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Abstract

Detecting and interpreting certain system-level characteristics associated with human population genetic differences is a
challenge for human geneticists. In this study, we conducted a population genetic study using the HapMap genotype data
to identify certain special Gene Ontology (GO) categories associated with high/low genetic difference among 11 Hapmap
populations. Initially, the genetic differences in each gene region among these populations were measured using allele
frequency, linkage disequilibrium (LD) pattern, and transferability of tagSNPs. The associations between each GO term and
these genetic differences were then identified. The results showed that cellular process, catalytic activity, binding, and some
of their sub-terms were associated with high levels of genetic difference, and genes involved in these functional categories
displayed, on average, high genetic diversity among different populations. By contrast, multicellular organismal processes,
molecular transducer activity, and some of their sub-terms were associated with low levels of genetic difference. In
particular, the neurological system process under the multicellular organismal process category had low levels of genetic
difference; the neurological function also showed high evolutionary conservation between species in some previous
studies. These results may provide a new insight into the understanding of human evolutionary history at the system-level.
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Introduction

With the development of high throughput single nucleotide

polymorphism (SNP) genotyping technology, the identification of

millions of SNPs facilitated population genetics studies and

medical genetics research, such as designing and analyzing

genome-wide association studies based on HapMap genotype

data [1,2], identifying recombination hot spots [3], searching for

signals of evolutionary selection [4], and analyzing demographic

history [5]. A total of 40.8% of human SNPs distribute in gene

regions and 59.2% SNPs are in the intergene regions. The SNP

density in the gene region is slightly higher than in the intergene

region [6]. Over the past few years, studies have compared the

SNPs in certain gene regions, such as the vitamin D receptor

(VDR) gene region [7], drug related gene regions [8], and the

enzyme glucokinase (GCK) gene region [9], and found patterns of

genetic variation among human populations. Although these

studies provided an important contribution to understanding the

human genome, they only considered one or a few gene regions. A

group of genes often work together to affect a given biological

function or process; therefore, understanding an event at the

organismal level requires analysis of many genes, rather than the

analysis of individual genes. Annotation databases, such as GO

[10,11,12,13] and KEGG [14,15,16,17], provide important

resources for system-level studies. Recently, some studies have

focused on certain general system-level characteristics of species

evolution [18,19]. They have successfully identified biological

pathways that have high or low evolutionary conservation by

comparing homologous proteins. A study of human-rodent

orthologs indicated that genes in GO function category with

neurological associations exhibited high evolutionary conservation,

and had lower KA/KS ratios [18]. Another study indicated that

GO categories associated with regulatory processes (such as signal

transducers, transcription factors, and receptors) and responses to

the environment (such as defense response, immune response, and

response to stimulus) were evolving rapidly [19]. Although some

special gene functional categories associated with long-term species

evolution have been studied in great detail, there have been few

studies of gene functional categories associated with the short-term

human population differentiation. In fact, human populations live

in variable environments, and many layers of demographic and

evolutionary events, such as migrations, population expansions,

colonizations, genetic drift, selection, recombination and muta-

tion, have shaped human genetic variation [20].

Are there some functional gene sets associated with high/low

genetic differences among human populations? Here, we con-

ducted a population genetic study to find GO categories associated

with genetic differences among different populations. First, for

each autosome gene region among 11 HapMap populations, we

measured the differences in SNPs in each gene region using
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selected indicators, such as the allele frequency, LD pattern, and

transferability of tag SNPs, which were usually used for comparing

samples from different populations [21,22,23,24,25,26] and

reflected population genetic characteristics. We then tested the

associations between GO functional categories and population

genetic differences to identify GO categories associated with high

or low levels of genetic difference among different populations.

Materials and Methods

Data
HapMap genotype data. In this study, we used public data

from the HapMap project. The international HapMap project,

launched in 2002, is an international effort to document the

common SNPs in the human genome [27,28,29,30]. Currently,

the HapMap includes 11 sample populations: African ancestry in

Southwest USA (ASW), Utah residents with Northern and

Western European ancestry from the CEPH collection (CEU),

Han Chinese in Beijing, China (CHB), Chinese in Metropolitan

Denver, Colorado (CHD), Gujarati Indians in Houston, Texas

(GIH), Japanese in Tokyo, Japan (JPT), Luhya in Webuye, Kenya

(LWK), Mexican ancestry in Los Angeles, California (MEX),

Maasai in Kinyawa, Kenya (MKK), Toscans in Italy (TSI), and

Yoruba in Ibadan, Nigeria (YRI). We selected 1,002 unrelated

individuals and 1,063,592 autosomal SNPs in all 11 HapMap

populations. 987,019 SNPs passed quality control (QC) criteria:

Hardy-Weinberg equilibrium (HWE) p.0.001 in an individual

population, call frequency .0.75, and minor allele frequency

(MAF) .0.01 (Table 1).

Human genome data. A total of 30,770 entries for

autosomal gene information were extracted from the ‘‘seq-gene’’

file downloaded from the NCBI ftp website. All records include

chromosome, chr_start, chr_stop, feature_id (NCBI gene ID),

‘‘feature_type’’ of ‘‘gene’’ and ‘‘group_label’’ of ‘‘reference’’.

Genes that had more than one chromosome location were

removed in our study. The average size of these 30,770 genes

was 38,353 bp.

GO data. The GO project is a collaborative effort to develop

and use ontologies to support biologically meaningful annotation

of genes and their products [31]. It develops three ontologies of

defined biological descriptors (GO terms) representing gene

product properties: biological process (BP), describing a broad

biological objective; molecular function (MF), describing the

elemental activities of a gene product at the molecular level; and

cellular component (CC), describing the location of the gene

product [32]. Each ontology is structured as a directed acyclic

graph. In this study, each GO category that was considered as a

functional gene set was used to identify the association with genetic

differences among the 11 HapMap populations.

The ‘‘term’’ file (the definitions of each node or term) and the

‘‘graph_path’’ file (the parent-child relationships for each node)

were downloaded from the Gene Ontology website. To associate

the GO categories with gene IDs, the file ‘‘gene2go’’ was

downloaded from the NCBI ftp. These files were downloaded

on April 29, 2011. There were some entries which do not have

support evidences, such as entries with Evidence codes: ‘‘NAS’’

(non-traceable author statement) and ‘‘ND’’ (no biological data

available were removed). These entries were removed from

‘‘gene2go’’. Finally, the BP, MF, and CC Ontologies had

associations with 12,990, 14,046, and 15,413 genes, respectively.

Calculating genetic differences among 11 HapMap
populations based on allele frequencies

Human population originated from the same ancestors, and the

differences of allele frequency between different populations were

the result of population differentiation. The allele frequency as a

population genetic characteristic was usually used for comparing

samples from different populations [21,22,23,24,25,26]. Because

of linkage equilibrium, there were some correlations between

alleles of SNPs in close proximity on a chromosome [33,34], and

the average population differences of these adjacent SNPs may

represent the characteristics of the entire region. Therefore, we

measured the average differences of allele frequency for each gene

region between pair-wise HapMap populations. For each gene

region, we defined the difference of allele frequency diffmaf as

follows:

diffmaf ~
1

C2
11N

XN

k~1

X10

j~1

Xiƒ11

iwj

jmafk,i{mafk,j j

Where i,j are HapMap populations (1:ASW, 2:CEU, 3:CHB,

4:CHD, 5:GIH, 6:JPT, 7: LWK, 8:MEX, 9:MKK, 10:TSI,

11:YRI). N is the number of SNPs in a gene region. mafk,i is the

frequency of the kth SNP in population i, mafk,j is the frequency

of the kth SNP in population j. A larger diffmaf indicates a larger

difference in allele frequency in the gene region among 11

HapMap populations; a smaller diffmaf indicates a smaller

difference.

Calculating genetic differences among 11 HapMap
populations based on LD patterns

For each gene region, four indicators of the LD pattern were

calculated. (1) LD coefficient r2 (r2). We calculated pairwise LD

coefficients (r2) between all pairwise SNPs (less than 500 kb). (2)

Average block size (block_size). For each gene region, a Four

Gamete Test (FGT) [35] was used to identify the haplotype block

structure, and the average size of the blocks within the gene region

was calculated. (3) Average SNP density of blocks (SNP_dens). (4)

Average haplotype diversity (hap_div). For each block in each

gene region, haplotype diversity [24] was computed as

h~(1{
P

x2
i )n=(n{1), where xi was the frequency of a given

haplotype and n was the number of samples, and average

Table 1. Summary of HapMap data.

HapMap populations ASW CEU CHB CHD GIH JPT LWK MEX MKK TSI YRI total

Number of HapMap samples 83 174 86 85 88 89 90 77 171 88 176 1207

Number of Unrelated individuals 49 116 86 85 88 89 90 50 143 88 118 1002

SNPs in all 11 populations 1,063,592

SNPs passed QC 987,019

doi:10.1371/journal.pone.0027871.t001
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haplotype diversity was defined as the average value of haplotype

diversity in the block regions. In this study, haploview v4.1 [36]

was used to identify haplotype block and to estimate haplotype

frequency (haplotype frequency .1%) using the expectation-

Maximization (EM) algorithm. The differences of the four

indicators among 11 HapMap populations (diffr2 , diffblock size,

diffSNP dens and diffhap div) were calculated in the same way as

diffmaf .

Calculating genetic differences among 11 HapMap
populations based on transferability of tagSNPs

There were three indicators of the transferability of tagSNPs (a

representative single nucleotide polymorphism (SNP) in a region of

the genome with high linkage disequilibrium). (1) Tag Percent

(tag_perc). For each gene region, an aggressive tagging strategy by

the TAGGER panel in haploview was used to identify tagSNPs (r2

threshold is 0.8). The tag percent was defined as the number of

tagSNPs divided by the total number of SNPs in a gene region. (2)

Captured percent (Cap_perc). For example, for the ASW

population, if an ASW SNP exhibited a pairwise r2.0.8 with at

least one tagSNP selected from the CEU population, then the SNP

was defined as a captured SNP by the CEU panel in the ASW

population [24]. The captured percent was defined as the number

of captured SNPs divided by the total number of SNPs in ASW

population. (3) Average maximum r2 (max_ r2). For each gene

region, the average maximum r2 was defined as the average value

of the maximum r2 between tagSNPs in one HapMap population

and SNPs captured by these tagSNPs in another population.

Captured percent and Average maximum r2 were used to evaluate

the efficiency of tagSNPs in one population to capture SNPs in

another population. The differences of the three indicators among

11 HapMap populations (difftag perc, diffCap perc and diffmax r2 )

were calculated in the same way as diffmaf . The above eight

indicators were calculated for genes containing at least two SNPs.

Identifying Gene Ontology categories associated with
genetic differences among 11 HapMap populations

The genetic differences of a GO category were reflected by

combining the differences of all genes in that GO category. Some

previous studies demonstrated that genes assigned to the same GO

category are more closely related in terms of some aspect of their

biology than random sets of genes [37,38]. To identify GO

categories associated with genetic differences among the 11

HapMap populations, firstly, we annotated the genes listed in

gene2go by the GO terms associated with the genes and by the

complete hierarchy of parent terms; only GO categories

containing at least ten genes were analyzed. Secondly, for each

GO category, we assigned the same weight to genes belonging to

the GO category and calculated genetic difference scores for each

of the eight indicators separately. In this way, we combined the

genetic differences of genes in the corresponding GO category.

Genetic difference scores of the GO category for each of the eight

indicators were defined as follows:

Di~
XN

j~1

1

N
diffi,j

Where i is indicator name (1: maf, 2: r2, 3: block_size, 4:

SNP_dens, 5: hap_div, 6: tag_perc, 7: cap_perc, 8: max_ r2), j is

the jth gene in a GO category, N is the gene number in the GO

category and diffi,j is the diffi for gene j. Di was used to measure

the GO category difference among 11 HapMap populations.

Finally, for each GO category, we randomly picked the same

number of genes from one of three ontologies (BP, MF or CC) and

recalculated Di. The entire procedure was repeated 10,000 times

to obtain the random background distribution of Di. After testing

for normality with the Kolmogorov-Smirnov test, we found that

the background distribution of Di was approximately normal. The

probability of the left side was used to identify GO categories

associated with low levels of genetic difference among 11 HapMap

populations, and the probability of the right side was used to

identify GO categories associated with high levels of genetic

difference. The significance level a was 0.01. To obtain robust

conclusions, we imposed a seriously restricted condition: for a GO

category, only when eight indicators were all significant in the left/

right side, was the GO category associated with low/high level of

genetic difference among 11 HapMap populations.

For example, GO:0016192 (vesicle-mediated transport, includes

720 genes) is a sub-term of biological process (12,990 genes), the

Dmaf was 0.136. We randomly picked 720 genes from the 12,990

genes and recalculated Dmaf 10,000 times to construct the random

background distribution. The random background values of

10,000 Dmaf approximately obeyed normal distribution (Figure

S1), and p-value (right side) was 5.336E-07. The other seven p-

values were 1.370E-06 for r2, 1.290E-06 for block_size, 5.624E-03

for Snp_dens, 6.690E-03 for hap_div, 1.500E-06 for tag_perc,

5.505E-10 for Cap_perc, and 2.588E-06 for max_ r2. The eight p-

values were all less than 0.01; therefore, we believed that the GO:

0016192 was associated with high levels of genetic difference

among the 11 HapMap populations.

Results

We chose to analyze 4,875 GO categories containing at least ten

genes: BP, 3,546 categories; MF, 831 categories; and CC, 498

categories. In total, 67 GO terms were associated with differences

among the 11 HapMap populations (all eight p-values ,0.01). 50

GO categories (BP, 16 GO terms; MF, 15 GO terms; and CC, 19

GO terms) were associated with high levels of genetic difference

among the 11 HapMap populations and 17 GO categories (BP, 7

GO terms; MF, 6 GO terms; and CC, 4 GO terms) were

associated with low levels of genetic difference.

GO terms associated with high levels of genetic
difference among 11 hapmap populations

For biological processes, there were 16 GO terms that were

associated with high levels of difference among the 11 HapMap

populations (Table S1). The 16 GO terms had lower right side

probability p-values (p,0.01) for all eight indicators. To find

relationship among the GO terms, a GO Slim was created to

generate a highly aggregated report of GO categories associated

with the high levels of population genetic difference (Figure 1).

‘‘GO Slim’’ is a simplified version of GO that combines and

removes fine grained terms in GO [39]. The parent-child

relationships in a GO Slim could provide a global view for

significant GO terms. The parent would be a broader GO term,

and the child would be a more specific term. We found that

most of the GO terms (10 GO terms) were encompassed in

metabolic process (GO:0008152, Figure 1) and cellular process

(GO:0009987, Figure 1). Catabolic process (GO:0009056), cellular

metabolic process (GO:0044237), and primary metabolic process

(GO:0044238) were the main metabolic process categories

associated with high levels of genetic difference.

For molecular function, there were 15 GO terms that were

associated with high levels of genetic difference among the 11

HapMap populations (Table S1). All GO terms were encompassed

Highly Conserved and Differentiated GO Categories
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in two GO categories: catalytic activity (GO:0003824) and binding

(GO:0005488) (Figure 2). The former contained 4,953 genes, and

all eight p-values were less than 0.01 (0.000 for maf, 7.772E-16 for

r2, 0.000 for block_size, 1.563E-03 for SNP_dens, 2.666E-08 for

hap_div, 0.000 for tag_perc, 0.000 for cap_perc, and 9.959E-14

for max_ r2). The latter contained 11,278 genes, and the eight p-

values were 0.000 for maf, 0.000 for r2, 0.000 for block_size,

2.062E-10 for SNP_dens, 1.110E-15 for hap_div, 0.000 for

tag_perc, 0.000 for cap_perc, and 0.000 for max_ r2. This

category had 51 first-level subnodes, three of which were

associated with high levels of genetic difference. They were

GO:0000166: nucleotide binding, GO:0005515: protein binding,

and GO:0043167: ion binding.

For cellular component, there were 19 GO terms that were

associated with high levels of genetic difference (Table S1). Most of

the GO terms were encompassed in two GO categories: cell

(GO:0005623) and organelle (GO:0043226) (Figure 3). The

former contained 14,413 genes and the latter contained 9,009

genes. All eight p-values for the two categories showed strong

association with high levels of genetic difference among 11

HapMap populations.

GO terms associated with low levels of genetic difference
among 11 HapMap populations

For biological process, there were 7 GO terms that were

associated with low levels of genetic difference (Table S2). The

seven GO terms had lower left side probability p-values (p,0.01)

for all eight indicators. Most of the GO terms were encompassed

in multicellular organismal process (Figure 1, GO:0032501),

an important sub-category of which was neurological system

process (GO:0050877). A series of GO categories (sensory

perception (GO:0007600), sensory perception of chemical stimulus

(GO:0007606), and sensory perception of smell (GO:0007608),

encompassed in the neurological system process category, showed

strong association with low levels of difference among the 11

HapMap populations.

For molecular function, there were 6 GO terms that were

associated with low levels of genetic difference among the 11

HapMap populations (Table S2). An interesting result was that all

the GO terms were encompassed in molecular transducer activity

(GO:0060089, Figure 2). The categories encompassed in the

GO category were signal transducer activity (GO:0004871),

receptor activity (GO:0004872), transmembrane receptor

activity (GO:0004888), G-protein coupled receptor activity

(GO:0004930), and olfactory receptor activity (GO:0004984).

For cellular component, there were 4 GO terms that were

associated with low levels of genetic difference among the 11

HapMap populations (Table S2). They were intermediate

filament (GO:0005882), extracellular space (GO:0005615), keratin

filament (GO:0045095), and intermediate filament cytoskeleton

(GO:0045111) (Figure 3).

To analyze the effects of the gene number of the GO categories

on our results, the Pearson’s correlation coefficients between p-

values and the gene numbers of the GO categories were

calculated. Table S3 shows that all eight Pearson’s correlation

coefficients were lower between p-values and gene numbers of GO

categories. The maximum correlation coefficient is 0.170

(SNP_dens). This indicated that the number of genes had no

effect on our results.

We also analyzed the correlation between indicators. The

Pearson’s correlation coefficients in an 8 by 8 matrix from all eight

indicators were computed (Table S4). Table S4 shows that most of

Figure 1. Biological process GO terms associated with high and low levels of genetic difference (‘‘gray ellipse’’ nodes represent the
low difference GO terms, and ‘‘gray rectangle’’ nodes represent the high difference GO terms). N represents the number of genes in a
GO term.
doi:10.1371/journal.pone.0027871.g001
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Figure 2. Molecular function GO terms associated with high and low levels of genetic difference (‘‘gray ellipse’’ nodes represent the
low difference GO terms, and ‘‘gray rectangle’’ nodes represent the high difference GO terms). N represents the number of genes in a
GO term.
doi:10.1371/journal.pone.0027871.g002

Figure 3. Cellular component GO terms associated with high and low levels of genetic difference (‘‘gray ellipse’’ nodes represent
the low difference GO terms, and ‘‘gray rectangle’’ nodes represent the high difference GO terms). N represents the number of genes in
a GO term.
doi:10.1371/journal.pone.0027871.g003
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the correlation coefficients were between 0 and 0.5, and all the

correlation coefficients were less than 0.8. The minimum cut-off

value of 0.8 for correlation coefficients is usually used to identify

the correlations between indicators [40,41]. These indicators did

not show high correlations, and they reflected different population

genetic characteristics.

Discussion

In this study, we assessed the genetic differences among

populations for each autosome gene region and identified GO

categories associated with these genetic differences. First, for each

gene region, the differences in SNPs were measured using the

allele frequency, the LD pattern, and transferability of tag SNPs.

However, genes are not independent of each other; a group of

genes often acts together to perform a specific biological task.

Thus, each GO category that was considered as a functional gene

set was used to identify the association with population genetic

differences. Finally, we identified special functional groups that

were associated with population genetic differences.

The GO categories associated with high genetic differences

among the 11 HapMap populations mainly belonged to six root

nodes: metabolic process (BP, Figure 1), cellular process (BP,

Figure 1), catalytic activity (MF, Figure 2), binding (MF, Figure 2),

cell (CC, Figure 3), and organelle (CC, Figure 3). Although

metabolic processes have showed evolutionary conservation

between species in some previous studies [19], we found that

some sub-processes, such as catabolic process, cellular metabolic

process, and primary metabolic process, were associated with high

levels of genetic difference among different human populations.

This might be because these functional categories had been

subjected to different selection pressures in the different environ-

ments in which ancient human populations resided, such as

climate, diet, and pathogens [20,42]. The different conservation

patterns between and among species will help geneticists

understand the evolution of species and the population differen-

tiation within species. In a previous study, some ‘‘binding’’

categories, such as ‘‘protein binding’’ [43], exhibited rapid

evolution among species. The present study showed that the

category ‘‘protein binding’’ was associated with high levels of

genetic difference among human populations.

The GO categories associated with lower levels of difference

among the 11 HapMap populations mainly belonged to two root

nodes: the multicellular organismal process category (BP, Figure 1)

and the molecular transducer activity category (MF, Figure 2).

The neurological system process category (BP), under the

biological process node multicellular organismal process category

(BP), was associated with lower levels of genetic difference among

different populations. The neurological function category was also

associated high levels of evolutionary conservation between species

in some previous studies, and neurologically relevant genes had

lower KA/KS ratios [18]. For the signal transducer activity

category, the conservation of signal transduction pathways had

been previously observed [44,45]. Although the sensory perception

of smell category (BP) and the olfactory receptor activity category

(MF) belonged to different ontologies (BF and MF), they were both

associated with human olfactory function. A study of genes for

insect olfaction demonstrated high levels of functional conserva-

tion across 250 million years of evolution [46]. In this study, we

also found similar results in human: these categories showed lower

levels of difference among the 11 HapMap populations.

In summary, these GO categories that are associated with high

or low levels of genetic difference will help geneticists explore

differentiation among and between human populations, and may

provide useful clues in the understanding of human evolutionary

history from system-level.

In addition, our results have practical implications for disease

association studies, such as genome wide association (GWA)

studies. Association analysis is a powerful method for identifying

genes involved in complex disorders. Recently, GWA studies have

been successful in identifying susceptibility genes for several

complex disorders [47,48,49,50]. However, the population

differences in allele frequencies and LD structure may affect the

power of associations analysis; association signals for markers may

appear at different positions because of different populations’ LD

structures [51]. For gene regions associated with lower levels of

genetic difference, if a SNP is identified to be associated with a

disease, the SNP will probably be a risk marker in another

population. However, for regions associated with higher levels of

difference, we must consider the effect of population structure, and

some statistical method should be used to decrease the effect [52].

In this study, we only investigated the gene regions; however, their

adjacent regions (such as 10 kbp, 100 kbp) should be considered in

association analysis. Furthermore, association analysis also focuses

on searching for the association signal of pathways [38,53].

In this study, we investigated the average differences among 11

HapMap populations. In the future, we will investigate the

differences between pair-wise populations, respectively, and we

hope that future research on genes and their adjacent regions will

be of benefit to GWA studies.

Web Resources
The URLs for the data presented herein are as follows:

1. HapMap. Available:http://hapmap.ncbi.nlm.nih.gov/. Ac-

cessed 2011 April 29.

2. GO database. Available:http://www.geneontology.org. Ac-

cessed 2011 April 29.

3. NCBI. Available:http://www.ncbi.nlm.nih.gov. Accessed 2011

April 29.

4. NCBI seq_gene download site. Available:ftp://ftp.ncbi.nih.

gov/genomes/H_sapiens/mapview/. Accessed 2011 April 29.

5. NCBI gene2go file download site. Available:ftp://ftp.ncbi.nih.

gov/gene/DATA. Accessed 2011 April 29.
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(DOC)

Table S2 GO terms associated with low genetic differ-
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Table S3 Pearson’s correlation coefficients between p-
values and gene numbers of GO categories.
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Table S4 Correlation coefficients matrix for eight
indicators.
(DOC)
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