inward and outward throughflow vector functions as

𝜏(𝑡, 𝑥) =
[
𝜏1(𝑡, 𝑥),… , 𝜏𝑛(𝑡, 𝑥)

]𝑇 = 𝑧(𝑡, 𝑥) + 𝐹 (𝑡, 𝑥)𝟏 and

𝜏(𝑡, 𝑥) =
[
𝜏1(𝑡, 𝑥),… , 𝜏𝑛(𝑡, 𝑥)

]𝑇 = 𝑦(𝑡, 𝑥) + 𝐹𝑇 (𝑡, 𝑥)𝟏,
(2.6)

respectively, where

𝑧(𝑡, 𝑥) = [𝑧1(𝑡, 𝑥),… , 𝑧𝑛(𝑡, 𝑥)]𝑇 and 𝑦(𝑡, 𝑥) = [𝑦1(𝑡, 𝑥),… , 𝑦𝑛(𝑡, 𝑥)]𝑇

are the input and output vector functions, and 𝟏 denotes the column 
vector of size 𝑛 whose entries are all one.

2.1. System partitioning methodology

In this section, we introduce the dynamic system partitioning method-

ology for analytically partitioning the governing system into mutually 
exclusive and exhaustive subsystems, as a simplified version of the system 
decomposition methodology recently proposed by [11]. By mutual exclu-

siveness, we mean that transactions are possible only among correspond-

ing subcompartments belong to the same subsystem. By exhaustiveness, 
we mean that all generated subsystems sum to the entire system so 
partitioned. The system partitioning enables dynamically partitioning 
composite compartmental flows and storages into subcompartmental 
segments based on their constituent sources from the initial stocks and 
environmental inputs of the same conserved quantity. The system par-

titioning methodology, consequently, yields the subthroughflow and 
substorage matrices representing the distribution of the initial stocks 
and environmental inputs, as well as the organization of the associ-

ated storages derived from these stocks and inputs individually and 
separately within the system. In other words, this methodology enables 
tracking the evolution of the initial stocks and environmental inputs, as 
well as associated storages individually and separately within the sys-

tem.

The system partitioning involves the dynamic subcompartmentaliza-

tion and flow partitioning components, whose mechanisms are explained 
in this section (Figs. 1 and 2). The related concepts and notations are 
summarized below:
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Fig. 1. Schematic representation of the dynamic subcompartmentalization in a three-compartment model system. Each subsystem is colored differently; the second 
subsystem (𝑘 = 2) is blue, for example. Only the subcompartments in the same subsystem (𝑥12 (𝑡), 𝑥22 (𝑡), and 𝑥32 (𝑡) in the second subsystem, for example) interact 
with each other. Subsystem 𝑘 receives environmental input only at subcompartment 𝑘𝑘 . The initial subsystem receives no environmental input. The dynamic flow 
partitioning is not represented in this figure. Compare this figure with Fig. 2, in which the subcompartmentalization and corresponding flow partitioning are 
illustrated for 𝑥1(𝑡) only.
𝑥𝑖𝑘
(𝑡) storage in subcompartment 𝑘 of compartment 𝑖, 

that is, in subcompartment 𝑖𝑘, 𝑘 = 0, … , 𝑛, at time 
𝑡, generated by environmental input 𝑧𝑘(𝑡, 𝑥)
during [𝑡0, 𝑡]

𝑓𝑖𝑘𝑗𝑘
(𝑡,x) nonnegative flow from subcompartment 𝑗𝑘 to 𝑖𝑘

at time 𝑡
𝑦𝑖𝑘

(𝑡,x) = 𝑓0𝑖𝑘 (𝑡,x) environmental (𝑗 = 0) output from 
subcompartment 𝑖𝑘 at time 𝑡

𝑧𝑖𝑘
(𝑡,x) = 𝛿𝑖𝑘 𝑧𝑖(𝑡, 𝑥) environmental input into subcompartment 𝑖𝑘 at 

time 𝑡, where 𝛿𝑖𝑘 is the discrete delta function

The system is partitioned explicitly and analytically into mutually 
exclusive and exhaustive subsystems as follows: Each compartment is 
partitioned into 𝑛 + 1 subcompartments; 𝑛 initially empty subcompart-

ments for 𝑛 environmental inputs and 1 subcompartment for the initial 
stock of the compartment. The notation 𝑖𝑘 is used to represent the 𝑘th
subcompartment of the 𝑖th compartment for 𝑖 = 1, … , 𝑛 and 𝑘 = 0, … , 𝑛. 
The subscript index 𝑘 = 0 represents the initial subcompartment of com-

partment 𝑖 (see Fig. 1).

The storage in subcompartment 𝑖𝑘 will be called the substorage in 𝑖𝑘
and denoted by 𝑥𝑖𝑘 (𝑡). More specifically, the substorage 𝑥𝑖𝑘 (𝑡) is defined 
as the storage in compartment 𝑖 at time 𝑡 that is generated by the envi-

ronmental input into compartment 𝑘 ≠ 0, 𝑧𝑘(𝑡), during the time interval 
[𝑡0, 𝑡] (see Fig. 2). Consequently, due to the exhaustiveness of the system 
partitioning, we have

𝑥𝑖(𝑡) =
𝑛∑
𝑘=0
𝑥𝑖𝑘

(𝑡), 𝑖 = 1,… , 𝑛. (2.7)

We define a new vector variable for the substorages as

x(𝑡) =
[
𝑥10 (𝑡),… , 𝑥𝑛0

(𝑡), 𝑥11 (𝑡),… , 𝑥𝑛1
(𝑡),… , 𝑥1𝑛 (𝑡),… , 𝑥𝑛𝑛

(𝑡)
]𝑇
.

We assume that environmental input 𝑧𝑘(𝑡, x) enters the system at 
subcompartment 𝑘𝑘, for all 𝑘. Moreover, no other 𝑘th subcompartment 
of any other compartment 𝑖, that is, subcompartment 𝑖𝑘, receives envi-

ronmental input. This input partitioning can be expressed as

𝑧𝑖𝑘
(𝑡,x) = 𝛿𝑖𝑘 𝑧𝑘(𝑡, 𝑥) =

{
𝑧𝑘𝑘

(𝑡,x) = 𝑧𝑘(𝑡, 𝑥), 𝑖 = 𝑘
0. 𝑖 ≠ 𝑘

The intercompartmental flows are also partitioned in line with the 
subcompartmentalization (see Fig. 2). The composite intercompartmen-

tal direct flow, 𝑓𝑖𝑗 (𝑡, 𝑥), is partitioned based on the assumption that 
4

Fig. 2. Schematic representation of the dynamic flow partitioning in a three-

compartment model system. The figure illustrates subcompartmentalization of 
compartment 𝑖 = 1 and the corresponding dynamic flow partitioning from this 
compartment to others, 𝑗.

the subcompartmental flow segments, 𝑓𝑖𝑘𝑗𝑘 (𝑡, x), 𝑘 = 0, … , 𝑛, are propor-

tional to the corresponding substorages, 𝑥𝑗𝑘 (𝑡), with the proportionality 
factor of the flow intensity in the flow direction, 𝑞𝑥

𝑖𝑗
(𝑡, 𝑥). The subcom-

partmental flow 𝑓𝑖𝑘𝑗𝑘 (𝑡, x) will be called the subflow from subcompart-

ment 𝑗𝑘 to 𝑖𝑘 at time 𝑡. It can be formulated as follows:

𝑓𝑖𝑘𝑗𝑘
(𝑡,x) = 𝑥𝑗𝑘 (𝑡)

𝑓𝑖𝑗 (𝑡, 𝑥)
𝑥𝑗 (𝑡)

= 𝑥𝑗𝑘 (𝑡)𝑞
𝑥
𝑖𝑗
(𝑡, 𝑥) = 𝑑𝑗𝑘 (x)𝑓𝑖𝑗 (𝑡, 𝑥) (2.8)

where the coefficients 𝑑𝑗𝑘 (x) = 𝑥𝑗𝑘 (𝑡)∕𝑥𝑗 (𝑡) will be called the decompo-

sition factors. Consequently, due to the exhaustiveness of the system 
partitioning, we have

𝑓𝑖𝑗 (𝑡, 𝑥) =
𝑛∑
𝑘=0
𝑓𝑖𝑘𝑗𝑘

(𝑡,x), 𝑖, 𝑗 = 1,… , 𝑛. (2.9)

In summary, the dynamic system partitioning methodology explic-

itly generates mutually exclusive and exhaustive subsystems running 
within the original system. The 𝑘th subsystem is composed of all 𝑘th
subcompartments of each compartment together with the correspond-

ing subflows and substorages. These subsystems have the same structure 
and dynamics as the original system itself, except for their environ-

mental inputs and initial conditions (see Figs. 1 and 2). Each subsys-

tem, except the initial one—which is driven by the initial stocks—is 
generated by a single environmental input. Therefore, the number of 
non-intersecting subcompartments in each compartment is equal to the 
number of inputs or compartments, plus one for the initial stocks. If 
an input or all initial conditions are zero, the corresponding subsystem 
becomes null. Consequently, for a system with 𝑛 compartments, each 
compartment has 𝑛 + 1 non-intersecting subcompartments, and there-

fore the system has 𝑛 + 1 mutually exclusive subsystems indexed by 
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𝑘 = 0, … , 𝑛. The initial subsystem (𝑘 = 0) represents the evolution of the 
initial stocks, receives no environmental input, and has the same initial 
conditions as the original system. The initial conditions for all the other 
subcompartments (𝑘 ≠ 0) are zero, since they are initially assumed to 
be empty.

The governing equation for each subcompartment 𝑖𝑘 then becomes

�̇�𝑖𝑘
(𝑡) =

(
𝑧𝑖𝑘

(𝑡,x) +
𝑛∑
𝑗=1
𝑓𝑖𝑘𝑗𝑘

(𝑡,x)

)
−

(
𝑦𝑖𝑘

(𝑡,x) +
𝑛∑
𝑗=1
𝑓𝑗𝑘𝑖𝑘

(𝑡,x)

)
(2.10)

for 𝑖 = 1, … , 𝑛, 𝑘 = 0, … , 𝑛. There are 𝑛 × (𝑛 + 1) of such governing equa-

tions, one for each subcompartment. In order to track the evolution of 
environmental inputs within the system individually and separately, all 
except the initial subcompartments are assumed to be initially empty, 
as mentioned above. Therefore, the initial conditions become

𝑥𝑖𝑘
(𝑡0) =

{
𝑥𝑖,0, 𝑘 = 0

0. 𝑘 ≠ 0
(2.11)

The governing system of equations, Eq. (2.10), is solved numerically 
with the initial conditions, Eq. (2.11). The result yields the substorages 
at any time 𝑡, that is, 𝑥𝑖𝑘 (𝑡).

The total subcompartmental inflows and outflows at compartment 
𝑖 at time 𝑡 generated by the environmental input into compartment 𝑘, 
𝑧𝑘(𝑡), during [𝑡0, 𝑡] can then be defined, respectively, as

𝜏𝑖𝑘
(𝑡,x) = 𝑧𝑖𝑘 (𝑡,x) +

𝑛∑
𝑗=1
𝑓𝑖𝑘𝑗𝑘

(𝑡,x) and

𝜏𝑖𝑘
(𝑡,x) = 𝑦𝑖𝑘 (𝑡,x) +

𝑛∑
𝑗=1
𝑓𝑗𝑘𝑖𝑘

(𝑡,x)
(2.12)

for 𝑘 = 0, 1, … , 𝑛. The functions 𝜏𝑖𝑘 (𝑡, x) and 𝜏𝑖𝑘 (𝑡, x) will respectively be 
called inward and outward subthroughflow at subcompartment 𝑖𝑘 at time 
𝑡 (see Fig. 4). Therefore, the system partitioning enables dynamically 
partitioning composite compartmental flows and storages into subcom-

partmental segments based on their constituent sources from the initial 
stocks and environmental inputs.

We define the 𝑛 × 𝑛 substorage and associated inward and outward 
subthroughflow matrix functions, 𝑋(𝑡), �̌� (𝑡, x), and �̂� (𝑡, x), respectively, 
as follows:

𝑋𝑖𝑘(𝑡) = 𝑥𝑖𝑘 (𝑡), �̌�𝑖𝑘(𝑡,x) = 𝜏𝑖𝑘 (𝑡,x), and �̂�𝑖𝑘(𝑡,x) = 𝜏𝑖𝑘 (𝑡,x), (2.13)

for 𝑖, 𝑘 = 1, … , 𝑛. The substorage and associated inward and outward sub-

throughflow vector functions of size 𝑛 for the initial subsystem, 𝑥0(𝑡), 
𝜏0(𝑡, x), and 𝜏0(𝑡, x), can also be defined, respectively, as

𝑥0(𝑡) =
[
𝑥10 (𝑡),… , 𝑥𝑛0

(𝑡)
]𝑇
,

𝜏0(𝑡,x) =
[
𝜏10 (𝑡,x),… , 𝜏𝑛0

(𝑡,x)
]𝑇
, and 𝜏0(𝑡,x) =

[
𝜏10 (𝑡,x),… , 𝜏𝑛0

(𝑡,x)
]𝑇
.

(2.14)

We use the constant vector notation 𝑥0 for the initial conditions and the 
function notation 𝑥0(𝑡) for the evolution of these initial stocks for 𝑡 > 𝑡0
with 𝑥0(𝑡0) = 𝑥0.

The notation diag(𝑥(𝑡)) will be used to represent the diagonal matrix 
whose diagonal elements are the elements of vector 𝑥(𝑡), and diag(𝑋(𝑡))
to represent the diagonal matrix whose diagonal elements are the same 
as the diagonal elements of matrix 𝑋(𝑡). The 𝑛 × 𝑛 diagonal storage, out-

put, and input matrix functions, (𝑡), (𝑡, 𝑥), and (𝑡, 𝑥) will be defined, 
respectively, as

(𝑡) = diag(𝑥(𝑡)), (𝑡, 𝑥) = diag(𝑦(𝑡, 𝑥)), and (𝑡, 𝑥) = diag(𝑧(𝑡, 𝑥)).

Using Eq. (2.8), the subthroughflow matrices can then be formulated as 
follows:
5

�̌� (𝑡,x) =(𝑡, 𝑥) + 𝐹 (𝑡, 𝑥)−1(𝑡)𝑋(𝑡)

�̂� (𝑡,x) =
((𝑡, 𝑥) + diag

(
𝐹𝑇 (𝑡, 𝑥)𝟏

)) −1(𝑡)𝑋(𝑡)

=  (𝑡, 𝑥)−1(𝑡)𝑋(𝑡)

(2.15)

where  (𝑡, 𝑥) = diag (𝜏(𝑡, 𝑥)) =(𝑡, 𝑥) + diag
(
𝐹𝑇 (𝑡, 𝑥)𝟏

)
. Note that,

𝑥(𝑡) = 𝑥0(𝑡) +𝑋(𝑡)𝟏,

𝜏(𝑡, 𝑥) = 𝜏0(𝑡,x) + �̌� (𝑡,x)𝟏, and 𝜏(𝑡, 𝑥) = 𝜏0(𝑡,x) + �̂� (𝑡,x)𝟏.

The governing equations for the decomposed system, Eq. (2.10), can 
be expressed in terms of the vector and matrix functions introduced 
above as follows:

�̇�(𝑡) = �̌� (𝑡,x) − �̂� (𝑡,x), 𝑋(𝑡0) = 𝟎,

�̇�0(𝑡) = 𝜏0(𝑡,x) − 𝜏0(𝑡,x), 𝑥0(𝑡0) = 𝑥0.
(2.16)

We define an 𝑛 × 𝑛 matrix function 𝐴(𝑡, 𝑥) as

𝐴(𝑡, 𝑥) =
(
𝐹 (𝑡, 𝑥) −(𝑡, 𝑥) − diag

(
𝐹𝑇 (𝑡, 𝑥)𝟏

)) −1(𝑡)

= (𝐹 (𝑡, 𝑥) −  (𝑡, 𝑥)) −1(𝑡)

=𝑄𝑥(𝑡, 𝑥) −−1(𝑡, 𝑥)

(2.17)

where 𝑄𝑥(𝑡, 𝑥) = 𝐹 (𝑡, 𝑥) −1(𝑡) and −1(𝑡, 𝑥) =  (𝑡, 𝑥) −1(𝑡), assuming 
(𝑡, 𝑥) is invertible. Note that the first term in the definition of 𝐴(𝑡, 𝑥), 
𝑄𝑥(𝑡, 𝑥), represents the intercompartmental flow intensity defined in 
Eq. (2.8), and the second term, −1(𝑡, 𝑥), represents the outward 
throughflow intensity. Consequently, we will call 𝐴(𝑡, 𝑥) the flow inten-

sity matrix per unit storage. It is sometimes called the compartmental 
matrix [27]. The matrix measure (𝑡, 𝑥) will be called the residence time 
matrix, and the matrix measure 𝑄𝑥(𝑡, 𝑥) will be called the flow intensity 
matrix per unit storage or the flow distribution matrix for system storages 
[11, 12]. The governing equations, Eq. (2.16), can be expressed using 
the flow intensity matrix in the following from:

�̇�(𝑡) =(𝑡, 𝑥) +𝐴(𝑡, 𝑥)𝑋(𝑡), 𝑋(𝑡0) = 𝟎,
�̇�0(𝑡) =𝐴(𝑡, 𝑥)𝑥0(𝑡), 𝑥0(𝑡0) = 𝑥0.

(2.18)

The dynamic system partitioning methodology that yields a decom-

posed system of 𝑛2 + 𝑛 governing equations for all subcompartments, 
Eq. (2.18), from the original system of 𝑛 governing equations for all 
compartments, Eq. (2.1), can algebraically be schematized as follows 
(see Figs. 1 and 2 for graphical illustrations):

�̇�(𝑡) = 𝜏(𝑡, 𝑥)

=⎡⎢⎢⎢⎣
�̇�1
�̇�2
⋮
�̇�𝑛

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜏1
𝜏2
⋮
𝜏𝑛

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
�̇�10
�̇�20
⋮
�̇�𝑛0

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜏10
𝜏20
⋮
𝜏𝑛0

⎤⎥⎥⎥⎦ and

⎡⎢⎢⎢⎣
�̇�11 ⋯ �̇�1𝑛
�̇�21 ⋯ �̇�2𝑛
⋮ ⋱ ⋮
�̇�𝑛1

⋯ �̇�𝑛𝑛

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜏11 ⋯ 𝜏1𝑛
𝜏21 ⋯ 𝜏2𝑛
⋮ ⋱ ⋮
𝜏𝑛1

⋯ 𝜏𝑛𝑛

⎤⎥⎥⎥⎦

= =

�̇�0(𝑡) = 𝜏0(𝑡,x) �̇�(𝑡) = 𝑇 (𝑡,x)

dynamic system partitioning

In the diagram above, the net subthroughflow matrix, 𝑇 (𝑡, x), as well as 
the net throughflow and initial throughflow vectors, 𝜏(𝑡, x) and 𝜏0(𝑡, x), are 
defined as the difference between the corresponding inward and out-

ward throughflows. That is,

𝑇 (𝑡,x) = �̌� (𝑡,x) − �̂� (𝑡,x),

𝜏(𝑡, 𝑥) = 𝜏(𝑡, 𝑥) − 𝜏(𝑡, 𝑥), and 𝜏0(𝑡,x) = 𝜏0(𝑡,x) − 𝜏0(𝑡,x).
(2.19)

The system partitioning introduced in this section is input-oriented. 
The governing system can be partitioned based on environmental out-

puts instead of inputs, by conceptually reversing all system flows. The 
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following condition on the direct flows, instead of Eq. (2.3), ensures the 
possibility of the system partitioning and analysis in both the input- and 
output-orientations:

𝑓𝑖𝑗 (𝑡, 𝑥) = 𝑞𝑥𝑖𝑗 (𝑡, 𝑥)𝑥𝑖(𝑡)𝑥𝑗 (𝑡), 𝑖, 𝑗 = 1.… , 𝑛. (2.20)

This form of flow rates makes both the original and reversed decom-

posed systems well-defined.

2.2. Subsystem flows and storages

The system partitioning methodology dynamically decomposes a 
nonlinear system into mutually exclusive and exhaustive subsystems 
through the formulation of a set of governing equations derived from 
subcompartmentalization and flow partitioning components, as intro-

duced above. This methodology enables the dynamic analysis of subsys-

tems generated by the initial stocks and environmental inputs individ-

ually and separately. The subsystem flows and storages are formulated 
in matrix form in this section.

We define the 𝑘th direct subflow matrix function for the 𝑘th subsys-

tem as 𝐹𝑘(𝑡, x) = (𝑓𝑖𝑘𝑗𝑘 (𝑡, x)), 𝑘 = 0, … , 𝑛. Using the relationships formu-

lated in Eq. (2.8), this matrix can be expressed as follows:

𝐹𝑘(𝑡,x) = 𝐹 (𝑡, 𝑥)−1(𝑡)𝑘(𝑡) (2.21)

where 𝑘(𝑡) = diag([𝑥1𝑘 (𝑡), … , 𝑥𝑛𝑘 (𝑡)]) is the diagonal matrix of the sub-

storage functions in the 𝑘th subsystem. The matrix 𝑘(𝑡) will accord-

ingly be called the 𝑘th substorage matrix function. The 𝑘th output and 
input matrix functions then become

𝑘(𝑡,x) =(𝑡, 𝑥)−1(𝑡)𝑘(𝑡) and 𝑘(𝑡,x) = diag
(
𝑧𝑘(𝑡)𝒆𝑘

)
where 𝒆𝑘 is the elementary unit vector whose components are all zero 
except the 𝑘th element, which is 1, and we set 𝒆0 = 𝟎. The 𝑘th direct 
subflow matrix, 𝐹𝑘(𝑡, x), and the 𝑘th input and output vector functions, 
defined as �̌�𝑘(𝑡, x) =𝑘(𝑡, x) 𝟏 and �̂�𝑘(𝑡, x) =𝑘(𝑡, x) 𝟏, are the counterparts 
for the 𝑘th subsystem of the direct flow matrix, 𝐹 (𝑡, 𝑥), and the input 
and output vectors, 𝑧(𝑡, 𝑥) and 𝑦(𝑡, 𝑥), for the original system. Altogether, 
they represent the subflow regime of the 𝑘th subsystem.

Using the notations and definitions of Eqs. (2.15) and (2.21), 
the 𝑘th inward and outward subthroughflow matrices, ̌𝑘(𝑡, x) = diag
([𝜏1𝑘 (𝑡,x),… , 𝜏𝑛𝑘

(𝑡,x)]) and ̂𝑘(𝑡, x) = diag ([𝜏1𝑘 (𝑡,x),… , 𝜏𝑛𝑘
(𝑡,x)]), for the 

𝑘th subsystem can be expressed as follows:

̌𝑘(𝑡,x) =𝑘(𝑡,x) + diag
(
𝐹 (𝑡, 𝑥)−1(𝑡)𝑘(𝑡)𝟏),

̂𝑘(𝑡,x) = ((𝑡, 𝑥) + diag
(
𝐹𝑇 (𝑡, 𝑥)𝟏

)) −1(𝑡)𝑘(𝑡)
=  (𝑡, 𝑥)−1(𝑡)𝑘(𝑡).

(2.22)

We also define the decomposition and 𝑘th decomposition matrices, 
𝐷(x) = (𝑑𝑖𝑘 (x)) and 𝑘(x) = diag ([𝑑1𝑘 (x),… , 𝑑𝑛𝑘

(x)]), as

𝐷(x) = −1(𝑡)𝑋(𝑡) =  −1(𝑡, 𝑥) �̂� (𝑡,x),

𝑘(x) = −1(𝑡)𝑘(𝑡) =  −1(𝑡, 𝑥) ̂𝑘(𝑡,x).
(2.23)

The second equalities in the definitions of 𝐷(x) and 𝑘(x) are due to 
Eq. (2.15) and (2.22), respectively. Note that 𝐷(x) and 𝑘(x) decompose 
the compartmental throughflow matrix,  (𝑡, 𝑥), into the subthrough-

flow and 𝑘th subthroughflow matrices as indicated in Eqs. (2.15)

and (2.22), similar to the decomposition of 𝐹𝑘(𝑡, x) as formulated be-

low in Eq. (2.25). That is,

�̂� (𝑡,x) =  (𝑡, 𝑥)𝐷(x) and ̂𝑘(𝑡,x) =  (𝑡, 𝑥)𝑘(x). (2.24)

The 𝑘th direct subflow and substorage matrices, 𝐹𝑘(𝑡, x) and 𝑘(𝑡), 
can then be written in the following various forms:

𝐹𝑘(𝑡,x) = 𝐹 (𝑡, 𝑥)𝑘(x) =𝑄𝑥(𝑡, 𝑥)𝑘(𝑡) =𝑄𝜏 (𝑡, 𝑥) ̂𝑘(𝑡,x)
 (𝑡) =(𝑡, 𝑥) ̂ (𝑡,x)

(2.25)
𝑘 𝑘
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where 𝑄𝜏 (𝑡, 𝑥) = 𝐹 (𝑡, 𝑥)  −1(𝑡, 𝑥) will be called the flow intensity matrix

per unit throughflow or the flow distribution matrix for system flows in 
the context of the proposed methodology [12]. Note that the elements 
of 𝑄𝜏 (𝑡, 𝑥), 𝑞𝜏

𝑖𝑗
(𝑡, 𝑥), are sometimes called transfer coefficients, technical 

coefficients in economics, or stoichiometric coefficients in chemistry. The 
system level counterpart of Eq. (2.25) can also be formulated as follows:

�̃� (𝑡,x) = 𝐹 (𝑡, 𝑥)𝐷(x) =𝑄𝑥(𝑡, 𝑥)𝑋(𝑡) =𝑄𝜏 (𝑡, 𝑥) �̂� (𝑡,x),

𝑋(𝑡) =(𝑡, 𝑥) �̂� (𝑡,x),
(2.26)

using Eq. (2.15). The matrix function �̃� (𝑡, x) = �̌� (𝑡, x) − (𝑡, 𝑥) will be 
called the intercompartmental subthroughflow matrix. Componentwise, 
�̃� (𝑡, x) = (𝜏𝑖𝑘 (𝑡, x)) can be expressed as 𝜏𝑖𝑘 (𝑡, x) = 𝜏𝑖𝑘 (𝑡, x) − 𝑧𝑖𝑘 (𝑡). Conse-

quently, for any given storage organization within the system, 𝑋(𝑡), 
the corresponding intercompartmental flow distributions—that is, in-

tercompartmental inward and outward subthroughflow matrices, �̃� (𝑡, x)
and �̂� (𝑡, x)—can be determined at any time 𝑡 as follows:

�̃� (𝑡,x) =𝑄𝑥(𝑡, 𝑥)𝑋(𝑡) and �̂� (𝑡,x) =−1(𝑡, 𝑥)𝑋(𝑡). (2.27)

It is worth noting that the residence time matrix can be written in 
the following various forms:

(𝑡, 𝑥) = (𝑡) −1(𝑡, 𝑥) =𝑘(𝑡) ̂ −1
𝑘

(𝑡,x) =𝑋(𝑡) �̂� −1(𝑡,x) (2.28)

as formulated in Eqs. (2.17), (2.25), and (2.26). For later use, we also 
define three diagonal matrices as follows:

�̃�(𝑡,x) = diag (�̃� (𝑡,x)), �̌�(𝑡,x) = diag (�̌� (𝑡,x)), �̂�(𝑡,x) = diag (�̂� (𝑡,x)). (2.29)

2.3. Analytic solution to linear systems

This section formulates analytic solutions to linear systems with 
time-dependent inputs. The system partitioning methodology yields a 
linear system, if the original system is linear. That is, if Eq. (2.4) is lin-

ear, Eq. (2.18) is also linear. Due to the cancellations in matrix 𝐴(𝑡, 𝑥)
defined in Eq. (2.17), the decomposed linear system, Eq. (2.18), can be 
expressed in the following matrix form:

�̇�(𝑡) =(𝑡) +𝐴(𝑡)𝑋(𝑡), 𝑋(𝑡0) = 𝟎,

�̇�0(𝑡) =𝐴(𝑡)𝑥0(𝑡), 𝑥0(𝑡0) = 𝑥0.
(2.30)

Let 𝑉 (𝑡) be the fundamental matrix solution to the system Eq. (2.30), as 
defined by [11]. That is, let 𝑉 (𝑡) be the unique solution of the system

�̇� (𝑡) =𝐴(𝑡)𝑉 (𝑡), 𝑉 (𝑡0) = 𝐼.

The solutions to Eq. (2.30) for substorage matrix, 𝑋(𝑡), and initial sub-

storage vector, 𝑥0(𝑡), in terms of 𝑉 (𝑡), become

𝑋(𝑡) = ∫
𝑡

𝑡0

𝑉 (𝑡)𝑉 −1(𝑠)(𝑠)𝑑𝑠 and 𝑥0(𝑡) = 𝑉 (𝑡)𝑥0, (2.31)

as formulated by [11]. Therefore, the solution to the original system, 
Eq. (2.1) can be written as

𝑥(𝑡) = 𝑉 (𝑡)𝑥0 + ∫
𝑡

𝑡0

𝑉 (𝑡)𝑉 −1(𝑠)𝑧(𝑠)𝑑𝑠.

For the special case of constant diagonalizable flow intensity matrix 
𝐴, we have

𝑉 (𝑡) = exp

(
∫
𝑡

𝑡0

𝐴𝑑𝑠

)
= e

(
𝑡−𝑡0

)
𝐴 =Ωe(𝑡−𝑡0)Λ Ω−1 (2.32)

where Ω is the matrix whose columns are the eigenvectors of A, and Λ
is the diagonal matrix whose diagonal elements are the eigenvalues of 
𝐴. For this particular case, Eq. (2.31) takes the following form:

𝑋(𝑡) = ∫
𝑡

e(𝑡−𝑠)𝐴(𝑠)𝑑𝑠 and 𝑥0(𝑡) = e
(
𝑡−𝑡0

)
𝐴 𝑥0. (2.33)
𝑡0
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Consequently,

𝑥(𝑡) = e
(
𝑡−𝑡0

)
𝐴 𝑥0 + ∫

𝑡

𝑡0

e(𝑡−𝑠)𝐴 𝑧(𝑠)𝑑𝑠.

A subsystem scaling argument is proposed to analyze static system 
behavior per unit input by [12]. The scaled substorage matrix, 𝑆(𝑡) =
𝑋(𝑡) −1, can be expressed for constant invertible input matrix, (𝑡) =
 > 𝟎, as follows:

𝑆(𝑡) = ∫
𝑡

𝑡0

𝑉 (𝑡)𝑉 −1(𝑠)𝑑𝑠 = ∫
𝑡

𝑡0

e(𝑡−𝑠)𝐴 𝑑𝑠 =Ω

(
∫
𝑡

𝑡0

e(𝑡−𝑠)Λ 𝑑𝑠

)
Ω−1, (2.34)

using Eq. (2.31) and (2.33). The static version of this measure 𝑆(𝑡) is 
widely used in static ecological network analyses as outlined in the next 
section [12].

An example of the analytic solution to a linear ecosystem model with 
time dependent environmental input is presented in Section 3.1.

2.4. Static ecological system analysis

At steady state, the time derivatives of the state variables are zero, 
and all system flows and storages are constant. That is,

�̇�(𝑡) = 𝟎 and �̇�0(𝑡) = 𝟎.

The constant static quantities will be denoted by the same symbols with-

out the time argument. The constant substorage matrix, for example, 
will be denoted by 𝑋(𝑡) =𝑋.

Summing up the equations in Eq. (2.10) side by side over index 𝑘
yields Eq. (2.4) because of the relationship

�̇�𝑖(𝑡) =
𝑛∑
𝑘=0
�̇�𝑖𝑘

(𝑡), 𝑖 = 1,… , 𝑛,

deduced from Eq. (2.7) and the definition of the decomposition factors, 
𝑑𝑖𝑘

(x), given in Eq. (2.8). Therefore, if the partitioned system, Eq. (2.10), 
is at steady state, the original system, Eq. (2.4), is also at steady state. 
The static version of the proposed dynamic methodology is introduced 
by [12, 13], as summarized below in this section.

Since 𝐴 is a strictly diagonally dominant constant matrix, it is in-

vertible. It can be expressed as

𝐴 = (𝐹 −  ) −1 =𝑄𝑥 −−1. (2.35)

We then have the following solutions to Eq. (2.18) for the substorage 
matrix, 𝑋(𝑡), and initial substorage vector, 𝑥0(𝑡), at steady state:

𝑋 = −𝐴−1 =  ( − 𝐹 )−1  and 𝑥0 = 𝟎. (2.36)

From Eq. (2.15) and the fact that 𝜏 = 𝜏 = 𝜏 and 𝑇 = �̌� = �̂� at steady state, 
the throughflow matrix can be written in terms of system flows only:

𝑇 =+ 𝐹 −1𝑋 =+ 𝐹  −1 𝑇 ⇒ 𝑇 =
(
𝐼 − 𝐹  −1)−1 . (2.37)

The residence time matrix  can also be expressed as

 =   −1 =𝑘  −1
𝑘

=𝑋𝑇 −1 (2.38)

similar to Eq. (2.28).

The scaled substorage and subthroughflow matrices are defined 
for system analysis per unit input by [12]. They are formulated as 
𝑆 = 𝑋−1 and 𝑁 = 𝑇 −1, where  is invertible. Using Eqs. (2.36)

and (2.37), these matrix measures can be expressed as follows:

𝑆 = −𝐴−1 and 𝑁 =
(
𝐼 − 𝐹  −1)−1 . (2.39)

Note that 𝑆(𝑡) formulated in Eq. (2.34) is equivalent to 𝑆 at steady state, 
that is

lim 𝑆(𝑡) = 𝑆.

𝑡→∞

7

The matrices 𝑁 and 𝑆 are called the cumulative flow and storage distri-

bution matrices in the context of the proposed methodology [12].

Although the derivation rationales are different, the proposed matrix 
measures 𝑆 and 𝑁 are equivalent to the ones formulated in the current 
static ecological network analyses, as shown by [12]. These matrices are 
treated separately in the current static methodologies, although they 
are naturally related by a factor of the residence time matrix. Equa-

tion (2.38) implies that

𝑇 =−1𝑋 ⇒ 𝑆 =𝑁.
This relationship enables the holistic view of static ecological networks:

𝑥 = 𝑆 𝑧 =𝑁 𝑧 = 𝜏 and 𝑋 = 𝑆 =𝑁  =𝑇 (2.40)

as introduced by [13].

The substorage and subthroughflow matrices can be scaled by out-

put matrix instead, for the output-oriented system analysis. We use a bar 
notation over the output-oriented counterparts of the input oriented 
quantities. In the output-oriented analysis, we assume that all system 
flows are conceptually reversed. That is,

𝐹 = 𝐹𝑇 , ̄ =, and ̄ = .
The counterparts of the Eq. (2.40) for the output-oriented analysis then 
become

�̄� = �̄� 𝑦 = �̄� 𝑦 = 𝜏 and �̄� = �̄� = �̄�  = �̄� (2.41)

where �̄� = �̄�−1, �̄� = �̄� −1, and the diagonal output matrix,  , is 
assumed to be invertible. Since 𝑥 = �̄� and 𝜏 = 𝜏 at steady state, ̄ =.

It is worth noting that the input- and output-oriented cumulative 
flow and storage distribution matrices are similar. This duality can be 
expressed as

𝑆  =  �̄�𝑇 and 𝑁 =  �̄�𝑇 . (2.42)

The holistic input- and output-oriented static ecological system analyses 
and their duality have recently been introduced by [12, 13].

2.5. Subsystem partitioning methodology

In this section, we introduce the dynamic subsystem partition-

ing methodology for further partitioning or segmentation of subsys-

tems along a given set of mutually exclusive and exhaustive sub-

flow paths, as a simplified version of the subsystem decomposition 
methodology recently proposed by [11]. The subsystem partitioning 
methodology dynamically apportions arbitrary composite intercom-

partmental flows and the associated storages generated by these 
flows into transient subflow and substorage segments along given 
subflow paths. The subsystem partitioning, therefore, determines the 
distribution of arbitrary intercompartmental flows and the organi-

zation of the associated storages generated by these flows within 
the subsystems. In other words, this methodology enables tracking 
the evolution of arbitrary intercompartmental flows and associated 
storages within and monitoring their spread throughout the sys-

tem.

The natural subsystem decomposition is defined as the set of mutually 
exclusive and exhaustive subflow paths whose local inputs and outputs, 
except for the closed paths, are environmental inputs and outputs, re-

spectively [11, 12]. By mutually exclusive subflow paths, we mean that 
no given subflow path is a subpath, that is, completely inside of another 
path in the same subsystem. Exhaustiveness in this context means that 
such mutually exclusive subflow paths—together with the correspond-

ing transient subflows and substorages along the paths—all together 
sum to the entire subsystem so partitioned. The natural subsystem de-

composition of each subsystem then results in a mutually exclusive and 
exhaustive decomposition of the entire system.
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We will first introduce the transient flows and storages below. There-

after, they will then be used for the formulation of the diact flows and 
storages in the subsequent section.

No man ever steps in the same river twice. – Heraclitus (535-475 BC)

2.5.1. Transient flows and storages

As indicated in the famous dictum by Heraclitus that “everything 
flows,” flows are one of the most important physical phenomena of exis-

tence. In this section, we formulate the transient flows and the associated 
storages generated by these flows.

The transient and cumulative transient subflows along a subflow path 
are defined as follows: Along a given subflow path 𝑝𝑤

𝑛𝑘𝑗𝑘
= 𝑖𝑘 ↦ 𝑗𝑘 →

𝓁𝑘 → 𝑛𝑘, the transient inflow at subcompartment 𝓁𝑘, 𝑓𝑤𝓁𝑘𝑗𝑘𝑖𝑘 (𝑡), generated 
by the local input from 𝑖𝑘 to 𝑗𝑘 during [𝑡1, 𝑡], 𝑡1 ≥ 𝑡0, is the input segment 
that is transmitted from 𝑗𝑘 to 𝓁𝑘 at time 𝑡. Similarly, the transient out-

flow generated by the transient inflow at 𝓁𝑘 during [𝑡1, 𝑡], 𝑓𝑤𝑛𝑘𝓁𝑘𝑗𝑘 (𝑡), is 
the inflow segment that is transmitted from 𝓁𝑘 to the next subcompart-

ment, 𝑛𝑘, along the path at time 𝑡. The associated transient substorage

in subcompartment 𝓁𝑘 at time 𝑡, 𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡), is the substorage segment 
governed by the transient inflow and outflow balance during [𝑡1, 𝑡] (see 
Fig. 3).

The transient outflow at subcompartment 𝓁𝑘 at time 𝑡 along subflow 
path 𝑝𝑤

𝑛𝑘𝑗𝑘
from 𝑗𝑘 to 𝑛𝑘, 𝑓𝑤𝑛𝑘𝓁𝑘𝑗𝑘 (𝑡), can be formulated as follows:

𝑓𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡) =
𝑓𝑛𝑘𝓁𝑘

(𝑡,x)
𝑥𝓁𝑘

(𝑡)
𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡), (2.43)

similar to Eq. (2.8), due to the equivalence of flow and subflow inten-

sities, where the transient substorage, 𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡), is determined by the 
governing mass balance equation

�̇�𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡) = 𝑓𝑤𝓁𝑘𝑗𝑘𝑖𝑘 (𝑡) −
𝜏𝓁𝑘

(𝑡,x)
𝑥𝓁𝑘

(𝑡)
𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡), 𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡1) = 0. (2.44)

The equivalence of the throughflow and subthroughflow intensities, as 
well as the flow and subflow intensities in the same direction, that is

𝑞𝑥
𝑛𝓁(𝑡, 𝑥) =

𝑓𝑛𝓁(𝑡, 𝑥)
𝑥𝓁(𝑡)

=
𝑓𝑛𝑘𝓁𝑘

(𝑡,x)
𝑥𝓁𝑘

(𝑡)
and

𝑟−1𝓁 (𝑡, 𝑥) =
𝜏𝓁(𝑡, 𝑥)
𝑥𝓁(𝑡)

=
𝜏𝓁𝑘

(𝑡,x)
𝑥𝓁𝑘

(𝑡)

(2.45)

are given by Eqs. (2.8) and (2.15), for 𝓁, 𝑛 = 1, … , 𝑛, and 𝑘 = 0, 1, … , 𝑛
[11]. Therefore, since the intensities in Eqs. (2.43) and (2.44) can 
be expressed at both the compartmental and subcompartmental lev-

els, the subsystem partitioning is actually independent from the 
system partitioning. That is, the same analysis can be done along 
flow paths within the system, instead of subflow paths within the 
subsystems. This allows the flexibility of tracking arbitrary inter-

compartmental flows and storages generated by all or individual 
environmental inputs within the system. The governing equations, 
Eqs. (2.43) and (2.44), establish the foundation of the dynamic sub-

system partitioning. These equations for each subcompartment along 
a given flow path of interest will then be coupled with the parti-

tioned system, Eq. (2.10), or the original system, Eq. (2.4), and be 
solved simultaneously. The equations can alternatively be solved in-

dividually and separately once the original or partitioned system is 
solved.

The transient subflows and substorages are defined for linear sub-

flow paths above. The sum of the transient inflows from subcompart-

ment 𝑗𝑘 to 𝓁𝑘 and the outflows from 𝓁𝑘 to 𝑛𝑘 generated at subcom-

partment 𝓁𝑘 at time 𝑡 by the local input into the connection of a given 
non-self-intersecting closed subflow path 𝑝𝑤

𝑛𝑘𝑗𝑘
during [𝑡1, 𝑡], 𝑡1 ≥ 𝑡0, will 

respectively be called the inward and outward cumulative transient sub-

flow at subcompartment 𝓁𝑘 at time 𝑡. The associated storage generated 
by the inward cumulative transient subflow will be called cumulative 
8

Fig. 3. Schematic representation of the dynamic subsystem decomposition. The 
transient inflow and outflow rate functions, 𝑓𝑤𝓁𝑘𝑗𝑘𝑖𝑘 (𝑡) and 𝑓𝑤

𝑛𝑘𝓁𝑘𝑗𝑘
(𝑡), at an associ-

ated transient substorage, 𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡), in subcompartment 𝓁𝑘 along subflow path 
𝑝𝑤
𝑛𝑘𝑗𝑘

= 𝑖𝑘 ↦ 𝑗𝑘 → 𝓁𝑘 → 𝑛𝑘.

transient substorage. These inward and outward cumulative transient 
subflows will be denoted by 𝜏𝑤𝓁𝑘 (𝑡) and 𝜏𝑤𝓁𝑘 (𝑡), respectively, and associ-

ated cumulative transient substorage by 𝑥𝑤𝓁𝑘 (𝑡). They can be formulated 
as

𝑥𝑤𝓁𝑘
(𝑡) =

𝑚𝑤∑
𝑚=1

𝑥
𝑤,𝑚

𝑛𝑘𝓁𝑘𝑗𝑘
(𝑡), 𝜏𝑤𝓁𝑘 (𝑡) =

𝑚𝑤∑
𝑚=1

𝑓
𝑤,𝑚

𝓁𝑘𝑗𝑘𝑖𝑘
(𝑡), 𝜏𝑤𝓁𝑘 (𝑡) =

𝑚𝑤∑
𝑚=1

𝑓
𝑤,𝑚

𝑛𝑘𝓁𝑘𝑗𝑘
(𝑡) (2.46)

for 𝑘 = 0, 1, … , 𝑛, where the superscript 𝑚 represents the cycle number, 
and 𝑚𝑤 is the number of cycles, that is, the number of times the path 
𝑝𝑤
𝑛𝑘𝑖𝑘

pass through subcompartment 𝓁𝑘. Large number of terms, 𝑚𝑤, in 
computation of these summations reduce truncation errors and, thus, 
improve the approximations.

Using the equivalence of flow intensities as formulated in Eq. (2.45), 
it has been recently shown for compartmental systems that the parallel 
subflows and the corresponding subthroughflows and substorages are 
proportional [11]. By parallel subflows, we mean the intercompartmen-

tal flows that transit through different subcompartments of the same 
compartment along the same flow path at the same time. This propor-

tionality can be formulated as

𝜏𝑘𝓁
(𝑡,x)

𝜏𝑘𝑘
(𝑡,x)

=
𝑥𝑘𝓁

(𝑡)
𝑥𝑘𝑘

(𝑡)
=
𝑓𝑖𝓁𝑘𝓁

(𝑡,x)
𝑓𝑖𝑘𝑘𝑘

(𝑡,x)
(2.47)

for 𝑘 = 1, … , 𝑛 and 𝓁 = 0, … , 𝑛, where the denominators are nonzero.

2.5.2. The diact flows and storages

In this section, we formulate five main transaction types for non-

linear systems at both the subcompartmental and compartmental levels 
using two approaches: the direct (d), indirect (i), cycling (c), acyclic (a), 
and transfer (t) flows and the associated storages generated by these

diact flows. The first approach based on the subsystem partitioning 
methodology will be called the path-based approach, and the second ap-

proach based on the system partitioning methodology will be called the 
dynamic approach.

The composite transfer flow will be defined as the total intercompart-

mental transient flow that is generated by all environmental inputs from 
one compartment, directly or indirectly through other compartments, to 
another. The composite direct, indirect, acyclic, and cycling flows from the 
initial compartment to the terminal compartment are then defined as 
the direct, indirect, non-cycling, and cycling segments at the terminal 
compartment of the composite transfer flow (see Fig. 4). The cycling 
and acyclic flows can, therefore, be interpreted as the flows that visit 
the terminal compartment multiple times and only once, respectively, af-

ter being transmitted from the initial compartment.

The composite transfer subflow within the initial subsystem can also 
be defined as the total intercompartmental transient subflow that is de-

rived from all initial stocks from one initial subcompartment, directly

or indirectly through other initial subcompartments, to another. The 
composite direct, indirect, acyclic, and cycling subflows within the initial 
subsystem from the initial subcompartment to the terminal subcompart-

ment are then defined as the direct, indirect, non-cycling, and cycling 
segments at the terminal subcompartment of the composite transfer sub-

flow.
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Fig. 4. Schematic representation of the simple and composite diact flows. Solid arrows represent direct flows, and dashed arrows represent indirect flows through 
other compartments (not shown). The composite diact flows (black) generated by outward throughflow 𝜏𝑗 (𝑡, 𝑥) −𝜏𝑗0 (𝑡, x) (i.e. derived from all environmental inputs): 
direct flow, 𝜏d

𝑖𝑗
(𝑡), indirect flow, 𝜏i

𝑖𝑗
(𝑡), acyclic flow, 𝜏a

𝑖𝑗
(𝑡) = 𝜏t

𝑖𝑗
(𝑡) − 𝜏c

𝑖𝑗
(𝑡), cycling flow, 𝜏c

𝑖𝑗
(𝑡), and transfer flow, 𝜏t

𝑖𝑗
(𝑡). The simple diact flows (blue) generated by 

outward subthroughflow 𝜏𝑖𝑖 (𝑡, x) (i.e. derived from single environmental input 𝑧𝑖(𝑡)): direct flow, 𝜏d
𝑗𝑖
(𝑡) = 𝜏d

𝑗𝑖 𝑖𝑖
(𝑡), indirect flow, 𝜏i

𝑗𝑖
(𝑡) = 𝜏i

𝑗𝑖 𝑖𝑖
(𝑡), acyclic flow, 𝜏a

𝑗𝑖
(𝑡) =

𝜏a
𝑗𝑖 𝑖𝑖

(𝑡) = 𝜏t
𝑗𝑖
(𝑡) − 𝜏c

𝑗𝑖
(𝑡), cycling flow, 𝜏c

𝑗𝑖
(𝑡) = 𝜏c

𝑗𝑖 𝑖𝑖
(𝑡), and transfer flow, 𝜏t

𝑗𝑖
(𝑡) = 𝜏𝑗𝑖 (𝑡, x) = 𝜏𝑗𝑖 (𝑡, x) − 𝑧𝑗𝑖 (𝑡). Note that the cycling flows at the terminal (sub)compartment 

may include the segments of the direct and/or indirect flows at that (sub)compartment, if the cycling flows indirectly pass through the corresponding initial 
(sub)compartment (see Fig. 5). Therefore, the acyclic flows are composed of the segments of the direct and/or indirect flows.
The simple transfer flow will be defined as the total intercompart-

mental transient subflow that is generated by the single environmental 
input from an input-receiving subcompartment, directly or indirectly

through other compartments, to another subcompartment. The simple 
direct, indirect, acyclic, and cycling flows from the initial input-receiving 
subcompartment to the terminal subcompartment are then defined as 
the direct, indirect, non-cycling, and cycling segments at the terminal 
subcompartment of the simple transfer flow (see Fig. 4). The associ-

ated simple and composite diact storages are defined as the storages 
generated by the corresponding diact flows. 

Let 𝑃t
𝑖𝑘𝑗𝑘

be the set of mutually exclusive subflow paths 𝑝𝑤
𝑖𝑘𝑗𝑘

from 
subcompartment 𝑗𝑘 directly or indirectly to 𝑖𝑘 in subsystem 𝑘. The sets 
𝑃d
𝑖𝑘𝑗𝑘

and 𝑃i
𝑖𝑘𝑗𝑘

are also defined as the sets of mutually exclusive direct

and indirect subflow paths 𝑝𝑤
𝑖𝑘𝑗𝑘

from subcompartment 𝑗𝑘 directly and indi-

rectly to 𝑖𝑘, respectively. Similarly, the sets 𝑃c
𝑖𝑘𝑗𝑘

and 𝑃a
𝑖𝑘𝑗𝑘

are defined as 
the sets of mutually exclusive cyclic and acyclic subflow paths 𝑝𝑤

𝑖𝑘𝑗𝑘
from 

𝑗𝑘 to 𝑖𝑘 with a closed and linear subpath at terminal subcompartment 
𝑖𝑘, respectively (see Fig. 4). The cyclic subflow set, 𝑃c

𝑖𝑘
, can alternatively 

be defined as the set of mutually exclusive subflow paths 𝑝𝑤
𝑖𝑘

from sub-

compartment 𝑖𝑘 indirectly back to itself. The number of subflow paths 
in 𝑃*

𝑖𝑘𝑗𝑘
will be denoted by 𝑤𝑘, where the superscript (*) represent any 

of the diact symbols.

The composite diact subflow from subcompartment 𝑗𝑘 to 𝑖𝑘, 𝜏*𝑖𝑘𝑗𝑘 (𝑡), 
is defined as the sum of the cumulative transient subflows, 𝜏𝑤

𝑖𝑘
(𝑡), gen-

erated by the outward subthroughflow at subcompartment 𝑗𝑘, 𝜏𝑗𝑘 (𝑡, x), 
during [𝑡1, 𝑡], 𝑡1 ≥ 𝑡0, and transmitted into 𝑖𝑘 at time 𝑡 along all sub-

flow paths 𝑝𝑤
𝑖𝑘𝑗𝑘

∈ 𝑃*
𝑖𝑘𝑗𝑘

. The associated composite diact substorage, 
𝑥*
𝑖𝑘𝑗𝑘

(𝑡), at subcompartment 𝑖𝑘 at time 𝑡 is the sum of the cumulative 
transient substorages, 𝑥𝑤

𝑖𝑘
(𝑡), generated by the cumulative transient in-

flows, 𝜏𝑤
𝑖𝑘
(𝑡), during [𝑡1, 𝑡]. Alternatively, 𝑥*

𝑖𝑘𝑗𝑘
(𝑡) can be defined as the 

storage segment generated by the composite diact inflow 𝜏*
𝑖𝑘𝑗𝑘

(𝑡) in 
subcompartment 𝑖𝑘 during [𝑡1, 𝑡]. Note that, for the cycling case, the 
first entrance of the transient subflows and substorages into 𝑖𝑘 are not 
considered as cycling subflows and substorages.

The composite diact subflows and substorages can then be formu-

lated as follows:

𝜏*
𝑖𝑘𝑗𝑘

(𝑡) =
𝑤𝑘∑
𝑤=1

𝜏𝑤
𝑖𝑘
(𝑡) and 𝑥*

𝑖𝑘𝑗𝑘
(𝑡) =

𝑤𝑘∑
𝑤=1

𝑥𝑤
𝑖𝑘
(𝑡). (2.48)

The sum of all composite diact subflows and substorages from sub-

compartment 𝑗𝑘 to 𝑖𝑘 within each subsystem 𝑘 ≠ 0 will be called the 
composite diact flow and storage from compartment 𝑗 to 𝑖 at time 𝑡, 
𝜏*
𝑖𝑗
(𝑡) and 𝑥*

𝑖𝑗
(𝑡), generated by all environmental inputs during [𝑡1, 𝑡]. 

They can be formulated as

𝜏*
𝑖𝑗
(𝑡) =

𝑛∑
𝜏*
𝑖𝑘𝑗𝑘

(𝑡) and 𝑥*
𝑖𝑗
(𝑡) =

𝑛∑
𝑥*
𝑖𝑘𝑗𝑘

(𝑡). (2.49)

𝑘=1 𝑘=1
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For notational convenience, we define 𝑛 × 𝑛 matrix functions 𝑇*
𝑘
(𝑡)

and 𝑋*
𝑘
(𝑡) whose (𝑖, 𝑗)-elements are 𝜏*

𝑖𝑘𝑗𝑘
(𝑡) and 𝑥*

𝑖𝑘𝑗𝑘
(𝑡), respectively. 

That is,

𝑇*
𝑘
(𝑡) =

(
𝜏*
𝑖𝑘𝑗𝑘

(𝑡)
)

and 𝑋*
𝑘
(𝑡) =

(
𝑥*
𝑖𝑘𝑗𝑘

(𝑡)
)
, (2.50)

for 𝑘 = 0, … , 𝑛. These matrix measures 𝑇*
𝑘
(𝑡) and 𝑋*

𝑘
(𝑡) are called the 

𝑘th composite diact subflow and associated substorage matrix functions. 
The corresponding composite diact flow and associated storage matrix

functions generated by environmental inputs are 𝑇*(𝑡) =
(
𝜏*
𝑖𝑗
(𝑡)
)

and 
𝑋*(𝑡) =

(
𝑥*
𝑖𝑗
(𝑡)
)
, respectively [11].

The simple dicat flows and storages generated by single environ-

mental inputs can be formulated in terms of their composite counter-

parts as follows:

𝜏*
𝑖𝑘
(𝑡) = 𝜏*

𝑖𝑘𝑘𝑘
(𝑡) and 𝑥*

𝑖𝑘
(𝑡) = 𝑥*

𝑖𝑘𝑘𝑘
(𝑡). (2.51)

To distinguish the composite and simple diact flow and storage ma-

trices, we use a tilde notation over the simple versions. That is, the 
simple diact flow and storage matrices, for example, will be denoted 
by �̃�*(𝑡) =

(
𝜏*
𝑖𝑘
(𝑡)
)

and �̃�*(𝑡) =
(
𝑥*
𝑖𝑘
(𝑡)
)
.

The simple diact throughflow and compartmental storage matrices and 
vectors can then be formulated as

̃ *(𝑡) = diag (�̃�*(𝑡)𝟏) ⇒ 𝜏*(𝑡) = ̃ *(𝑡)𝟏 and

̃*(𝑡) = diag (�̃�*(𝑡)𝟏) ⇒ �̃�*(𝑡) = ̃*(𝑡)𝟏. (2.52)

The composite counterparts of these quantities can similarly be formu-

lated in parallel.

The difference between the composite and simple diact flows, 𝜏*
𝑖𝑘
(𝑡)

and 𝜏*
𝑖𝑘
(𝑡), and storages, 𝑥*

𝑖𝑘
(𝑡) and 𝑥*

𝑖𝑘
(𝑡), is that the composite flow and 

storage from compartment 𝑘 to 𝑖 are generated by outward through-

flow 𝜏𝑘(𝑡, 𝑥) − 𝜏𝑘0 (𝑡, x) derived from all environmental inputs and their 
simple counterparts from input-receiving subcompartment 𝑘𝑘 to 𝑖𝑘 are 
generated by outward subthroughflow 𝜏𝑘𝑘 (𝑡, x) derived from single en-

vironmental input 𝑧𝑘(𝑡, 𝑥) (see Fig. 4). In that sense, the composite and 
simple diact flows and storages measure the influence of one com-

partment on another induced by all and a single environmental input, 
respectively. The composite diact subflows and substorages within 
the initial subsystem, 𝜏*

𝑖0𝑘0
(𝑡) and 𝑥*

𝑖0𝑘0
(𝑡), from compartment 𝑘 to 𝑖 are 

then generated by outward throughflow 𝜏𝑘0 (𝑡, x) derived from all initial 
stocks. 

The simple and composite diact flows have been explicitly formu-

lated for static systems through the system partitioning methodology in 
a recent study by [12]. This static approach will be extended to dynamic 
systems pointwise in time, that is, at each time step, in what follows. In 
addition to the path-based approach introduced above, this alternative 
approach to formulate the dynamic diact flows and storages will be 
called the dynamic approach.
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Fig. 5. Schematic representation for the complementary nature of the simple 
indirect and cycling flows within the 𝑘th subsystem. The composite direct sub-

flow, 𝑓𝑘𝑘𝑖𝑘 (𝑡, x), is represented by solid arrow. This subflow also contributes to 
the simple cycling flow at subcompartment 𝑘𝑘 . The simple indirect subflow, 
𝜏i
𝑖𝑘𝑘𝑘

(𝑡), through other compartments (not shown) is represented by dashed ar-

row.

The simple transfer flow from an input-receiving subcompartment 
𝑘𝑘 to 𝑖𝑘 can be expressed as follows:

𝜏t
𝑖𝑘
(𝑡) = 𝜏t

𝑖𝑘𝑘𝑘
(𝑡) =

𝑛∑
𝑗=1
𝑓𝑖𝑘𝑗𝑘

(𝑡,x) = 𝜏𝑖𝑘 (𝑡,x) − 𝑧𝑖𝑘 (𝑡,x) = 𝜏𝑖𝑘 (𝑡,x) (2.53)

for 𝑖, 𝑘 = 1, … , 𝑛. Note that the simple transfer flow at subcompartment 
𝑖𝑘 is equal to the intercompartmental subthroughflow at that subcom-

partment. The simple direct flow from 𝑘𝑘 to 𝑖𝑘 is

𝜏d
𝑖𝑘
(𝑡) = 𝑓𝑖𝑘𝑘𝑘 (𝑡,x). (2.54)

The simple indirect flow from 𝑘𝑘 to 𝑖𝑘 at time 𝑡 can then be formulated 
as the simple transfer flow, 𝜏t

𝑖𝑘
(𝑡), diminished by the simple direct flow, 

𝜏d
𝑖𝑘
(𝑡). That is,

𝜏i
𝑖𝑘
(𝑡) = 𝜏i

𝑖𝑘𝑘𝑘
(𝑡) =

𝑛∑
𝑗=1
𝑗≠𝑘
𝑓𝑖𝑘𝑗𝑘

(𝑡,x) = 𝜏𝑖𝑘 (𝑡,x) − 𝑧𝑖𝑘 (𝑡,x) − 𝑓𝑖𝑘𝑘𝑘 (𝑡,x). (2.55)

Due to the reflexivity of the cycling flow, the simple cycling flow 
from an input-receiving subcompartment 𝑘𝑘 back into itself can be for-

mulated in terms of the simple indirect or transfer flows as follows:

𝜏c
𝑘𝑘
(𝑡) = 𝜏c

𝑘𝑘𝑘𝑘
(𝑡) = 𝜏t

𝑘𝑘
(𝑡) = 𝜏i

𝑘𝑘
(𝑡) =

𝑛∑
𝑗=1
𝑓𝑘𝑘𝑗𝑘

(𝑡,x) = 𝜏𝑘𝑘 (𝑡,x) − 𝑧𝑘𝑘 (𝑡,x). (2.56)

That is, the simple cycling flow is the simple transfer or indirect flow 
from a subcompartment back into itself. The complementary nature of 
the cycling and indirect flows are schematized in Fig. 5. The propor-

tionality given in Eq. (2.60) implies that the simple (composite) cycling 
(sub)flow from an input-receiving (arbitrary) subcompartment 𝑘𝑘 (𝑖𝑘) 
into 𝑖𝑘 is

𝜏c
𝑖𝑘
(𝑡) = 𝜏c

𝑖𝑘𝑘𝑘
(𝑡) = 𝜏c

𝑖𝑘𝑖𝑘
(𝑡) =

𝜏𝑖𝑖
(𝑡,x) − 𝑧𝑖𝑖 (𝑡,x)
𝜏𝑖𝑖
(𝑡,x)

𝜏𝑖𝑘
(𝑡,x). (2.57)

The simple acyclic flow can, therefore, be formulated as

𝜏a
𝑖𝑘
(𝑡) = 𝜏a

𝑖𝑘𝑘𝑘
(𝑡) = 𝜏t

𝑖𝑘
(𝑡) − 𝜏c

𝑖𝑘
(𝑡)

= 𝜏𝑖𝑘 (𝑡,x) − 𝑧𝑖𝑘 (𝑡,x) −
𝜏𝑖𝑖
(𝑡,x) − 𝑧𝑖𝑖 (𝑡,x)
𝜏𝑖𝑖
(𝑡,x)

𝜏𝑖𝑘
(𝑡,x).

(2.58)

Note that the simple acyclic flow from subcompartment 𝑘𝑘 back into 
itself is zero:

𝜏a
𝑘𝑘
(𝑡) = 𝜏𝑘𝑘 (𝑡) − 𝜏

c
𝑘𝑘
(𝑡) = 0. (2.59)

This means that there is, obviously, no acyclic flow from a subcompart-

ment back into itself.

The proportionality of the parallel subflows and the corresponding 
subthroughflows and substorages formulated in Eq. (2.47) can be ex-

pressed for the diact subflows as follows:

𝜏*
𝑖𝓁𝑘𝓁

(𝑡) = 𝜏*
𝑖𝑘𝑘𝑘

(𝑡)
𝜏𝑘𝓁

(𝑡,x)
𝜏 (𝑡,x)

(2.60)

𝑘𝑘
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Table 1

The dynamic diact flow distribution and the simple and composite diact

(sub)flow matrices. The superscript (*) in each equation represents any of 
the diact symbols. For the sake of readability, the function arguments are 
dropped.

diact flow distribution matrix flows

d 𝑁d = 𝐹  −1

i 𝑁i = �̃� �̂�−1 − 𝐹  −1 𝑇 ∗ =𝑁∗( − ̂0)
a 𝑁a = �̃� �̂�−1 − �̃� �̂�−1 �̂� �̂�−1 𝑇 ∗

𝓁 =𝑁∗ ̂𝓁
c 𝑁c = �̃��̂�−1�̂� �̂�−1 �̃� ∗ =𝑁∗ �̂�

t 𝑁𝚝 = �̃� �̂�−1

for 𝑖, 𝑘 = 1, … , 𝑛 and 𝓁 = 0, … , 𝑛, where the denominator is nonzero, 
𝜏𝑘𝑘

(𝑡, x) ≠ 0. Using this proportionality and the simple diact flows for-

mulated above, the composite diact subflows from subcompartment 
𝑘𝓁 to 𝑖𝓁 can also be formulated as follows:

𝜏d
𝑖𝓁𝑘𝓁

(𝑡) =
𝑓𝑖𝑘𝑘𝑘

(𝑡,x)
𝜏𝑘𝑘

(𝑡,x)
𝜏𝑘𝓁

(𝑡,x) =
𝑓𝑖𝑘(𝑡, 𝑥)
𝜏𝑘(𝑡, 𝑥)

𝜏𝑘𝓁
(𝑡,x)

𝜏i
𝑖𝓁𝑘𝓁

(𝑡) =
𝜏𝑖𝑘

(𝑡,x) − 𝑧𝑖𝑘 (𝑡,x) − 𝑓𝑖𝑘𝑘𝑘 (𝑡,x)
𝜏𝑘𝑘

(𝑡,x)
𝜏𝑘𝓁

(𝑡,x)

𝜏a
𝑖𝓁𝑘𝓁

(𝑡) =

[
𝜏𝑖𝑘

(𝑡,x) − 𝑧𝑖𝑘 (𝑡,x)
𝜏𝑘𝑘

(𝑡,x)
−
𝜏𝑖𝑖
(𝑡,x) − 𝑧𝑖𝑖 (𝑡,x)
𝜏𝑖𝑖
(𝑡,x)

𝜏𝑖𝑘
(𝑡,x)

𝜏𝑘𝑘
(𝑡,x)

]
𝜏𝑘𝓁

(𝑡,x)

𝜏c
𝑖𝓁𝑘𝓁

(𝑡) =
𝜏𝑖𝑖
(𝑡,x) − 𝑧𝑖𝑖 (𝑡,x)
𝜏𝑖𝑖
(𝑡,x)

𝜏𝑖𝑘
(𝑡,x)

𝜏𝑘𝑘
(𝑡,x)

𝜏𝑘𝓁
(𝑡,x)

𝜏t
𝑖𝓁𝑘𝓁

(𝑡) =
𝜏𝑖𝑘

(𝑡,x) − 𝑧𝑖𝑘 (𝑡,x)
𝜏𝑘𝑘

(𝑡,x)
𝜏𝑘𝓁

(𝑡,x)

(2.61)

for 𝑡 > 𝑡0. Note that 𝜏𝑘𝑘 (𝑡0) = 0 and we assume that 𝜏𝑘𝑘 (𝑡) is nonzero for 
all 𝑡 > 𝑡0. The second equality of the first equation in Eq. (2.61) for the 
composite direct subflow is due to the equivalence of flow and subflow 
intensities in the same direction, as formulated in Eq. (2.45) [11, 12].

The composite diact flows generated by environmental inputs then 
become

𝜏*
𝑖𝑘
(𝑡) =

𝑛∑
𝓁=1
𝜏*
𝑖𝓁𝑘𝓁

(𝑡) =
𝜏*
𝑖𝑘
(𝑡)

𝜏𝑘𝑘
(𝑡,x)

𝑛∑
𝓁=1
𝜏𝑘𝓁

(𝑡,x)

= 𝑛*
𝑖𝑘
(𝑡)

(
𝜏𝑘(𝑡, 𝑥) − 𝜏𝑘0 (𝑡,x)

) (2.62)

where the diact flow distribution factor, 𝑛*
𝑖𝑘
(𝑡), is 𝑛*

𝑖𝑘
(𝑡) = 𝜏*

𝑖𝑘
(𝑡)∕𝜏𝑘𝑘 (𝑡,x). 

The dynamic diact flow distribution matrix function can be defined as 
𝑁*(𝑡) = (𝑛*

𝑖𝑘
(𝑡)). The dynamic diact flow distribution matrices, as well 

as the dynamic simple and composite diact flow matrices are explic-

itly formulated in Table 1 based on their componentwise definitions in 
Eq. (2.61), similar to their static counterparts introduced by [12]. The 
inverted matrices in the table are assumed to be invertible. For the sake 
of readability, the function arguments are dropped in the table. 

The composite diact substorages can also be formulated using the 
corresponding diact subflows as transient inflows in Eq. (2.44) as fol-

lows:

�̇�*
𝑖𝓁𝑘𝓁

(𝑡) = 𝜏*
𝑖𝓁𝑘𝓁

(𝑡) −
𝜏𝑖(𝑡, 𝑥)
𝑥𝑖(𝑡)

𝑥*
𝑖𝓁𝑘𝓁

(𝑡), 𝑥*
𝑖𝓁𝑘𝓁

(𝑡1) = 0 (2.63)

for 𝑡1 > 𝑡0, 𝑖, 𝑘 = 1, … , 𝑛 and 𝓁 = 0, … , 𝑛. The solution to this governing 
equation, 𝑥*

𝑖𝓁𝑘𝓁
(𝑡), represents the diact substorage in subcompartment 

𝑖𝓁 at time 𝑡 ≥ 𝑡1 generated by the corresponding diact subflow, 𝜏*
𝑖𝓁𝑘𝓁

(𝑡), 
during [𝑡1, 𝑡] (see Fig. 3).

The analytic solutions for linear systems are introduced in Sec-

tion 2.3. In this case, the governing equation for the diact substorages, 
Eq. (2.63), can be solved explicitly for 𝑥*

𝑖𝓁𝑘𝓁
(𝑡) as well. The solution be-

comes

𝑥*
𝑖𝓁𝑘𝓁

(𝑡) = ∫
𝑡

e−∫ 𝑡
𝑠
𝑟−1
𝑖

(𝑠′ ,𝑥)𝑑𝑠′
𝜏*
𝑖𝓁𝑘𝓁

(𝑠)𝑑𝑠 (2.64)

𝑡1
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Table 2

The input-oriented, flow-based diact flow and storage distribution and the 
simple and composite diact (sub)flow and (sub)storage matrices. The super-

script (*) in each equation represents any of the diact symbols.

diact flow and storage distribution matrices flows storages

d 𝑁d = 𝐹  −1

i 𝑁i = (𝑁 − 𝐼) −1 − 𝐹  −1 𝑇* =𝑁* 𝑋* = 𝑆*
a 𝑁a = ( −1𝑁 − 𝐼) −1 𝑆* =𝑁* 𝑇*𝓁 =𝑁* 𝓁 𝑋*𝓁 = 𝑆*𝓁
c 𝑁c = (𝑁 − −1𝑁) −1 �̃�* =𝑁* 𝖳 �̃�* = 𝑆* 𝖳

t 𝑁t = (𝑁 − 𝐼) −1

where 𝑟−1
𝑖
(𝑡, 𝑥) = 𝜏𝑖(𝑡, 𝑥)∕𝑥𝑖(𝑡) is the outward throughflow intensity func-

tion.

The supplementary relationship between the simple direct and indi-

rect subflows given in Eq. (2.55) can be expressed in matrix form, in 
terms of both flows and storages, as follows:

�̃�t(𝑡) = �̃�d(𝑡) + �̃�i(𝑡) and �̃�t(𝑡) = �̃�d(𝑡) + �̃�i(𝑡). (2.65)

A similar supplementary relationship can be formulated between the 
simple cycling and acyclic flows and storages:

�̃�t(𝑡) = �̃�c(𝑡) + �̃�a(𝑡) and �̃�t(𝑡) = �̃�c(𝑡) + �̃�a(𝑡), (2.66)

due to Eq. (2.58). The reflexivity of the simple cycling flows and stor-

ages, formulated in Eq. (2.56), can also be written in matrix form, as 
follows:

diag (�̃�c(𝑡)) = diag (�̃�t(𝑡)) = diag (�̃�i(𝑡)),

diag (�̃�c(𝑡)) = diag (�̃�t(𝑡)) = diag (�̃�i(𝑡)).
(2.67)

The matrix relationships formulated in Eqs. (2.65), (2.66), and (2.67)

can similarly be expressed for the composite diact flows and storages.

2.6. Static subsystem partitioning and diact transactions

The static version of the dynamic subsystem partitioning method-

ology given in Eqs. (2.43) and (2.44) has recently been formulated by 
[12]. This static partitioning is summarized in this section.

Since time derivatives are zero at steady state, we set �̇�𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

(𝑡) = 0
in Eq. (2.44). The static transient outflow at subcompartment 𝓁𝑘 along 
subflow path 𝑝𝑤

𝑛𝑘𝑗𝑘
= 𝑖𝑘 ↦ 𝑗𝑘 → 𝓁𝑘 → 𝑛𝑘 from 𝑗𝑘 to 𝑛𝑘, 𝑓𝑤𝑛𝑘𝓁𝑘𝑗𝑘 , and the 

associated transient substorage generated in 𝓁𝑘, 𝑥𝑤𝑛𝑘𝓁𝑘𝑗𝑘 , by the transient 
inflow, 𝑓𝑤𝓁𝑘𝑗𝑘𝑖𝑘 , are then formulated as follows:

𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

=
𝑥𝓁

𝜏𝓁
𝑓𝑤𝓁𝑘𝑗𝑘𝑖𝑘

and 𝑓𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

=
𝑓𝑛𝓁

𝑥𝓁
𝑥𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

=
𝑓𝑛𝓁

𝜏𝓁
𝑓𝑤𝓁𝑘𝑗𝑘𝑖𝑘

. (2.68)

The second equality for 𝑓𝑤
𝑛𝑘𝓁𝑘𝑗𝑘

is obtained by using the first equation 
for 𝑥𝑤

𝑛𝑘𝓁𝑘𝑗𝑘
in the first equality. The relationships in Eq. (2.68) establish 

the foundation of the static subsystem partitioning.

Through the system partitioning methodology, the static diact
flows and storages are also formulated in matrix form by [12], as pre-

sented in Table 2. Note that the matrix  used in the table is defined 
as  = diag(𝑁). 

2.7. System measures and indices

The dynamic system partitioning methodology yields the sub-

throughflow and substorage vectors and matrices that measure the 
influence of the initial stocks and environmental inputs on system com-

partments in terms of the flow and storage generation. These vector and 
matrix measures enable tracking the evolution of the initial stocks, envi-

ronmental inputs, as well as the associated storages sourced from these 
stocks and inputs individually and separately within the system. For the 
analysis of intercompartmental flow and storage dynamics, the dynamic 
subsystem partitioning methodology then formulates the transient and 
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dynamic diact flows and associated storages. The transient and di-

act transactions enable tracking of arbitrary intercompartmental flows 
and storages along a particular and all possible flow paths within the 
system and determining the influence of system compartments directly 
and indirectly on one another.

The proposed methodology constructs a foundation for the develop-

ment of new mathematical system analysis tools as quantitative ecosys-

tem indicators. In addition to the measures summarized above, multiple 
novel dynamic and static system analysis tools of matrix, vector, and 
scalar types have recently been introduced in separate works, based on 
the proposed methodology [9, 13]. More specifically, these manuscripts 
introduce measures and indices for the diact effects, utilities, expo-

sures, and residence times, as well as the system efficiencies, stress, and 
resilience.

2.8. Quantitative classification of interspecific interactions

An immediate ecological application of the proposed methodology 
is the quantitative analysis of food webs and chains. The system com-

partments of a food web ecosystem represent species, the conserved 
quantity in question becomes nutrient or energy, and flow paths cor-

respond to food chains in the web. In this setting, direct flow rate 
𝑓𝑖𝑘(𝑡, 𝑥) represents an interspecific interaction, such as predation, be-

tween species 𝑖 and 𝑘 and measures the rate of nutrient or energy flow 
from species 𝑘 in a lower trophic level to 𝑖 in the next level at time 𝑡. 
Nutrient or energy stored in species 𝑖 through all trophic interactions is 
represented by 𝑥𝑖(𝑡).

Community ecology classifies interspecific interactions qualitatively 
using network topology without regard for system flows [35, 36]. This 
structural determination, however, gets more complicated, if at all 
possible, with the increasing complexity of intricate food webs [25, 
50]. Multiple food chains of potentially different lengths between two 
species, for example, disallow the classification based on the length of 
the chains [6]. A mathematical characterization and classification tech-

nique for the analysis of the nature and strength of food chains has 
recently been proposed by [12] for static systems. This section intro-

duces a dynamic version of this technique with slight modifications.

The proposed methodology can quantitatively determine the net 
benefit in terms of flow and storage transfers received by the involved 
species from each other. The sign analysis of the diact interspecific 
interactions determines the neutral and antagonistic nature of the inter-

actions—whether the interaction is beneficial or harmful to the species 
involved. The strength analysis then quantifies the strength of these di-

act interactions. The sign and strength of the diact interactions induced 
by environmental inputs between species 𝑖 and 𝑗 will be defined respec-

tively as follows:

𝛿*
𝑖𝑗
(𝑡) = sgn (𝜏*

𝑖𝑗
(𝑡) − 𝜏*

𝑗𝑖
(𝑡)) and 𝜇*

𝑖𝑗
(𝑡) =

|𝜏*
𝑖𝑗
(𝑡) − 𝜏*

𝑗𝑖
(𝑡)|

𝜏𝑖(𝑡, 𝑥) + 𝜏𝑗 (𝑡, 𝑥)
(2.69)

where sgn(⋅) is the sign function, and the superscript (*) represents any 
of the diact symbols. Following the convention of community ecology, 
instead of (+1) and (−1), (+) and (−) notations will be used for the sign 
of the diact interactions. The strength, 0 ≤ 𝜇*

𝑖𝑗
(𝑡) ≤ 1, is defined to be 

zero, if both terms in its denominator are zero.

For the analysis of diact interactions ranging from the individual 
and local to the system-wide and global scale, the strength of the in-

teractions can be formulated with the normalization by 𝜏*
𝑖𝑗
(𝑡) + 𝜏*

𝑗𝑖
(𝑡), 

𝜏t
𝑖𝑗
(𝑡) + 𝜏t

𝑗𝑖
(𝑡), 𝜏𝑖(𝑡, 𝑥) + 𝜏𝑗 (𝑡, 𝑥), as in Eq. (2.69), or �̌�𝜏 (𝑡) = 𝟏𝑇 𝜏(𝑡, 𝑥) in the 

given order, where �̌�𝜏 (𝑡) will be called the total inward system through-

flow. As an example, for the analysis of local diact interactions at the 
global scale, 𝜇*

𝑖𝑗
(𝑡) can be defined as 𝜇*

𝑖𝑗
(𝑡) = |𝜏*

𝑖𝑗
(𝑡) − 𝜏*

𝑗𝑖
(𝑡)|∕�̌�𝜏 (𝑡).

The diact neutral relationship between species 𝑖 and 𝑗 and “preda-

tion” of species 𝑖 on 𝑗 can quantitatively be characterized, respectively, 
as follows:
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𝜏*
𝑖𝑗
(𝑡) − 𝜏*

𝑗𝑖
(𝑡) = 0 ⇒ 𝛿*

𝑖𝑗
(𝑡) = (0),

𝜏*
𝑖𝑗
(𝑡) − 𝜏*

𝑗𝑖
(𝑡) > 0 ⇒ 𝛿*

𝑖𝑗
(𝑡) = (+).

(2.70)

This classification can also be extended to the transient interactions be-

tween two species along a given food chain using the transient inflows. 
We will use the notations 𝛿𝑤

𝑖𝑗
(𝑡) and 𝜇𝑤

𝑖𝑗
(𝑡) for the sign and strength of 

the net flow from compartment 𝑗 indirectly to 𝑖 through trophic inter-

actions along a given food chain, 𝑝𝑤
𝑖𝑗

.

The classification of the diact interactions induced by the initial 
stocks can be determined by using the composite diact subflows for 
the initial subsystem, 𝜏*

𝑖0𝑗0
(𝑡), in Eqs. (2.69) and (2.70). The storage-

based quantitative definition of the diact interactions can be formu-

lated in parallel by substituting the diact storages for the correspond-

ing diact flows in the definitions above as well. The storage-based for-

mulations represent the history of the diact interactions during [𝑡1, 𝑡]
while the flow-based formulations represent simultaneous interactions 
at time 𝑡. We will use the superscript 𝑥 to distinguish the storage-based 
measures, 𝛿*,𝑥

𝑖𝑗
(𝑡) and 𝜇*,𝑥

𝑖𝑗
(𝑡). For the classification of the diact inter-

actions induced by individual environmental inputs, the simple diact
flows and storages can be used instead of their composite counterparts 
in Eqs. (2.69) and (2.70). A tilde notation will be used over the mea-

sures for simple diact interspecific interactions, 𝛿*
𝑖𝑗
(𝑡) and �̃�*

𝑖𝑗
(𝑡).

A mathematical technique for the dynamic characterization and 
classification of the main interspecific interaction types, such as neu-

tralism, mutualism, commensalism, competition, and exploitation, has 
also been developed recently in a separate paper [9].

3. Results

The proposed dynamic methodology is applied to a linear and non-

linear dynamic ecosystem models. Numerical results for the system 
analysis tools developed in this manuscript, such as the substorage and 
subthroughflow matrix measures, as well as the transient and dynamic

diact flows and storages, are presented in this section.

The results indicate that the proposed methodology precisely quan-

tifies system functions, properties, and behaviors, enables tracking the 
evolution of the initial stocks, environmental inputs, and intercompart-

mental flows, as well as associated storages individually and separately 
within the systems, is sensitive to perturbations due to even a brief 
unit impulse, and, thus, can be used for rigorous dynamic analysis 
of nonlinear ecological systems. It is worth noting, however, that this 
present work proposes a mathematical method—a systematic technique 
designed for solving and analyzing any nonlinear dynamic compart-

mental model—and it is not itself a model. Therefore, we focus more on 
demonstrating the efficiency and wide applicability of the method. It is 
expected that once the method is accessible to a broader community of 
environmental ecologists, it can be used for ecological inferences and 
the holistic analysis of specific models of interest.

3.1. Case study

A linear dynamic ecosystem model introduced by [23] is analyzed 
through the proposed methodology in this case study to demonstrate 
the capability of the method to analytically solve linear systems with 
time-dependent inputs. The graphical representations of the results are 
presented.

The model has two compartments, 𝑥1(𝑡) and 𝑥2(𝑡) (see Fig. 6). The 
system flows are described as

𝐹 (𝑡, 𝑥) =
[ 0 2

3𝑥2(𝑡)
4
3𝑥1(𝑡) 0

]
, 𝑧(𝑡, 𝑥) =

[
𝑧1(𝑡)
𝑧2(𝑡)

]
, 𝑦(𝑡, 𝑥) =

[ 1
3𝑥1(𝑡)
5
3𝑥2(𝑡)

]
.

The governing equations take the following form:

�̇�1(𝑡) = 𝑧1(𝑡) +
2
3
𝑥2(𝑡) −

(4
3
+ 1

3

)
𝑥1(𝑡)

�̇�2(𝑡) = 𝑧2(𝑡) +
4
𝑥1(𝑡) −

(2 + 5)
𝑥2(𝑡)

(3.1)
3 3 3

12
Fig. 6. Schematic representation of the model network. Subflow path 𝑝111 , along 
which the cycling flow and storage functions are computed, is red (subsystems 
are not shown) (Case study 3.1).

with the initial conditions [𝑥1,0, 𝑥2,0]𝑇 = [3, 3]𝑇 . 
The subcompartmentalization step yields the substate variables that 

represent the substorage values as follows:

𝑥1𝑘 (𝑡) and 𝑥2𝑘 (𝑡) with 𝑥𝑖(𝑡) =
2∑
𝑘=0
𝑥𝑖𝑘

(𝑡).

The flow partitioning then yields the subflows for the subsystems:

𝐹𝑘(𝑡,x) =
[ 0 2

3 𝑑2𝑘 𝑥2
4
3𝑑1𝑘 𝑥1 0

]
, �̌�𝑘(𝑡,x) =

[
𝛿1𝑘 𝑧1
𝛿2𝑘 𝑧2

]
, �̂�𝑘(𝑡,x) =

[ 1
3𝑑1𝑘 𝑥1
5
3 𝑑2𝑘 𝑥2

]
,

where the decomposition factors 𝑑𝑖𝑘 (x) are defined by Eq. (2.8). The 
dynamic system partitioning methodology then yields the following 
governing equations for the decomposed system:

�̇�1𝑘 (𝑡) = 𝑧1𝑘 (𝑡) +
2
3
𝑥2𝑘 (𝑡) −

(4
3
+ 1

3

)
𝑥1𝑘 (𝑡)

�̇�2𝑘 (𝑡) = 𝑧2𝑘 (𝑡) +
4
3
𝑥1𝑘 (𝑡) −

(2
3
+ 5

3

)
𝑥2𝑘 (𝑡)

with the initial conditions

𝑥𝑖𝑘
(𝑡0) =

{
3, 𝑘 = 0

0, 𝑘 ≠ 0

for 𝑖 = 1, 2. There are 𝑛 × (𝑛 + 1) = 2 × 3 = 6 equations in the system.

The system can be written in matrix form as formulated in 
Eq. (2.30):

�̇�(𝑡) =(𝑡) +𝐴𝑋(𝑡), 𝑋(𝑡0) = 𝟎

�̇�0(𝑡) =𝐴𝑥0(𝑡), 𝑥0(𝑡0) = 𝑥0
(3.2)

where the constant flow intensity matrix 𝐴, as defined in Eq. (2.35), 
becomes

𝐴 =
[
−(4∕3 + 1∕3) 2∕3

4∕3 −(2∕3 + 5∕3)

]
=
[
−5∕3 2∕3
4∕3 −7∕3

]
.

The governing decomposed system, Eq. (3.2), is linear. We can, 
therefore, solve it analytically, as formulated in Section 2.3. Since the 
flow intensity matrix 𝐴 is constant, we have the following fundamental 
matrix solution as given in Eq. (2.32):

𝑉 (𝑡) =

[ 2e−𝑡
3 + e−3 𝑡

3
e−𝑡
3 − e−3 𝑡

3
2e−𝑡
3 − 2e−3 𝑡

3
e−𝑡
3 + 2e−3 𝑡

3

]
.

For 𝑧 = [1, 1]𝑇 , the solutions for the matrix equation, Eq. (3.2), then 
become

𝑋(𝑡) =

[ 7
9 −

e−3 𝑡
9 − 2e−𝑡

3
2
9 +

e−3 𝑡
9 − e−𝑡

3
4
9 +

2e−3 𝑡
9 − 2e−𝑡

3
5
9 −

2e−3 𝑡
9 − e−𝑡

3

]
, 𝑥0(𝑡) =

[
3e−𝑡
3e−𝑡

]
, (3.3)

as given in Eq. (2.33). Therefore, the solution to the original system, 
Eq. (3.1), in vector form, is

𝑥(𝑡) = 𝑥0(𝑡) +𝑋(𝑡)𝟏 =
[
𝑥1(𝑡)
𝑥2(𝑡)

]
=
[
2e−𝑡 + 1
2e−𝑡 + 1

]
.

The subthroughflow matrices, �̌� (𝑡) and �̂� (𝑡), can also be expressed as 
formulated in Eq. (2.15), using the solution for the substorage matrix, 
𝑋(𝑡).
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The steady state solutions can also be computed as formulated in 
Eq. (2.36):

𝑋 = −𝐴−1 =  ( − 𝐹 )−1 =
[
7∕9 2∕9
4∕9 5∕9

]
and 𝑥0 = 𝟎. (3.4)

It can easily be seen that, this steady-state solution is the same as the 
limit of the dynamic solution, Eq. (3.3), as 𝑡 tends to infinity. That is, 
lim𝑡→∞𝑋(𝑡) =𝑋.

We also analyze the system with a time dependent input 𝑧(𝑡) =
[3 + sin(𝑡), 3 + sin(2𝑡)]𝑇 . Similar computations with the same fundamen-

tal matrix, 𝑉 (𝑡), lead us to the following initial substorage vector, 𝑥𝑖0 (𝑡), 
and substorage matrix components, 𝑥𝑖𝑘 (𝑡):

𝑥10 (𝑡) = 𝑥20 (𝑡) = 3e−𝑡,

𝑥11 (𝑡) =
7
3
− 11 cos (𝑡)

30
+ 13 sin (𝑡)

30
− 5e−𝑡

3
− 3e−3 𝑡

10
,

𝑥12 (𝑡) =
2
3
− 16 cos (2 𝑡)

195
− 2 sin (2 𝑡)

195
− 13e−𝑡

15
+ 11e−3 𝑡

39
,

𝑥21 (𝑡) =
4
3
− 4 cos (𝑡)

15
+ 2 sin (𝑡)

15
− 5e−𝑡

3
+ 3e−3 𝑡

5
,

𝑥22 (𝑡) =
5
3
− 46 cos (2 𝑡)

195
+ 43 sin (2 𝑡)

195
− 13e−𝑡

15
− 22e−3 𝑡

39
.

(3.5)

Using these solutions, we can express the solutions to the original sys-

tem, Eq. (3.1), as

𝑥1(𝑡) =
2∑
𝑘=0
𝑥1𝑘 (𝑡) and 𝑥2(𝑡) =

2∑
𝑘=0
𝑥2𝑘 (𝑡).

The proposed dynamic method solves linear systems analytically. Ex-

plicit solutions can be used to compute the quantities in question at any 
time 𝑡.

The elements of the inward initial throughflow vector, 𝜏0(𝑡), and sub-

throughflow matrix, �̌� (𝑡), can be computed using Eq. (2.15) as follows:

𝜏10 (𝑡) = 2e−𝑡, 𝜏20 (𝑡) = 4e−𝑡,

𝜏11 (𝑡) =
35
9

− 8 cos (𝑡)
45

+ 49 sin (𝑡)
45

− 10e−𝑡
9

+ 2e−3 𝑡
5

,

𝜏12 (𝑡) =
742
585

− 184 cos2 (𝑡)
585

+ 86 sin (2 𝑡)
585

− 26e−𝑡
45

− 44e−3 𝑡
117

,

𝜏21 (𝑡) =
28
9

− 22 cos (𝑡)
45

+ 26 sin (𝑡)
45

− 20e−𝑡
9

− 2e−3 𝑡
5

,

𝜏22 (𝑡) =
2339
585

− 128 cos2 (𝑡)
585

+ 577 sin (2 𝑡)
585

− 52e−𝑡
45

+ 44e−3 𝑡
117

.

(3.6)

The outward initial throughflows and throughflows can also be ob-

tained similarly, using Eq. (2.15). The substorage and inward sub-

throughflow matrix functions, 𝑋(𝑡) and �̌� (𝑡), given in Eqs. (3.5)

and (3.6), determine the dynamic distribution of the environmental in-

puts and the organization of the associated storages generated by these 
inputs individually and separately within the system. In other words, 
using these functions, the evolution of the environmental inputs and as-

sociated storages can be tracked individually and separately throughout 
the system. The graphical representation of 𝑋(𝑡) and �̌� (𝑡) for time de-

pendent input 𝑧(𝑡) = [3 + sin(𝑡),3 + sin(2 𝑡)]𝑇 are depicted in Fig. 7. The 
evolution of initial stocks and inward throughflows, 𝑥𝑖0 (𝑡) and 𝜏𝑖0 (𝑡), are 
also presented in Fig. 7. 

The residence time matrix for this model, defined in Eq. (2.28), be-

comes

(𝑡, 𝑥) = diag ([0.6,0.43]).

The residence time of compartment 2 is constantly smaller than that of 
compartment 1. That is, 𝑟2(𝑡, 𝑥) = 0.43 < 0.6 = 𝑟1(𝑡, 𝑥). This result ecolog-

ically indicates that compartment 2 is more active than 1.

The subsystem partitioning methodology allows for the further anal-

ysis of the system and brings out additional insights that are not avail-

able through the state-of-the-art techniques. The composite transfer 
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flow and storage from compartment 2 to 1, 𝜏t12(𝑡) and 𝑥t12(𝑡), and com-

posite transfer subflow and substorage from initial subcompartment 20
to 10, 𝜏t1020 (𝑡) and 𝑥t1020 (𝑡), are computed below as an application of the 
proposed subsystem partitioning methodology. They can be expressed 
using Eq. (2.49) as

𝜏t12(𝑡) =
2∑
𝑘=1
𝜏t1𝑘2𝑘

(𝑡) and 𝑥t12(𝑡) =
2∑
𝑘=1
𝑥t1𝑘2𝑘

(𝑡). (3.7)

The sets of mutually exclusive subflow paths from 2𝑘 to 1𝑘, 𝑃1𝑘2𝑘 , for 
𝑘 = 0, 1, 2, can be formulated as follows: 𝑃1020 = {𝑝11020 , 𝑝

2
1020

}, 𝑃1121 =
{𝑝11121 }, 𝑃1222 = {𝑝11222 } where 𝑝11020 = 00 ↦ 10 ⇝ 20 → 10, 𝑝21020 = 00 ↦
20 → 10 ⇝ 20, 𝑝11121 = 01 ↦ 11 ⇝ 21 → 11, and 𝑝11222 = 02 ↦ 22 → 12 ⇝ 22.

There are two subflow paths in the initial subsystem, 𝑝11020 and 𝑝21020 , 
and therefore, 𝑤0 = 2. The corresponding transfer subflow and associ-

ated substorage functions, as formulated in Eq. (2.48), become

𝜏t1020
(𝑡) =

2∑
𝑤=1

𝜏𝑤10
(𝑡) = 𝜏110 (𝑡) + 𝜏

2
10
(𝑡),

𝑥t1020
(𝑡) =

2∑
𝑤=1

𝑥𝑤10
(𝑡) = 𝑥110 (𝑡) + 𝑥

2
10
(𝑡).

(3.8)

Similarly, we have

𝜏t1𝑘2𝑘
(𝑡) =

1∑
𝑤=1

𝜏𝑤1𝑘
(𝑡) = 𝜏11𝑘 (𝑡) and 𝑥t1𝑘2𝑘

(𝑡) =
1∑
𝑤=1

𝑥𝑤1𝑘
(𝑡) = 𝑥11𝑘 (𝑡) (3.9)

for 𝑘 = 1, 2, since there is only one subflow path in these subsystems 
(𝑤𝑘 = 1).

The links that directly contribute to the cumulative transient inflow 
and substorage, 𝜏111 (𝑡) and 𝑥111 (𝑡), at subcompartment 11 along 𝑝11121 are 
marked with cycle numbers, 𝑚, in the extended subflow path diagram 
below:

𝑝11121
= 01 ↦ 11 ⇝ 21

1−→ 11 ⇝ 21
2−→ 11 ⇝ 21

3−→ 11 ⇝⋯

The cumulative transient inflow and substorage will be approximated 
by two terms (𝑚1 = 2) using Eq. (2.46):

𝑥111
(𝑡) ≈

2∑
𝑚=1

𝑥
1,𝑚
211121

(𝑡) = 𝑥1,1211121 (𝑡) + 𝑥
1,2
211121

(𝑡),

𝜏111
(𝑡) ≈

2∑
𝑚=1

𝑓
1,𝑚
112111

(𝑡) = 𝑓 1,1
112111

(𝑡) + 𝑓 1,2
112111

(𝑡).

(3.10)

The governing equations, Eqs. (2.43) and (2.44), for the transient sub-

flows and associated substorages, 𝑓 1,𝑚
112111

(𝑡) and 𝑥1,𝑚211121 (𝑡), and the other 
transient subflows and substorages involved in Eqs. (3.8) and (3.9), 
are solved simultaneously, together with the decomposed system, 
Eq. (2.10). Numerical results for the transfer subflows and associated 
substorages are presented in Fig. 8. 

The subflow paths in 𝑃1𝑘2𝑘 for each subsystem 𝑘 are mutually exclu-

sive and exhaustive. Therefore, 𝑥1(𝑡) and 𝑥10 (𝑡) + 𝑥211101 (𝑡) + 𝑥
t
1020

(𝑡) +
𝑥t12(𝑡) must be the same, as well as 𝑓12(𝑡) and 𝜏t1020 (𝑡) + 𝜏

t
12(𝑡). The terms 

added to 𝑥t1020 (𝑡) + 𝑥
t
12(𝑡) for a comparison, 𝑥211101 (𝑡) and 𝑥10 (𝑡), are the 

transient substorage generated by environmental input in 11 (01 ↦ 11) 
and the initial substorage in compartment 1 (see Fig. 7a). Therefore, 
they are not included in the transfer storage and initial substorage, 𝑥t12(𝑡)
and 𝑥t1020 (𝑡). These quantities, however, are approximately equal as pre-

sented in Fig. 8:

𝑥211101 (𝑡) + 𝑥
t
1020

(𝑡) + 𝑥t12(𝑡) ≈ 𝑥1(𝑡) − 𝑥10 (𝑡) and 𝜏t1020
(𝑡) + 𝜏t12(𝑡) ≈ 𝑓12(𝑡).

The small differences are caused by the truncation errors in the com-

putation of cumulative transient subflows, and larger 𝑚𝑤 values further 
improve the approximations. These close approximations demonstrate 
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Fig. 7. The graphical representation of the substorage and inward subthroughflow matrices, 𝑋(𝑡) and �̌� (𝑡, x), and the initial substorage and inward subthroughflow 
vectors, 𝑥0(𝑡) and 𝜏0(𝑡, x), for time-dependent input 𝑧(𝑡) = [3 + sin(𝑡),3 + sin(2 𝑡)]𝑇 (Case study 3.1).
the accuracy and consistency of both the system and subsystem parti-

tioning methodologies.

Instead of the path-based approach used in the numerical compu-

tations above, the diact flows can also be obtained analytically and 
explicitly using the dynamic approach as introduced in Section 2.5.2. 
The composite transfer subflows 𝜏t1𝑘2𝑘 (𝑡) for 𝑘 = 0, 1, 2, and transfer flow 
𝜏t12(𝑡) become:

𝜏t1020
(𝑡) = 2e−𝑡,

𝜏t1121
(𝑡) = 8

9
− 8 cos (𝑡)

45
+ 4 sin (𝑡)

45
− 10e−𝑡

9
+ 2e−3 𝑡

5
,

𝜏t1222
(𝑡) = −1013

585
− 184cos2 (𝑡)

585
− 499 sin (2 𝑡)

585
− 26e−𝑡

45
− 44e−3 𝑡

117
,

𝜏t12(𝑡) = −493
585

− 8 cos (𝑡)
45

+ 4 sin (𝑡)
45

− 998 cos (𝑡) sin (𝑡)
585

− 184cos2 (𝑡)
585

+ 14e−𝑡
45

+ 14e−3 𝑡
585

,

(3.11)

as formulated in Eq. (2.61). The composite transfer substorages can 
then be obtained by coupling Eq. (2.63) for the transfer subflows with 
the decomposed system, Eq. (2.10), and solving them simultaneously. 
Alternatively, the corresponding transfer substorages can be obtained 
analytically as formulated in Eq. (2.64):

𝑥t1020
(𝑡) = 3e−𝑡 − 3e−

5 𝑡
3

𝑥t1 2 (𝑡) = 8 − 26 cos (𝑡) − 2 sin (𝑡) − 5e−𝑡 + 261e−
5 𝑡
3

− 3e−3 𝑡

1 1 15 255 255 3 170 10

Fig. 8. The graphical representation of (a) the composite transfer flow and (b) stora

and substorages, 𝜏t1𝑘2𝑘 (𝑡) and 𝑥t1𝑘2𝑘 (𝑡), as well as (c) the composite cycling flows and s

14
𝑥t1222
(𝑡) = −17

15
+ 2534 cos (2 𝑡)

11895
− 3047 sin (2 𝑡)

11895
− 13e−𝑡

15

+ 459e−
5 𝑡
3

305
+ 11e−3 𝑡

39
(3.12)

𝑥t12(𝑡) = − 9671
11895

− 26 cos (𝑡)
255

− 2 sin (𝑡)
255

− 6094 cos (𝑡) sin (𝑡)
11895

+ 5068cos2 (𝑡)
11895

+ 7e−𝑡
15

+ 417e−
5 𝑡
3

10370
− 7e−3 𝑡

390
.

The graphs of these explicit transfer subflow and substorage functions in 
Eqs. (3.11) and (3.12) obtained through the dynamic approach are ex-

actly the same as the ones obtained by numerical computation through 
the path-based approach, Eq. (3.7), as depicted in Fig. 8.

The cycling flows and the associated storages generated by these 
flows are also calculated below for both compartments. The sets of mu-

tually exclusive subflow paths from subcompartment 𝑘𝑘 to 1𝑘 with a 
closed subpath at 1𝑘, 𝑃c1𝑘𝑘𝑘 , are given as 𝑃c1000 = {𝑝11010 , 𝑝

2
1020

}, 𝑃c1111 =
{𝑝11111 }, 𝑃c1222 = {𝑝11222 }, where 𝑝11010 = 00 ↦ 10 ⇝ 20 → 10, 𝑝21020 = 00 ↦
20 ⇝ 10 ⇝ 20 → 10, 𝑝11111 = 01 ↦ 11 ⇝ 21 → 11, and 𝑝11222 = 02 ↦ 22 ⇝ 12 ⇝
22 → 12. For the subflow paths in 𝑃c1000 , the composite cycling subflows 
are derived from the initial stocks, and for the ones in 𝑃c1111 and 𝑃c1222 , 
the simple cycling flows are generated by the respective environmental 
inputs of 𝑧1(𝑡) and 𝑧2(𝑡). The sets of subflow paths 𝑃c2𝑘𝑘𝑘 for 𝑘 = 0, 1, 2
can similarly be defined.

The simple cycling subflow at subcompartment 12 along the only 
subflow path (𝑤2 = 1) in subsystem 2, 𝑝11222 ∈ 𝑃

c
1222

, and associated sub-

storage are
ge, 𝜏t12(𝑡) and 𝑥t12(𝑡), together with the contributing composite transfer subflows 
torages, 𝜏c

𝑖0 𝑖0
(𝑡) + 𝜏c

𝑖𝑖
(𝑡) and 𝑥c

𝑖0 𝑖0
(𝑡) + 𝑥c

𝑖𝑖
(𝑡) (Case study 3.1).
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𝜏c12
(𝑡) =

1∑
𝑤=1

𝜏𝑤12
(𝑡) = 𝜏112 (𝑡) and 𝑥c12

(𝑡) =
1∑
𝑤=1

𝑥𝑤12
(𝑡) = 𝑥112 (𝑡),

as formulated in Eq. (2.48). The links contributing to the cycling sub-

flow along the path are marked with cycle numbers in the extended 
subflow diagram below:

𝑝11222
= 02 ↦ 22 ⇝ 12 ⇝ 22

1−→ 12 ⇝ 22
2−→ 12 ⇝⋯

Note that the first flow entrance into 12 is not considered as cycling 
flow. The cumulative transient inflow 𝜏112 (𝑡) and substorage 𝑥112 (𝑡) can 
be approximated by two terms (𝑚1 = 2) along the closed subpath as 
formulated in Eq. (2.46):

𝑥112
(𝑡) =

2∑
𝑚=1

𝑥
1,𝑚
221222

(𝑡) ≈ 𝑥1,1221222 (𝑡) + 𝑥
1,2
221222

(𝑡),

𝜏112
(𝑡) =

2∑
𝑚=1

𝑓
1,𝑚
122212

(𝑡) ≈ 𝑓 1,1
122212

(𝑡) + 𝑓 1,2
122212

(𝑡).

The governing equations for the transient subflows and associated sub-

storage functions, 𝑓𝑤,𝑚122212
(𝑡) and 𝑥𝑤,𝑚221222

(𝑡), as well as the other tran-

sient subflows and substorages involved in Eq. (3.13), as formulated 
in Eqs. (2.43) and (2.44), are coupled and solved simultaneously to-

gether with the decomposed system, Eq. (2.10). The numerical results 
for the composite cycling flows and associated storages induced both by 
the environmental inputs and initial stocks,

𝜏c
𝑖0𝑖0

(𝑡) + 𝜏c
𝑖𝑖
(𝑡) =

2∑
𝑘=0
𝜏c
𝑖𝑘𝑖𝑘

(𝑡) and 𝑥c
𝑖0𝑖0

(𝑡) + 𝑥c
𝑖𝑖
(𝑡) =

2∑
𝑘=0
𝑥c
𝑖𝑘𝑖𝑘

(𝑡) (3.13)

for 𝑖 = 1, 2, are presented in Fig. 8c.

Note that, due to the reflexivity of cycling flows, the same com-

putations can be done more practically in only two steps using the 
sets of closed subflow paths, 𝑃c

𝑖𝑘
, instead, with the local inputs be-

ing the corresponding outwards subthroughflows. The subflow path 
𝑝111

= 11 ↦ 11 ⇝ 21 → 11 in subcompartment 11 with local input 𝜏11 (𝑡, 𝐱), 
for example, is depicted in Fig. 6. The cycling flows can also be com-

puted along closed paths at the compartmental level, where the local 
inputs are the outwards throughflows.

The composite cycling subflows can also be computed analytically 
through the dynamic approach as formulated in Eq. (2.57). For exam-

ple, 𝜏c1010 (𝑡) and 𝜏c22 (𝑡) = 𝜏
c
2222

(𝑡) become

𝜏c1010
(𝑡) = −36e−𝑡 + 80e2 𝑡 − 100e1 𝑡 − 16e2 𝑡 cos (𝑡) + 8e2 𝑡 sin (𝑡)

9 + 50e2 𝑡 − 70e3 𝑡 + 11e3 𝑡 cos (𝑡) − 13e3 𝑡 sin (𝑡)

𝜏c2222
(𝑡) = 584

585
− 52e−𝑡

45
+ 44e−3 𝑡

117
− 8 sin (2 𝑡)

585
− 128 cos2(𝑡)

585
.

(3.14)

The composite cycling storages can then be obtained by coupling 
Eq. (2.63) for the cycling flows and storages with the decomposed sys-

tem, Eq. (2.10), and solving them simultaneously. Alternatively, they 
can be obtained analytically by using Eq. (2.64), similar to the transfer 
storages presented above in this example. Because of the lengthy ana-

lytical formulations of the other cycling subflows and substorages, only 
𝜏c1010

(𝑡) and 𝜏c22 (𝑡) are presented in Eq. (3.14) as examples.

3.2. Case study

In this section, a nonlinear resource-producer-consumer ecosystem 
model introduced by [19] is analyzed through the proposed methodol-

ogy. A comparison of the results is not possible, as the authors did not 
provide any computational or explicit results in the article. They only 
provided some results at steady state. Besides a constant environmen-

tal input, the system is also examined for a time dependent, symmetric 
Gaussian impulse to illustrate the efficiency of the proposed method 
in capturing the system response to disturbances. Such analysis can be 
15
Fig. 9. Schematic representation of the model network. Subflow path 𝑝10111 along 
which the transient subflows and substorages are computed is red (subsystems 
are not shown) (Case study 3.2).

used to quantify the system resistance and resilience in the face of dis-

turbances and perturbations.

The resource-producer-consumer model by [19] consists of the dy-

namics for three components: 𝑥1(𝑡) = 𝑟(𝑡) is the nutrient storage (such as 
phosphorus or nitrogen) present at time t; 𝑥2(𝑡) = 𝑠(𝑡) represents the nu-

trient storage in the producer (such as phytoplankton) population; and 
𝑥3(𝑡) = 𝑐(𝑡) denotes the nutrient storage in the consumer (such as zoo-

plankton) population (see Fig. 9). The conservation of nutrient is the 
basic model assumption. The system flows are described as follows:

𝐹 (𝑡, 𝑥) =
⎡⎢⎢⎢⎣

0 𝑑1 𝑠(𝑡) 𝑑2 𝑐(𝑡)
𝛼1 𝑠(𝑡) 𝑟(𝑡)
𝛼2+𝑟(𝑡)

0 0

0 𝛽1 𝑠(𝑡) 𝑐(𝑡)
𝛽2+𝑠(𝑡)

0

⎤⎥⎥⎥⎦ , 𝑧(𝑡) =
⎡⎢⎢⎣
𝑧1(𝑡)
𝑧2(𝑡)
𝑧3(𝑡)

⎤⎥⎥⎦ , 𝑦(𝑡) =
⎡⎢⎢⎣
𝑟(𝑡)
𝑠(𝑡)
𝑐(𝑡)

⎤⎥⎥⎦ ,
where the constant input is 𝑧(𝑡) = [1, 1, 1]𝑇 , and the parameters are given 
as

𝑑1 = 2.7, 𝑑2 = 2.025, 𝛼2 = 0.098, 𝛽1 = 2, 𝛽2 = 20, and 𝛼1 = 1.

The value for 𝛼1 was not provided in [19] and was chosen arbitrarily 
for this example. The governing equations take the following form:

�̇�(𝑡) = −𝑟(𝑡) + 𝑑1 𝑠(𝑡) + 𝑑2 𝑐(𝑡) −
𝛼1 𝑠(𝑡) 𝑟(𝑡)
𝛼2 + 𝑟(𝑡)

+ 𝑧1(𝑡)

�̇�(𝑡) = −(1 + 𝑑1) 𝑠(𝑡) +
𝛼1 𝑠(𝑡) 𝑟(𝑡)
𝛼2 + 𝑟(𝑡)

−
𝛽1 𝑐(𝑡) 𝑠(𝑡)
𝛽2 + 𝑠(𝑡)

+ 𝑧2(𝑡)

�̇�(𝑡) = −(1 + 𝑑2) 𝑐(𝑡) +
𝛽1 𝑐(𝑡) 𝑠(𝑡)
𝛽2 + 𝑠(𝑡)

+ 𝑧3(𝑡)

(3.15)

with the initial conditions of [𝑟0, 𝑠0, 𝑐0] = [1, 1, 1]. 
The system partitioning methodology is composed of the subcom-

partmentalization and flow partitioning components. The subcompart-

mentalization yields

𝑥1𝑘 (𝑡) = 𝑟𝑘(𝑡), 𝑥2𝑘 (𝑡) = 𝑠𝑘(𝑡), and 𝑥3𝑘 (𝑡) = 𝑐𝑘(𝑡) with 𝑥𝑖(𝑡) =
3∑
𝑘=0
𝑥𝑖𝑘

(𝑡).

The flow partitioning then gives the flow regime for each subsystem as 
follows:

𝐹𝑘(𝑡,x) =
⎡⎢⎢⎢⎣

0 𝑑2𝑘 𝑑1 𝑠 𝑑3𝑘 𝑑2 𝑐

𝑑1𝑘
𝛼1 𝑠 𝑟
𝛼2+𝑟

0 0

0 𝑑2𝑘
𝛽1 𝑠 𝑐
𝛽2+𝑠

0

⎤⎥⎥⎥⎦ ,
�̌�𝑘(𝑡,x) =

⎡⎢⎢⎣
𝛿1𝑘 𝑧1
𝛿2𝑘 𝑧2
𝛿3𝑘 𝑧3

⎤⎥⎥⎦ , and �̂�𝑘(𝑡,x) =
⎡⎢⎢⎣
𝑑1𝑘 𝑟

𝑑2𝑘 𝑠

𝑑3𝑘 𝑐

⎤⎥⎥⎦ ,
where 𝐹𝑘, �̌�𝑘, and �̂�𝑘 describe the 𝑘th direct flow matrix, input, and out-

put vectors for the 𝑘th subsystem, and the decomposition factors 𝑑𝑖𝑘 (x)
are defined by Eq. (2.8). Therefore, the dynamic system partitioning 
methodology yields the following governing equations for the decom-

posed system:
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Fig. 10. The numerical results for selected elements (first rows) of the substorage, 𝑋(𝑡), and subthroughflow matrix functions, 𝑇 (𝑡, x) and �̂� (𝑡, x), and the initial 
substorage, 𝑥0(𝑡), and subthroughflow vectors, 𝜏0(𝑡, x) and 𝜏0(𝑡, x), for the system with constant input 𝑧(𝑡) = [1, 1, 1]𝑇 (Case study 3.2).
�̇�𝑘(𝑡) = 𝛿1𝑘 𝑧1(𝑡) + 𝑑1 𝑠𝑘(𝑡) + 𝑑2 𝑐𝑘(𝑡) − 𝑟𝑘(𝑡) −
𝛼1 𝑠(𝑡) 𝑟𝑘(𝑡)
𝛼2 + 𝑟(𝑡)

�̇�𝑘(𝑡) = 𝛿2𝑘 𝑧2(𝑡) +
𝛼1 𝑠(𝑡) 𝑟𝑘(𝑡)
𝛼2 + 𝑟(𝑡)

− 𝑠𝑘(𝑡) − 𝑑1 𝑠𝑘(𝑡) −
𝛽1 𝑐(𝑡) 𝑠𝑘(𝑡)
𝛽2 + 𝑠(𝑡)

�̇�𝑘(𝑡) = 𝛿3𝑘 𝑧3(𝑡) +
𝛽1 𝑐(𝑡) 𝑠𝑘(𝑡)
𝛽2 + 𝑠(𝑡)

− 𝑐𝑘(𝑡) − 𝑑2 𝑐𝑘(𝑡)

(3.16)

with the initial conditions

𝑥𝑖𝑘
(𝑡0) =

{
1, 𝑘 = 0

0, 𝑘 ≠ 0

for 𝑖 = 1, … , 3. There are 𝑛 × (𝑛 + 1) = 3 × 4 = 12 equations in this sys-

tem.

The system is solved numerically and the graphs for selected ele-

ments of the substorage and subthroughflow matrices are depicted in 
Fig. 10. As seen from the graphs, the system converges to a steady-state 
at about 𝑡 ≈ 6. The results show, for example, that the nutrient storage 
in the resource compartment (𝑖 = 1) derived from nutrient input into the 
consumer compartment (𝑖 = 3), 𝑥13 (𝑡), increases from 0 to 0.64 units un-

til the system reaches the steady state, while the initial nutrient storage, 
𝑥10 , first increases from 1 to 1.38 units and then vanishes. The through-

flow into the resource compartment generated by nutrient input into the 
producer compartment (𝑖 = 2), 𝜏12 (𝑡, x), increases until about 𝑡 ≈ 2. The 
outward throughflow at the same subcompartment, 𝜏12 (𝑡, x), is slightly 
smaller than inward throughflow, 𝜏12 (𝑡, x), but has a similar behavior. 
As seen from these results, the distribution of environmental nutrient 
inputs and the organization of the associated nutrient storages gener-

ated by the inputs can be analyzed individually and separately within 
the system. 
Fig. 11. The numerical results for the selected elements (first rows) of the subst

initial substorage, 𝑥0(𝑡), and subthroughflow vectors, 𝜏0(𝑡, x) and 𝜏0(𝑡, x), for the s
𝑧2(𝑡) = e

−(𝑡−15)2

2 + 0.1, and constant inputs 𝑧1(𝑡) = 1 and 𝑧3(𝑡) = 1 (Case study 3.2).
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In general terms, the state variable 𝑥𝑖(𝑡) of the original system for 
the resource-producer-consumer dynamics, Eq. (3.15), gives the nutri-

ent storage in compartment 𝑖 at time 𝑡 based on its initial stock, 𝑥𝑖(𝑡0). It 
cannot be used to distinguish the nutrient storage derived from individ-

ual environmental nutrient inputs. On the other hand, the state variable 
𝑥𝑖𝑘

(𝑡) of the decomposed system, Eq. (3.16), represents the nutrient stor-

age in compartment 𝑖 that is derived from the specific environmental 
nutrient input into compartment 𝑘, 𝑧𝑘(𝑡). Similarly, the state variable 
𝑥𝑖0

(𝑡) of the decomposed system represents the dynamics of the initial 
nutrient stocks in compartment 𝑖. Parallel interpretations are possible 
for the inward and outward throughflow functions of the original sys-

tem, 𝜏𝑖(𝑡, 𝑥) and 𝜏𝑖(𝑡, 𝑥), and the inward and outward subthroughflow 
functions of the decomposed system, 𝜏𝑖𝑘 (𝑡, x) and 𝜏𝑖𝑘 (𝑡, x), as well.

The proposed dynamic system partitioning methodology, conse-

quently, enables partitioning the compartmental composite nutrient 
flows and storages into subcompartmental segments based on their con-

stituent sources from the initial stocks and environmental inputs. In 
other words, the system partitioning enables tracking the evolution of 
the initial nutrient stocks and environmental nutrient inputs as well as 
the associated storages generated by the stocks and inputs individually 
and separately within the system. This partitioning also allows for com-

piling a history of compartments visited by individual nutrient inputs 
separately.

The system is also perturbed with a Gaussian input 𝑧2(𝑡) = e
−(𝑡−15)2

2 +
0.1, which represents a brief, unit local impulse at about 𝑡 = 15 to 
demonstrate the capability of the proposed method to analyze the in-

fluence of time dependent inputs on the system. The other two envi-

ronmental nutrient inputs are kept constant as before for a comparison, 
orage, 𝑋(𝑡), and subthroughflow matrix functions, 𝑇 (𝑡, x) and �̂� (𝑡, x), and the 
ystem with time-dependent environmental input (Gaussian impulse function) 
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Fig. 12. The numerical results for the transient subflows and substorages at each step along subflow paths 𝑝13111 (a,b) and 𝑝10111 (a,b,c,d). In figures (a) and (b), 
functions 𝑓 1

312111
(𝑡) and 𝑥1312111 (𝑡) are scaled up by a factor of 10 for clarity of the presentation (Case study 3.2).
that is, 𝑧1(𝑡) = 𝑧3(𝑡) = 1. The graphical representations for the selected 
elements of the substorage and subthroughflow matrices are given in 
Fig. 11. It is clear from the graphs that the dynamic substorage and 
subthroughflow matrix measures reflect the impact of the unit impulse 
at about 𝑡 = 15. Note that, the system completely recovers after the 
disturbance in about 10 time units. This time interval can be taken 
as a quantitative measure for the restoration time or system resilience. 
Therefore, the proposed measures can be used as quantitative ecologi-

cal indicators for various ecosystem characteristics and behaviors.

The subsystem partitioning methodology is also applied to this 
model to track the fate of arbitrary intercompartmental flows and the 
associated storages generated by these flows within the subsystems. 
Along the subflow path 𝑝13111 = 01 ↦ 11 → 21 ⇝ 31 from subcompart-

ment 11 to 31 in subsystem 1, the transient subflows and associated 
substorages are computed as formulated in Eqs. (2.43) and (2.44). The 
numerical results for the transient subflows, 𝑓 1

211101
(𝑡) and 𝑓 1

312111
(𝑡), and 

associated substorage functions, 𝑥1211101 (𝑡) and 𝑥1312111 (𝑡), are presented 
in Fig. 12a and 12b. 

The subflow path 𝑝13111 is extended to path

𝑝10111
= 01 ↦ 11 → 21 → 31 → 11 → 21 → 11 → 01

to compute the local output 𝑓 1
011121

(𝑡) (a segment of environmental out-

put 𝑦1(𝑡)) derived from the local (and environmental) input 𝑧1(𝑡) = 1
along that particular path (see Fig. 9). That is, the fate of 𝑧1(𝑡) along 
path 𝑝10111 within the system is determined. The corresponding transient 
subflow and associated substorage functions at each step (subcompart-

ment) along the path are also presented in Fig. 12c and 12d. Since 
𝑓 1
011121

(𝑡) ≤ 6.28 × 10−5, at most about %0.006 of 𝑧1(𝑡) exits the system 
through the given subflow path 𝑝10111 at any time 𝑡.

These results indicate that the proposed dynamic subsystem parti-

tioning methodology enables dynamically tracking the fate of an arbi-

trary amount of nutrient flow and associated nutrient storage along a 
given flow path. Consequently, the spread of an arbitrary amount of 
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nutrient from one compartment to the entire system can be monitored. 
Moreover, the effect of one compartment on any other in terms of the 
nutrient transfer, through not only direct but also indirect interactions, 
can be determined.

The diact flows and storages are introduced in Section 2.5.2. The 
indirect flow and storage from compartment 1 to 3, 𝜏i31(𝑡) and 𝑥i31(𝑡), the 
acyclic flow and storage from compartment 2 to 1, 𝜏a12(𝑡) and 𝑥a12(𝑡), and 
the cycling flow and storage at compartment 1, 𝜏c11(𝑡) and 𝑥c11(𝑡), gener-

ated by the environmental inputs, as well as the corresponding initial 
subflows and substorages derived from the initial stocks transmitted in 
the same directions are depicted in Fig. 13. As seen from the graphs, all 
initial diact subflows and substorages vanish as the system converges 
to a steady-state and, then, the system behavior is eventually dominated 
by the environmental inputs. Ecologically, the acyclic flow and storage, 
𝜏a12(𝑡) and 𝑥a12(𝑡), represent the nutrient flow at time 𝑡 and the associ-

ated nutrient storage generated by this flow during [𝑡1, 𝑡] that visit the 
resource compartment only once—do not return to this compartment 
for a second time later—after being directly or indirectly transmitted 
from the producer compartment. The initial acyclic subflow and sub-

storage, 𝜏a1020 (𝑡) and 𝑥a1020 (𝑡), represent the same phenomena within the 
initial subsystem. Similarly, the indirect flow and storage, 𝜏i31(𝑡) and 
𝑥i31(𝑡), represent the nutrient flow and storage transmitted indirectly 
from the resource compartment through the producer to the consumer 
compartment. The cycling flow and storage, 𝜏c11(𝑡) and 𝑥c11(𝑡), represent 
the nutrient flow and storage transmitted indirectly from the resource 
compartment through other compartments back into itself. The other

diact (sub)flows and (sub)storages can be interpreted similarly, for 
both the subsystems and initial subsystem to analyze the intercompart-

mental dynamics generated respectively by the environmental inputs 
and initial stocks, individually and separately. 

The residence time matrix is another novel mathematical measure 
proposed for quantitative system analysis [9, 11]. The 𝑖th diagonal 
element of (𝑡, 𝑥) at time 𝑡1, 𝑟𝑖(𝑡1, 𝑥), can be interpreted as the time 
required for the outward throughflow, at the constant rate of 𝜏𝑖(𝑡1, 𝑥), 
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Fig. 13. The graphical representation of some indirect, acyclic, and cycling flows and storages, as well as the corresponding initial subflows and substorages (Case 
study 3.2).
to completely empty compartment 𝑖 with the storage of 𝑥𝑖(𝑡1). The di-

agonal structure of the residence time matrix indicates that all subcom-

partments of compartment 𝑖 vanish simultaneously. The residence times 
measure compartmental activity levels [12]. The smaller the residence 
time the more active the corresponding compartment. The derivative of 
the residence time matrix is called the reverse activity rate matrix [9].

The residence time functions for this model with both the constant 
and time-dependent environmental inputs are depicted in Fig. 14, for a 
comparison. The residence times of both the consumer and producer 
compartments are almost constant and the same in both cases. In-

terestingly, the Gaussian impulse at the producer compartment, 𝑧2(𝑡), 
has no significant impact on the activity level of the consumer and 
even that of the producer compartment itself. However, the decrease 
in the input into the producer compartment from constant 𝑧2(𝑡) = 1 to 

𝑧2(𝑡) = e
−(𝑡−15)2

2 + 0.1 results in an overall increase in the residence time 
of the resource compartment (and all of its subcompartments) from the 
steady state value of 𝑟1 = 0.87 days to 𝑟1 = 0.98 days. Moreover, the 
maximum impulse at 𝑡 = 15 decreases this residence time, 𝑟1(𝑡), locally 
in time. That is,
Fig. 14. The graphical representation for the residence times of the system com

𝑧(𝑡) = [1, 1, 1]𝑇 and 𝑧(𝑡) = [1, e −(𝑡−15)2

2 + 0.1, 1]𝑇 (Case study 3.2).
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(10) =(25) = diag ([0.98,0.27,0.33]) but

(15) = diag ([0.85,0.27,0.33]).

Consequently, the residence time of the resource compartment ad-

versely impacted by the environmental input into the producer com-

partment. 
The mathematical classification of the diact interspecific interac-

tions is also introduced in Section 2.8. The sign and strength of the

diact interactions, induced by environmental inputs, between the pro-

ducer and consumer compartments become

𝛿*,𝑥32 (𝑡) = sgn (𝑥*32(𝑡) − 𝑥*23(𝑡)) and 𝜇*,𝑥32 (𝑡) =
|𝑥*32(𝑡) − 𝑥*23(𝑡)|
𝑥2(𝑡) + 𝑥3(𝑡)

(3.17)

for the storage-based analysis. The numerical results for the net diact
storage transactions and the strengths of the diact interactions are 
presented in Fig. 15.

As seen from the sign analysis in Fig. 15a,

𝛿
d,𝑥(𝑡) = (+), 𝛿

i,𝑥(𝑡) = 𝛿a,𝑥(𝑡) = 𝛿c,𝑥(𝑡) = 𝛿t,𝑥(𝑡) = (−). (3.18)

32 32 32 32 32

partments with both the constant and time-dependent environmental inputs, 
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Fig. 15. The graphical representation for the net diact storage transactions and the strengths of the diact interspecific interactions between the producer (𝑖 = 2) 
and consumer (3) compartments for the time-dependent input case (Case study 3.2).
These results indicate that the diact interactions induced by the en-

vironmental inputs between the producer and consumer compartments 
are all antagonistic. Although the consumer compartment directly ben-

efits from the producer compartment as expected, interestingly, their 
indirect, cycling, acyclic, and total interactions are detrimental to the 
consumer compartment. The strengths of the diact iterations are or-

dered as follows:

𝜇
c,𝑥
32 (𝑡) < 𝜇d,𝑥32 (𝑡) < 𝜇a,𝑥32 (𝑡) < 𝜇t,𝑥32 (𝑡) < 𝜇i,𝑥32 (𝑡) (3.19)

for 𝑡 ≥ 0.39. Therefore, the indirect interaction between the producer 
and consumer compartments is the strongest of all diact interactions. 
Since the indirect interaction dominates the direct interaction, their 
overall interactions is counterintuitively detrimental to the consumer 
compartment after 𝑡 = 0.39.

The detailed information and inferences enabled by the proposed 
methodology cannot be obtained through the analysis of the original 
system by the state-of-the-art techniques, as demonstrated in these case 
studies.

4. Discussion

Environment is not an easy concept to define in general and, in 
particular, to analyze mathematically. One reason for this is that na-

ture is always on the move and ecological systems struggle to adapt 
to constantly changing circumstances. Although sound rationales are 
offered in the literature for the analysis of natural system dynamics, 
they are only for special cases, such as linear models and static sys-

tems. In recent decades, there has been several attempts to analyze 
dynamic ecological networks, but each of them bears disadvantages. 
The need for dynamic and nonlinear methodologies has always existed. 
This manuscript proposes a novel mathematical methodology for the 
analysis of nonlinear dynamic compartmental systems to comprehen-

sively address these shortcomings.

Considering a hypothetical ecosystem with several interacting 
species for which the effect of a specific pollutant needs to be inves-

tigated, monitoring the evolution of that pollutant within this food web 
would be critical to addressing the potential harm. Given the initial 
pollutant stocks in each of the species, current deterministic mathemat-

ical methods can analyze the composite throughflow and storage of the 
toxin in the species. The evolution of each environmental pollutant in-

put separately within the web, however, cannot be determined through 
the current methodologies. In the case that multiple species exposed 
to the same pollutant from the environment, the proposed system par-

titioning methodology enables dynamically partitioning the composite 
pollutant flow at and storage in any species into subcompartmental 
segments based on their constituent sources from the initial pollutant 
stocks and environmental pollutant inputs. In other words, the sys-

tem partitioning enables tracking the evolution of the initial pollutant 
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stocks and environmental pollutant inputs in each species, as well as 
the associated pollutant storages derived from these inputs and stocks 
individually and separately within the food web.

The proposed subsystem partitioning methodology can then dynam-

ically track the fate of arbitrary intercompartmental pollutant flows and 
associated storages in each species along a given food chain in the web 
as well. Therefore, the spread of an arbitrary amount of toxin from 
one species to the entire web or along a specific food chain can be 
monitored. Such information can help, for example, to identify criti-

cal pathways in which intervention helps to alleviate the effects of the 
pollutant. The direct, indirect, acyclic, cycling, and transfer (diact) 
flows and associated storages of the pollutant from one species di-

rectly or indirectly to any other—including itself—can also be deter-

mined.

More technically, the proposed system partitioning methodology ex-

plicitly generates mutually exclusive and exhaustive subsystems. Except 
the initial subsystem—which is driven by the initial stocks—each sub-

system is driven by a single environmental input. The subsystems are 
running within the original system and have the same structure and 
dynamics as the system itself, except for their initial stocks and envi-

ronmental inputs. The system partitioning yields the subthroughflows 
and substorages that represent flows and storages derived from the ini-

tial stocks and generated by environmental inputs in each compartment. 
That is, the composite compartmental storages and throughflows, 𝑥𝑖(𝑡)
and 𝜏𝑖(𝑡), are dynamically partitioned into the subcompartmental sub-

storage and subthroughflow segments, 𝑥𝑖𝑘 (𝑡) and 𝜏𝑖𝑘 (𝑡), based on their 
constituent sources from the initial stocks and environmental inputs, 𝑥𝑖0
and 𝑧𝑘(𝑡). Equipped with these measures, the system partitioning ascer-

tains the dynamic distribution of the initial stocks and environmental 
inputs and the organization of the associated storages derived from 
these stocks and inputs within the system. In other words, the system 
partitioning enables dynamically tracking the evolution of the initial 
stocks and environmental inputs individually and separately within the 
system. The system partitioning methodology, therefore, refines system 
analysis from the current static, linear, compartmental to the dynamic, 
nonlinear, subcompartmental level to explore the full complexity of the 
ecological systems.

The subsystems are then further decomposed into subflows and sub-

storages along a set of mutually exclusive and exhaustive directed sub-

flow paths. The subsystem partitioning methodology yields the transient 
subflows and substorages in each subcompartment along a given sub-

flow path within a subsystem, generated by or derived from an arbitrary 
intercompartmental flow or storage. Therefore, arbitrary composite in-

tercompartmental flows and associated storages can be apportioned dy-

namically into transient subflow and substorage segments along a given 
set of subflow paths. That is, the transient subflows and substorages de-

termine the dynamic distribution of arbitrary intercompartmental flows 
and the organization of the associated storages generated by these flows 
within the subsystems. As a result, the spread of an arbitrary flow or 
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storage segment from one compartment to the entire system can be 
monitored. Moreover, an archive of compartments visited by arbitrary 
system flows and storages can be also compiled. In brief, the subsystem 
partitioning methodology enables tracking the fate of arbitrary inter-

compartmental flows and associated storages within the subsystems.

The proposed mathematical method, as a whole, enables the de-

composition to the utmost level, or “atomization,” of the system flows 
and storages. In addition to the subthroughflows, substorages, transient 
flows and storages, the dynamic direct, indirect, acyclic, cycling, and 
transfer (diact) flows and storages from one compartment directly or 
indirectly to any other—including itself—are also systematically for-

mulated for the quantification of intercompartmental flow and storage 
dynamics. The diact flows and storages are derived explicitly through 
the dynamic and path-based approaches, which are based on the sys-

tem and subsystem partitioning methodologies, respectively. As an im-

mediate application, a mathematical technique that characterizes and 
classifies the neutral and antagonistic nature of diact interspecific 
interactions in food webs and determines the strength of these inter-

actions is also developed based on the diact flows and storages. The 
illustrative case studies in Section 3 demonstrate the rigor and efficiency 
of these mathematical system analysis tools as ecological system indi-

cators.

For a comparison of the proposed methodology with the state-of-

the-art techniques, we first note that, at a steady state, the proposed 
dynamic methodology agrees with the current techniques for static eco-

logical network analysis, as shown by [12]. In recent decades, there 
have been several attempts to analyze dynamic ecological networks. 
The first actual dynamic analysis was limited to linear systems with 
time-dependent input [23]. The proposed method is applied to the lin-

ear ecosystem model introduced by [23] as an illustrative case study 
in Section 3. It is shown that the analytic solutions obtained by the 
proposed methodology agree with those obtained by Hippe’s approach. 
Further results that are not available through Hippe’s approach, such 
as the diact flows and storages, are also presented for this linear sys-

tem.

The dynamic approach is extended from linear to nonlinear systems 
by [19]. The authors provided, however, only closed-form, abstract 
formulations that are difficult to apply to real cases. The proposed 
methodology is also applied to the nonlinear ecosystem model analyzed 
by [19], and the results, together with their ecological interpretations, 
are presented in Section 3. A comparison of our results with the ones 
provided by the authors was not possible because, unlike the compre-

hensive dynamic analysis enabled by the proposed methodology for 
nonlinear systems, the authors could only provide asymptotic solutions 
to the model at steady state through their methodology.

Individual-based algorithms that rely on particle tracking simula-

tions are also proposed for dynamic nonlinear ecological models in 
the literature. A truncated infinite series formulation, for example, was 
proposed by [41]. However, the authors’ approach was approximate, 
computationally resource-intensive, and offered no guarantees of series 
convergence. While a guarantee of convergence is added by [29], the 
computation remained resource-intensive due to the individual-based 
simulation technique [30, 43].

This is the first manuscript in the literature that comprehensively 
addresses all the previously identified problems and shortcomings. The 
method’s primary limitation is that it is designed for the analysis of 
conservative models defined in Eq. (2.5). Since the conservation prin-

ciples are fundamental laws of nature, a large class of real-world prob-

lems are formulated based on conservation principles in many fields. 
On the other hand, there are still various non-conservative systems 
that cannot be analyzed by the proposed methodology in its current 
form.

The proposed methodology can easily be extended for similar analy-

ses to systems of higher order ordinary and partial differential equations 
whose source terms governing the intercompartmental interactions are 
in the form of the conservative compartmental systems, as defined in 
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Eq. 2.5. Such an extension of the system partitioning methodology to 
partial differential equations enables spatiotemporal analysis of ecolog-

ical systems.

5. Conclusions

In the present paper, we developed a comprehensive mathemati-

cal method for the analysis of nonlinear dynamic compartmental sys-

tems in the context of ecology. The proposed method is based on the 
novel analytical and explicit, mutually exclusive and exhaustive sys-

tem and subsystem partitioning methodologies. While the proposed dy-

namic system partitioning provides the subthroughflow and substorage 
matrices to determine the distribution of the initial stocks and envi-

ronmental inputs, as well as the organization of associated storages 
individually and separately within the system, the subsystem partition-

ing yields the transient flows and storages to determine the distribution 
of arbitrary intercompartmental flows and the organization of associ-

ated storages within the subsystems. Consequently, the evolution of 
the initial stocks, environmental inputs, and arbitrary intercompart-

mental system flows, as well as the associated storages derived from 
these stocks, inputs, and flows can be tracked individually and sep-

arately within the system. Moreover, the transient and the dynamic 
direct, indirect, acyclic, cycling, and transfer (diact) flows and as-

sociated storages transmitted along a given flow path or from one 
compartment directly or indirectly to any other within the system are 
systematically formulated to ascertain the intercompartmental dynam-

ics.

Traditional ecology is still largely a descriptive empirical science. 
This narrows the field’s scope of applicability and compromises its ca-

pacity to deal with complex ecological networks. The proposed dynamic 
method enhances the strength and extends the applicability of the state-

of-the-art techniques and provides significant advancements in theory, 
methodology, and practicality. It serves as a quantitative platform for 
testing empirical hypotheses, ecological inferences, and, potentially, 
theoretical developments. Therefore, this method has the potential to 
lead the way to a more formalistic ecological science. We consider that 
the proposed methodology brings a novel complex system theory to the 
service of urgent and challenging environmental problems of the day. 
Several case studies from ecosystem ecology are presented to demon-

strate the accuracy and efficiency of the method.

The proposed methodology also lays groundwork for the develop-

ment of new mathematical system analysis tools as quantitative ecolog-

ical indicators. The time dependent nature of these quantities enables 
also their time derivatives and integrals to be formulated as novel sys-

tem measures. Multiple such dynamic diact measures and indices of 
matrix, vector, and scalar types which may prove useful for environ-

mental assessment and management are systematically introduced in a 
separate paper by [9].
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