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Vision is crucial for many everyday activities, but the
mind is not always focused on what the eyes see. Mind
wandering occurs frequently and is associated with
attenuated visual and cognitive processing of external
information. Corresponding changes in gaze
behavior—namely, fewer, longer, and more dispersed
fixations—suggest a shift in how the visual system
samples external information. Using three
computational models of visual salience and two
innovative approaches for measuring semantic
informativeness, the current work assessed whether
these changes reflect how the visual system prioritizes
visually salient and semantically informative scene
content, two major determinants in most theoretical
frameworks and computational models of gaze control.
Findings showed that, in a static scene viewing task,
fixations were allocated to scene content that was more
visually salient 10 seconds prior to probe-caught,
self-reported mind wandering compared to
self-reported attentive viewing. The relationship
between mind wandering and semantic content was
more equivocal, with weaker evidence that fixations are
more likely to fall on locally informative scene regions.
This indicates that the visual system is still able to
discriminate visually salient and semantically
informative scene content during mind wandering and
may fixate on such information more frequently than
during attentive viewing. Theoretical implications are
discussed in light of these findings.

Introduction

Vision is crucial for many everyday activities, and
an in-depth analysis of the visual world requires that
the eyes move. This is because the visual system is
subject to both physical constraints (i.e., the structure
and organization of photoreceptors) and cognitive
constraints (i.e., attention and memory). For example,
visual input is acquired during fixations—periods when
the eye remains relatively stable—but is perceptually
(e.g., Matin, 1974; Zuber & Stark, 1966) and cognitively
(e.g., Campbell & Wurtz, 1978; Irwin & Carlson-
Radvansky, 1996; Irwin & Brockmole, 2004) suppressed
during saccades—the ballistic eye movements that shift
fixations from one location to another. Therefore, the
timing and location of fixation allocation offer insight
into the real-time information-processing priorities of
the visual system (e.g., Just & Carpenter, 1976; Kowler,
Anderson, Dosher, & Blaser, 1995).

There are a number of known factors that influence
fixation allocation in static scene viewing, which is
frequently used as a proxy for how the visual system
samples information in the real world. These factors
include the low-level, visually salient features of stimuli,
such as color, contrast, and edge orientation (e.g.,
Mannan, Ruddock, & Wooding, 1996; Mannan,
Ruddock, & Wooding, 1997; Parkhurst & Neibur,
2003; Reinagel & Zador, 1999; Tatler, Baddeley, &
Gilchrist, 2005), as well as higher order, observer-driven
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factors, such as semantic interest (e.g., Buswell, 1935;
Loftus & Mackworth, 1978), momentary task goals
(e.g., Land & Hayhoe, 2001; Land & Lee, 1994; Yarbus,
1967), and long-term schematic knowledge of scene
structure (e.g., Mandler & Johnson, 1977; Shinoda,
Hayhoe, & Shrivastava, 2001; Võ & Henderson,
2009). Although this is not an exhaustive list, it shows
that converging influences from both stimulus- and
observer-based factors impact fixation allocation, and a
number of frameworks and computational models have
attempted to characterize gaze control in light of these
factors (e.g., Garcia-Diaz, Leboran, Fdez-Vidal, &
Pardo, 2012; Harel, Koch, & Perona, 2007; Henderson
& Hayes, 2017; Henderson & Hayes, 2018; Itti & Koch,
2000; Itti & Koch, 2001; Itti, Koch, & Niebur, 1998;
Riche, Mancas, Duvinage, Mibulumukini, Gosselin, &
Dutoit, 2013; Tatler, Brockmole, & Carpenter, 2017).

An implicit assumption of current frameworks and
models of gaze control is that observers consistently
and appropriately attend to their visual surroundings. In
reality, however, people are not always avidly attentive,
and instead they frequently mind wander, defined
here as a shift in attentional priorities away from
task-relevant goals to task-irrelevant internal thoughts
(Smallwood & Schooler, 2006). In fact, laboratory and
field-based research has shown that, when asked, people
will report having been mind wandering 20% to 50%
of the time (Killingsworth & Gilbert, 2010; Smallwood
& Schooler, 2015; but see Seli, Beaty, Cheyne, Smilek,
Oakman, & Schacter, 2018). Thus, current theories and
models of gaze control likely fail to capture the full
range of influences on the manner in which the mind
and brain sample the visual world. Our goal in this
report was to address this limitation by considering
how visual and cognitive factors known to enter into
gaze control decisions vary as a function of observers’
level of attentiveness to their tasks and goals.

Visual processing during mind
wandering

Although the cognitive origin and progression of
mind wandering is currently debated (Christoff, Irving,
Fox, Spreng, & Andrews-Hanna, 2016; Christoff, Mills,
Andrews-Hanna, Irving, Thompson, Fox, & Kam,
2018; Seli, Kane, Metzinger, et al., 2018; Seli, Kane,
Smallwood, Schacter, Maillet, Schooler, & Smilek,
2018), a common theoretical view construes mind
wandering as an attentional state that is, to some
degree, decoupled from the external world (Murphy,
Jefferies, Rueschemeyer, Sormaz, Wang, Margulies,
& Smallwood, 2018; Schooler, Smallwood, Christoff,
Handy, Reichle, & Sayette, 2011). A growing body
of neurocognitive evidence supports this perceptual
decoupling account (Kam & Handy, 2018). For

example, mind wandering is associated with an
attenuated P1 event-related potential (ERP) component
(Baird et al., 2014; Kam, Dao, Farley, Fitzpatrick,
Smallwood, Schooler, & Handy, 2011; Smallwood,
Beach, Schooler, & Handy, 2008), the ERP component
that reflects early low-level visual processing (Hillyard,
Hink, Schwent, & Picton, 1973). Interestingly, Barron
et al. (2011) showed that retrospective self-reported
measures of mind wandering were also associated with
reduced P3a, the component that reflects the capture
of attention by rare distractor stimuli (Escera, Alho,
Schröger, & Winkler, 2000; Knight, 1997), and the
central-parietal P3b, a component that reflects the
maintenance of a task-relevant stimulus in working
memory (Polich, 2003). This collective evidence
indicates that visual information processing during
mind wandering is also attenuated at multiple levels of
cognitive analysis: perception, attention, and working
memory.

The perceptual decoupling observed during mind
wandering suggests a deprioritization of visual
information processing that might correspond to
changes in fixation allocation during scene viewing.
Indeed, Krasich, McManus, Hutt, Faber, D’Mello,
and Brockmole (2018) found evidence in support of
this idea. They asked participants to study pictures of
urban scenes in preparation for a later memory test.
Periodically, participants self-reported whether they
were mind wandering or attentively viewing the scene
at a given moment via pseudorandomly distributed
thought probes that occurred 45 to 75 seconds into
scene viewing. Findings showed that probe-caught mind
wandering was associated with fewer, longer, and more
dispersed fixations (compared to reports of attentive
viewing), with the most robust observations found
10 seconds prior to the onset of the thought probe.
Findings were conceptually replicated using a paradigm
where scenes were presented contiguously, and thought
probes occurred at pseudorandom intervals over the
course of the viewing task. Accordingly, Krasich et al.
(2018) inferred that, given the perceptual decoupling
during mind wandering, the visual system becomes
less efficient and slower to extract and evaluate
visual information, thus prolonging fixations. The
co-occurring increase in fixation dispersion, the authors
suggested, may reflect a systematic, rather than random,
shift in how information is sampled.

What remained unclear from Krasich et al. (2018),
however, was whether changes in fixation duration and
dispersion reflected a shift in how external information
is prioritized during mind wandering. That is, does
the visual system systematically change what visual
information is sampled during mind wandering or does
it simply alter how information is sampled (i.e., more
slowly and broadly) throughout the scene? Answering
this question will identify what visual information the
visual system detects and prioritizes during conditions
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of attenuated visual processing such as during mind
wandering.

The current study

The current study focuses on visual and cognitive
factors that have been linked to gaze control and
how these relationships vary over attentional states.
Specifically, our goal was to assess how fixations
are allocated to visually salient and semantically
informative scene content prior to self-reported mind
wandering. To do this, we re-analyzed the data reported
by Krasich et al. (2018) with a new focus on fixation
placement relative to scene content. Using this prior
study as a basis for our investigation was advantageous
because it has already been used to demonstrate that
several parameters of gaze control vary as a function
of attentiveness. Hence, it gave us a direct opportunity
to compare the relationship between mind wandering
and both content-independent (i.e., those considered
by Krasich et al., 2018) and content-specific (i.e., those
considered here) measures of visual sampling.

Visual salience
Some computational models of gaze control compute

stimulus-based properties to predict and model fixation
allocation (e.g., Garcia-Diaz et al., 2012; Harel et al.,
2007; Itti & Koch, 2000; Itti & Koch, 2001; Itti et al.,
1998; Riche et al., 2013). One popular approach to
operationalizing stimulus-based properties assumes
that visual input (such as from a static scene) can be
represented with iconic topographic feature maps (e.g.,
color, contrast, edge orientation) that are first extracted
and then computationally combined to create a single
saliency map, which denotes the visual distinctiveness
of any given location relative to surrounding locations
or the entire image. These saliency maps, therefore,
incorporate stimulus-based properties with little regard
to higher order scene structure, and—in the absence
of any goal-based, volitional control—salience-based
models predict that fixations should be allocated to the
most salient location first before moving to areas of
lower saliency.

Given the shift of attentional priorities away
from task goals during mind wandering (Smallwood
& Schooler, 2006), mind wandering may provide
conditions of reduced goal-based, volitional control.
Fixations may therefore be allocated to highly salient
scene content more frequently during bouts of mind
wandering compared to attentive viewing. That said,
following the perceptual decoupling accounts of mind
wandering showing attenuated visual processing, it
might be that the visual system becomes less sensitive
to low-level, stimulus-based properties. This possibility
predicts that fixations would not be more likely—and

perhaps even less likely—to occur in visually salient
scene content. No observable change in how fixations
are allocated to visually salient scene content during
mind wandering might also indicate that the changes
in content-independent measures of gaze behavior
observed in Krasich et al. (2018) are not reflective of a
shift in how fixations are allocated to visually salient
scene content.

To assess these competing hypotheses, we
characterized visual salience for each of the images from
Krasich et al. (2018) using three different salience-based
computational models, which are among the most
effective models of gaze control (Riche et al., 2013;
Tatler et al., 2017): the Graph-Based Visual Salience
model (GBVS) (Harel et al., 2007), the Adaptive
Whitening Saliency Model (AWS) (Garcia-Diaz
et al., 2012), and a rarity-based saliency model called
RARE2012 (RARE) (Riche et al., 2013). The GBVS
first computes multiscale feature maps (i.e., intensity,
color, and orientation) via linear center-surround
computations that mimic human visual receptive fields.
Graph algorithms are then used to build activation
maps by defining random-walk Markov chains from
these feature maps. Activation maps are then merged
into a final salience map such that the saliency of a given
region reflects its contrasts to the local surrounding
regions. The GBVS also incorporates a “center bias”
that promotes higher saliency values in the center of
the image, which accounts for past research showing a
greater tendency for fixations to be allocated toward
the center of a static images (e.g., Bindemann, 2010;
Buswell, 1935; Parkhurst, Law, & Niebur, 2002;
Parkhurst & Niebur, 2003; Tatler, 2007; Tatler et al.,
2005).

The AWS model is biologically motivated by the
idea that the nonlinear neural responses in the visual
cortex should be considered as collective neuron
populations rather than as single units (decorrelation
of neural responses) (e.g., Olshausen & Field, 2005).
It also assumes that low-level information is carried
by high-order statistical structures and adopts a
hierarchical approach to statistically whiten low-level
features and remove second-order information (i.e.,
decorrelation and contrast normalization). The AWS
model uses L*a*b* color space, which reduces the
correlation between color components. Next, log-Gabor
filters are used to transform luminance into multiscale
and multi-oriented representations, which are then
decorrelated using a principal component analysis
(PCA). The final saliency map is then computed by
taking the sum of the squared norm vectors in the final
representation and normalizing it to the sum across all
pixels of the image. Thus, visual salience in the AWS
represents a global decorrelation of the entire image.

The RARE model first extracts several feature
maps. Low-level feature maps are computed
through a hierarchical color transformation (PCA
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decomposition), and medium-level feature maps (e.g.,
texture) are extracted using Gabor filters that are
modeled after simple cell neuronal activity in the visual
cortex. A multiscale rarity mechanism—the unique
feature of the RARE model—is then applied to each
feature map to compute rarity maps that denote locally
distinctive contrasts, as well as regions that are rare
throughout the entire image. Finally, an intra-channel
and inter-channel fusion combines rarity maps into a
final saliency map. Visual salience in the RARE model
thus represents local rarity relative to the entire image.

The GBVS, AWS, and RARE models therefore
compute visual salience with unique approaches. For
example, visual salience computed by the GBVS model
reflects contrasts of local regions that favor more
central regions, whereas visual salience in the AWS
and RARE models reflect either adaptive whitening
or rarity contrasts relative to the entire image without
incorporating a center-bias. Computing visual salience
using these different models allowed for the relationship
between mind wandering and fixation allocation to
visually salient scene content to be explored in multiple
ways according to the procedures by which salience was
computed.

Semantic informativeness
The success of salience maps in characterizing gaze

control has fostered a robust empirical endeavor. That
said, visual salience may not fully account for fixation
allocation (e.g., Henderson, Brockmole, Castelhano, &
Mack, 2007), and the convenience of quantifying visual
salience may disregard critical influences from semantic
information (e.g., Henderson, 2017). For example,
observers have a greater tendency to fixate locations
that are rated as (e.g., Hayes & Henderson, 2019;
Henderson & Hayes, 2017; Henderson & Hayes, 2018;
Loftus & Mackworth, 1978; Mackworth & Morandi,
1967) or predicted to be (e.g., Bar, 2009; Clark,
2013; Friston, 2010; Lupyan & Clark, 2015) more
semantically informative than surrounding regions,
even when those locations are less visually salient than
surrounding regions (e.g., Henderson, Malcolm, &
Schandl, 2009). Moreover, semantic information might
be mischaracterized if it is also visually salient (e.g.,
Einhäuser, Spain, & Perona, 2008; Elazary & Itti, 2008;
Henderson, 2017). In fact, when compared directly,
visual salience sometimes failed to explain fixation
allocation above and beyond semantic information
(e.g., Einhäuser et al., 2008; Hayes & Henderson,
2019; Henderson, 2017; Henderson & Hayes, 2017;
Henderson & Hayes, 2018; Henderson et al., 2007),
although this is not universally true (Tatler et al., 2017).
Therefore, the extent to which visual salience and
semantic information contribute to gaze control is still
debated; however, converging evidence indicates the

importance of considering semantic information when
investigating factors of gaze control.

Measuring semantic information poses somewhat
of a challenge (in comparison to visual salience),
given the subjective nature of observer evaluation. For
example, it is not always clear how objects should be
defined, evaluated, and prioritized (e.g., Borji, Sihite,
& Itti, 2013a; Borji, Sihite, & Itti, 2013b; Einhäuser
et al., 2008; Nuthmann & Henderson, 2010), and
objects can be valued as important even before they are
completely identified (Spain & Perona, 2011). Recent
efforts, however, have attempted to map the variation
in semantic information across an entire image in a
conceptually similar way as a visual saliency map;
semantic values are spatially distributed nonuniformly
across an image with certain regions measured as more
semantically informative than others.

Currently, there are two approaches that characterize
semantic information in different ways. One approach,
which we refer to as the semantic interest map, identifies
regions within a scene that are judged to be the
most semantically informative locations relative to
the entire global scene context (Tatler et al., 2017).
Specifically, third-party observers subjectively select
the five most semantically informative regions of a
scene while viewing the entire image, which allows
observers to consider scene context but results in
only a few areas that are indicated as being highly
informative. The other method, referred to as the
meaning map approach, gauges how locally informative
or recognizable information is within small region
of a scene (vignette) that is rated independently of
scene context (Hayes & Henderson, 2019; Henderson
& Hayes, 2017; Henderson & Hayes, 2018). For these
maps, third-party observers rate how informative or
recognizable information is within each vignette, and
then vignettes are interpolated to produce a cohesive
map so that each location within a scene contains a
semantic value. The critical differences between these
two approaches are (1) whether semantic information
is evaluated in relation to or independently from the
entire scene, and (2) whether values are based on the
most informative (semantic interest map) or on locally
informative (meaning map) semantic information.
Therefore, these two different approaches allow for
the relationship between mind wandering and the
prioritization of semantic information in fixation
allocation to be explored in different ways.

In terms of hypotheses, the visual system may be less
able to discriminate what scene content is semantically
informative during mind wandering given perceptual
decoupling; thus, gaze would less frequently fixate on
highly informative scene content regardless of how
semantic information is characterized. Alternatively,
because visual and cognitive processing is only
attenuated, not entirely eliminated, during mind
wandering, it is possible that the visual system can still
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manage to detect and prioritize information that is the
most semantically informative while neglecting less
informative content. This idea predicts that fixations
would be more likely, or at least equally likely, to
occur within semantically informative regions during
mind wandering, especially when characterized by
semantic interest maps. That said, if the meaning
maps better predict fixation allocation during mind
wandering, findings would suggest that locally
informative scene content remains detectable and
perhaps becomes prioritized during mind wandering.
No observable change in how gaze is allocated to
semantically informative scene content during mind
wandering would also suggest that the changes in
the content-independent measures of gaze observed
in Krasich et al. (2018) cannot be characterized as
a systematic shift in how fixations are allocated to
semantically informative scene content.

Empirical approach
Using the previously described models, visual salience

and semantic informativeness scores were computed for
each of the images used in Krasich et al. (2018). Then,
scores for locations where fixations occurred in Krasich
et al. (2018) were measured and compared across
self-reports of mind wandering and attentive viewing,
which were obtained via pseudorandomly distributed
thought probes.

Methods

Participants

Eye movement and mind wandering data were
obtained from the study by Krasich et al. (2018), which
included 51 volunteers from the University of Notre
Dame. All participants were compensated with course
credit.

Semantic interest maps were generated with data
collected from 31 college-aged students from the
University of Notre Dame who did not participate in
the Krasich et al. (2018) study. This sample size was
established following a similar sample size (n = 27) used
in Tatler et al. (2017). Participants volunteered through
the university psychology subject pool following
procedures approved by the university institutional
review board (IRB) and received course credit for
participation.

Meaning maps were generated with data collected
from 150 volunteers from Amazon Mechanical Turk
(MTurk) who had a hit approval rate of 95%, had at
least 100 hits approved, and were from the United
States. This sample size was similar to that used in
Henderson & Hayes (2017, 2018) (n = 79 and n = 165,

respectively). Participants volunteered through MTurk
following procedures approved by the university IRB
and were monetarily compensated for participation.
Fifteen MTurk participants were removed for not
properly completing the task (i.e., pressing the same
response for all 300 patches); therefore, ratings from
135 participants were used to generate the meaning
maps.

Stimuli and apparatus

The stimuli consisted of the 12 digitized color
photographs of real-world urban scenes (800 pixels
× 600 pixels) that were used in Krasich et al. (2018).
Images were presented in 32-bit color on a 20-inch
cathode-ray tube monitor with a screen refresh rate of
85 Hz and a resolution of 1024 × 768 pixels. Examples
images are shown in Figure 1.

Eye movements were sampled using an EyeLink
2K tower-mounted eye tracking system (SR Research,
Ltd., Kanata, Canada) at a rate of 1000 Hz. A viewing
distance of 80 cm was maintained by a chin and
forehead rest. Saccades were operationally defined as
changes in recorded fixation position that exceeded
0.2° with either a velocity that exceeded 30°/s or an
acceleration that exceeded 9500°/s2. The eye tracker
was calibrated using a nine-point calibration at the
beginning of the study and a one-point calibration
before the presentation of each image to correct for any
subtle drift in the eye tracker signal over time.

Experimental procedures

Participants from Krasich et al. (2018) were
instructed to study 12 images for a later recognition
test. They also received instructions for responding to
the thought probes, and mind wandering (which was
colloquially termed as “zoning out”) was defined as the
act of “looking at the picture but thinking of something
else entirely” unrelated to the task or the scene content.
After receiving all instructions, participants viewed
each image, presented in a different random order,
sequentially for 45 to 75 seconds (M = 60.0 seconds, SD
= 8.49 seconds). Eight thought probes were randomly
presented at the end of eight trials. These probes asked,
“In the moments right before this message, were you
paying attention to the picture or were you zoning out?”
(Schooler, Reichle, & Halpern, 2004). Each participant
received eight image-probe pairings, but the pairings
differed across participants. Across participants, the
resulting number of probes per image ranged from 28
to 41 (Mdn = 34.5, IQR = 29–36.5), with the number
of reports of mind wandering per image ranging from
5 to 13 (Mdn = 10, IQR = 6–10.5); therefore, mind
wandering occurred with each of the images.
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Figure 1. Example images and corresponding visual salience (A) and semantic maps (B). Note the difference in scale across the
salience and semantic maps for visualization purposes.

AWS RARE Semantic map Meaning map

GBVS 0.55 0.52 0.47 0.54
AWS — 0.75 0.53 0.61
RARE — 0.51 0.48
Semantic interest map — 0.49

Table 1. Pearson’s correlation coefficient matrix for salience and semantic scores for all images. Notes:
Correlation coefficients represent a pixel-by-pixel comparison for all images.

Computing visually salience and semantically
informative scene content

Saliency maps
The GBVS, AWS, and RARE models were used to

generate saliency maps for each of the images used
in Krasich et al. (2018). Example images and maps
are illustrated in Figure 1. Each model computes an
arbitrary “salience” value for each pixel, with greater
values indicating greater salience. Following typical
practice, values for each of these maps were then
normalized so that the sum salience score of all pixels
within an image was equal to 1.

As reported in Table 1, salience scores computed
by the GBVS were moderately correlated with scores
from the AWS and RARE models, and scores from the
AWS and the RARE models were strongly correlated.
These findings indicate that, although each model
adopts different approaches for computing salience,
a certain degree of similarity exists in how each map
characterizes visually salient scene content. Measured
coefficients, however, do indicate some variability across
maps, which suggests an advantage to using multiple
models to characterize visual salience.

Semantic interest map
The procedures for computing the semantic interest

maps mirrored those used in Tatler et al. (2017).
Participants viewed each full scene used in Krasich
et al. (2018) and selected (with a mouse click) the five
most semantically informative locations within the
scene ignoring visual characteristics such as color or
brightness (see Appendix A for full task instructions).
“Semantically informative” locations were defined
prior to the experiment as locations that were the
most “informative about the meaning of the scene.”
Participants were able to reselect locations prior
to moving on to the next trial but were not able to
reselect locations after moving on to the next trial.
The selections were used to create semantic interest
maps in the same manner as Tatler et al. (2017) by
centering Gaussians with full width at half maximum
of 2° around each selected location.1 This approach
computed an arbitrary value for each pixel of the
image, with greater values indicating greater semantic
informativeness. Values were normalized so that the
sum score of all pixels was equal to 1 within each
image.
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Meaning maps
The procedures for computing the meaning maps

were drawn from those used in Hayes & Henderson
(2019). Each of the scenes was decomposed into
partially overlapping circular patches with 3° (“fine”
patches) and 7° (“coarse” patches) diameters. The
full patch stimulus set consisted of 3600 unique fine
patches and 960 course patches for a total of 4560
patches. Each subject rated 300 random patches (for a
total of 40,500 ratings) without scene context with the
instructions to assess the meaningfulness of each patch
in terms of how informative or recognizable it was
considered (see Appendix B for full task instructions).
Specifically, participants rated the meaningfulness of
the patch using a six-point Likert scale (very low, low,
somewhat low, somewhat high, high, very high). The
ratings for each pixel at each scale (fine and coarse)
were averaged to produce fine and coarse rating maps
for each scene, which were then averaged together
into a single map. This map was then smoothed with
a Gaussian filter using the imgaussfilt function in
MATLAB (Mathworks, Natick, MA). Finally, values
were normalized so that the sum meaning score of all
pixels within each image was equal to 1.

Example semantic interest and meaning maps are
illustrated in Figure 1. As reported in Table 1, scores
across the two maps were moderately correlated, but the
measured coefficients do indicate variability across the
two maps, which suggests an advantage to investigating
the spatial allocation of gaze using multiple models of
semantic informativeness.

Computing salience and semantic scores at
fixated locations

The (x,y) coordinates were extracted for each fixation
made by participants in Krasich et al. (2018). Then an
area subtending 2° visual angle around each coordinate
was established, and the mean and maximum salience
and semantic informativeness scores among the pixels
within each of these areas were calculated. This was
done for several reasons. First, because of the physical
characteristics of the human eye, visual acuity is best at
central viewing (an area subtending roughly 2° visual
angle), and a greater proportion of neurons within
the primary visual cortex are devoted to processing
central vision as opposed to the periphery. Accordingly,
central vision is particularly apt for high-resolution
visual analysis; therefore, measuring visual salience
within a 2° area around a fixation provided insight
into how the visual system prioritizes a high-resolution
analysis of visual salience. Second, this approach also
accommodated subtle instrument error (typically 0.15°)
in saccade recording. Finally, computing the mean and
maximum scores among the pixels surrounding fixated

locations characterized the data in two different ways.
Specifically, mean scores indicated the mass visual
salience of a particular area and maximum scores
indicated the highest pixel of salience within the fixated
area. By computing both of these variables it could
also be determined which measure might best predict
gaze behavior during mind wandering. Average means
and maximum values were then centered and scaled
(z-scored) using the scale function in R (R Foundation
for Statistical Computing, Vienna, Austria) (Becker,
Chambers, & Wilks, 1988).

Fixations that occurred outside of the scene boarders
(3% of fixations), were shorter than 50 ms (2% of
fixations), or were longer than 10,000 ms (<0.01% of
fixations) were excluded. In total, 95% of all fixations
were analyzed.

Results

First, the frequency of reported mind wandering
from Krasich et al. (2018) is provided for ease of
interpreting the results. Then, the main research
question regarding the relationship between mind
wandering and fixation allocation to visually salient and
semantically informative scene content is reported.

Frequency and validation of mind wandering

Participants from Krasich et al. (2018) reported
mind wandering on 27% of probes (SD = 22%). Eleven
participants reported no instance of mind wandering,
and one participant reported mind wandering for all
eight probes. This rate of mind wandering is within
the range of rates typically reported in laboratory
and field settings (Killingsworth & Gilbert, 2010; Seli,
Beatty, et al., 2018; Smallwood & Schooler, 2015).
Rates of mind wandering were correlated with worse
performance on the memory tests, which further
validated the self-reports. A more detailed description
of performance on the memory test and its relationship
to mind wandering is found in Krasich et al. (2018).

Fixation allocation prior to reported mind
wandering

Of the 408 trials (out of 612 total trials) that included
a thought probe, only two trials were excluded due to
tracking errors; therefore, a total of 406 trials were
analyzed. Fixation allocation for trials with reported
mind wandering (107 trials) were compared to trials
with reported attentive viewing (299 trials).
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Main study Joint analyses

β SE χ2 p β SE χ2 p

GBVS
Avg. mean 0.076 0.105 0.529 0.467 0.100 0.886 1.263 0.261
Avg. maximum 0.064 0.106 0.357 0.550 0.093 0.089 1.086 0.297

AWS
Avg. mean 0.328 0.104 9.951 0.002* 0.296 0.090 10.828 0.001*
Avg. maximum 0.343 0.102 11.377 0.001* 0.299 0.087 11.789 0.001*

RARE
Avg. mean 0.281 0.108 6.763 0.009* 0.292 0.093 9.890 0.002*
Avg. maximum 0.296 0.100 8.706 0.003* 0.299 0.088 11.435 0.001*

Semantic map
Avg. mean 0.043 0.106 0.164 0.685 −0.024 0.089 0.073 0.787
Avg. maximum 0.038 0.103 0.134 0.715 −0.036 0.087 0.173 0.678

Meaning map
Avg. mean 0.174 0.091 3.69 0.055 0.167 0.081 4.208 0.040
Avg. maximum 0.164 0.087 3.58 0.058 0.143 0.077 3.419 0.064

Table 2. Standardized coefficients and test statistics assessing the main effect of mind wandering on the average mean and maximum
salience and semantic scores of fixated locations. Notes: β = standardized coefficients; SE = standard errors; degrees of freedom for
all chi-square ratios = 1; asterisk (*) indicates statistical significance after Bonferroni adjustments (salience scores p < 0.017;
semantic scores p < 0.025).

Analyses focused on those fixations that occurred
10 seconds prior to the thought probes. Krasich
et al. (2018) observed the most robust changes in the
spatial aspects of fixation allocation (i.e., increased
fixation dispersion) associated with mind wandering
10 seconds prior to the self-report, and past research
has suggested that, depending on the task, some
gaze behaviors show stronger associations with mind
wandering (Faber, Krasich, Bixler, Brockmole, &
D’Mello, in press) and attentive viewing (Marsman,
Renken, Haak, & Cornelissen, 2013; Unema, Pannasch,
Joos, & Velichkovsky, 2005) within smaller spans of
time. Accordingly, mean and maximum salience and
semantic scores of fixated locations were averaged
across fixations that occurred 10 seconds prior to the
thought probes.

Mixed-effects linear regression analyses were
conducted using the lme4 package in R (Bates, Mächler,
Bolker, & Walker, 2015) to model each dependent
variable (average mean and maximum salience and
semantic score as measured by the respective models),
with probe response (two levels: paying attention
[reference group] and mind wandering) and image
viewing time (z-scored) (Becker et al., 1988) as
fixed-effects variables2 and with participant and image
as random effects. Standardized coefficients (β) were
computed, which indicated the predicted change per
unit (SD) in the dependent variable net of the other
predictor variables. Wald chi-square ratios and p values
were also computed using the Anova function from the
car package in R (Fox & Weisberg, 2011) with a type
II sum of squares to investigate the main effects of

mind wandering controlling for covariates. Treatment
contrasts were used for all comparisons across mind
wandering and attentive viewing.

Because the three models of visual salience (GBVS,
AWS, and RARE) were meant to measure the same
construct, we elected to be conservative and correct for
familywise error when analyzing each of the dependent
variables (mean and maximum salience). Significance
testing was, therefore, conducted using two-tailed tests
with α set to 0.05, with Bonferroni correction. Thus,
we rejected the null hypothesis when p < 0.017 (i.e.,
0.05/3). We were similarly conservative in our analyses
of mean and maximum semantic interest scores because
we used two approaches to operationalize semantic
content (semantic interest maps and meaning maps).
We therefore rejected the null hypothesis in cases where
p < 0.025 (i.e., 0.05/2).

Coefficients and test statistics for each predictor are
reported in Appendix C. Test statistics most relevant
to the effect mind wandering on fixations to visually
salient and semantically informative scene content are
reported in Table 2.

Minimal detectable effect sizes
We first assessed the sensitivity of our main study

given its sample size by estimating the minimal
detectable effect size (MDES) of mind wandering on
each dependent variable net of the aforementioned
covariates included in the mixed-effects linear regression
analyses. The coefficient of the mind wandering fixed
effect served as the effect size measure, and the
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magnitude of these coefficients reflected the estimated
change in the dependent variables in SD units. Using
the simr package in R (Green & MacLeod, 2016),
a power analysis was conducted for each dependent
variable to estimate the power associated with effect
sizes ranging from 0.05 to 0.55 in increments of 0.05, α
set to 0.05, and the number of simulations set to 1000.
The lowest effect size that would on average yield a
power of at least 0.80 was retained as the MDES. The
average MDES was 0.305 and ranged from 0.250 to
0.350. These findings indicate that 0.305 was on average
the smallest effect detectable at power of 0.80. It further
suggests that, at a power of 0.80, effect sizes smaller
than 0.305 would on average require a larger sample size
to achieve statistical significance. The specific MDES
and associated power for each dependent variable are
reported in Appendix D.

The effect of mind wandering 10 seconds prior to thought
probes

Whenmeasuring visual salience with the GBVS, there
was no effect of mind wandering on the average mean
and maximum salience score of fixated locations. When
measuring visual salience with the AWS, however, mind
wandering was associated with greater average mean
and maximum salience scores for fixated locations. The
same observations held when measuring visual salience
with the RARE. Together, these findings showed that,
as measured by two (admittedly highly correlated)
salience models, fixations made 10 seconds prior to
self-reported mind wandering occurred in regions of
higher visual salience than fixations made 10 seconds
prior to reports of paying attention.

There was no effect of mind wandering on the
average mean and maximum semantic informativeness
score of fixated locations when measured by the
semantic interest maps. This finding indicates a similar
propensity during mind wandering and paying attention
to look at scene content rated as the most semantically
informative. When measuring semantic informativeness
with the meaning maps, mind wandering tended to be
associated with greater average mean and maximum
scores, but this effect was not statistically significant. In
light of our MDES analyses, though, a larger sample
size could potentially yield statistically significant
differences.

To increase confidence that the AWS- and RARE-
based results were not spurious, we conducted an
analysis in which we shuffled participants’ fixation
points (x and y coordinates) that were recorded
while viewing each scene onto different randomly
selected scenes. This process thereby broke the natural
association between image content and fixated locations
while retaining the given fixation pattern with its
corresponding probe response (as well as continuing
to incorporate natural biases in oculomotor behavior).

Main study: shuffled images

β SE χ2 p

GBVS
Avg. mean 0.119 0.111 1.147 0.284
Avg. maximum 0.117 0.109 1.153 0.283

AWS
Avg. mean 0.097 0.111 0.763 0.382
Avg. maximum 0.055 0.109 0.251 0.616

RARE
Avg. mean 0.129 0.108 10.423 0.233
Avg. maximum 0.068 0.101 0.450 0.502

Semantic map
Avg. mean 0.095 0.112 0.719 0.397
Avg. maximum 0.052 0.110 0.221 0.638

Meaning map
Avg. mean 0.139 0.111 1.565 0.211
Avg. maximum 0.151 0.108 1.939 0.164

Table 3. Standardized coefficients and test statistics assessing
the main effect of mind wandering on the average mean and
maximum salience and semantic scores of fixated locations
computed using randomly shuffled overlaid images. Notes: β =
standardized coefficients; SE = standard error; degrees of
freedom for all chi-square ratios = 1. The analysis assessing
average mean salience score as measured by the RARE failed to
converge; the original image view time variable was then
removed, and the results from this revised analysis are
reported here.

Hence, in this analysis we would predict that no
relationship between salience and mind wandering
should be observed.We repeated the analyses conducted
above after computing the average mean and maximum
salience and semantic informativeness scores for each
fixated location with respect to the overlaid shuffled
images. We modeled each of these dependent variables
using mixed-effects linear regression analyses with
probe response (two levels: paying attention [reference
group] and mind wandering) and original image
viewing time (z-scored) as fixed-effects variables and
with participant and shuffled image as random effects.
The relevant coefficients and test statistics are reported
in Table 3. Findings showed that, across all models,
the average mean and maximum salience and semantic
scores did not differ across trials with reported mind
wandering and attentive viewing. These analyses
provide additional support for the conclusion that
observers view scene content—as measured by two
models of visual salience—differently when they are
mind wandering versus paying attention.

The effect of mind wandering across time
The findings thus far have demonstrated that scene

content fixated 10 seconds before reported mind
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AWS

Average mean Average maximum

β SE p β SE p

Time before probe
0–10 s 0.292 0.104 0.005* 0.316 0.103 0.002*
10–20 s 0.080 0.104 0.443 –0.002 0.102 0.987
20–30 s 0.051 0.104 0.662 0.049 0.102 0.633
30–40 s –0.160 0.104 0.123 –0.132 0.102 0.196

RARE

Average mean Average maximum

β SE p β SE P

Time before probe
0–10 s 0.261 0.108 0.017 0.266 0.100 0.008*
10–20 s 0.129 0.108 0.232 0.112 0.099 0.257
20–30 s –0.092 0.108 0.397 –0.104 0.099 0.296
30–40 s –0.060 0.108 0.583 –0.050 0.099 0.617

Table 4. Standardized coefficients and test statistics investigating the effect of mind wandering on visual salience within
10-second time windows with respect to probe onset in the main study. Notes: β = standardized coefficients; SE = standard
error; asterisk (*) indicates statistical significance after Bonferroni adjustments for multiple comparisons (p < 0.013).

wandering was more visually salient than the content
that was fixated before reported attentive viewing. These
findings corresponded to previously identified mind
wandering-related changes in content-independent
measures of gaze behavior within the same dataset (i.e.,
fewer, longer, and more dispersed fixations) (Krasich
et al., 2018), thus suggesting a shift in both what and
how visual information was sampled. These analyses
focused on the fixations 10 seconds prior to a thought
probe because Krasich et al. (2018) had previously
shown the most robust mind wandering-related changes
in content-independent measures of gaze behaviors
within this time frame. Here, we report a secondary
post hoc analysis of the association between mind
wandering and visual salience across viewing time,
predicting that the relationship would dissipate further
back in time before the mind wandering report.

We first created four 10-second time windows with
respect to the onset of the thought probe (40–30
seconds before probe, 30–20 seconds before probe,
etc.). Then, within each window, we averaged the
mean and maximum salience and semantic scores of
fixated locations (z-scored). We then modeled each
dependent variable as a probe response (two levels:
paying attention [reference group] and mind wandering)
by time window (four levels with 10–0 seconds before
probe as the reference) interaction, with image viewing
time (z-scored) (Becker et al., 1988) as the fixed-effect
variable and with participant and image as random
effects. Significance testing was conducted using
two-tailed tests with α set to 0.05, with Bonferroni

corrections (i.e., visual salience p < 0.017; semantic
informativeness p < 0.025).

We did not observe any significant mind wandering
by time window interactions in scores from the GBVS
model, semantic maps, or meaning maps (all p > 0.150).
This indicates that the previously observed null effects
of mind wandering with respect to these dependent
variables in the 10 seconds prior to reports of mind
wandering were consistent across viewing time. There
were, however, trending or significant interactions when
visual salience was measured by the AWS (mean, χ2 =
10.048, p = 0.018; maximum, χ2 = 10.498, p = 0.015)
and RARE models (mean, χ2 = 7.392, p = 0.060;
maximum, χ2 = 8.979, p = 0.031). We followed up these
interactions with pairwise comparisons within each
time window using the emmeans package in R (Lenth,
2018) and again controlled for multiple comparisons
with Bonferroni corrections (p < 0.013; 0.05/4). The
effect of mind wandering could only be observed in
the 10 seconds prior to the mind wandering report
(see Table 4). Any time frame more than 10 seconds
prior showed no effect of mind wandering.

Conceptual replication and joint-experiment
analyses

As we noted in the Introduction, Krasich et al. (2018)
reported a separate successful conceptual replication
of their main study that showed clear and robust mind
wandering-related changes in content-independent
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measures of gaze behavior (i.e., fewer, longer, and more
dispersed fixations). In this study, a different group
of 41 participants completed a scene memorization
task that was embedded within a larger task battery
(Faber et al., in press). Participants studied six
contiguously presented images of urban scenes for 60
seconds each in preparation for a later memory test.3
Thought probes were presented in pseudorandom
time intervals of 90 to 120 seconds (M = 33.03
seconds, SD = 15.58 seconds) such that they occurred
mid-viewing, and participants received a total of three
thought probes each. Participants reported mind
wandering on an average of 47% of thought probes
(SD = 50%).

We endeavored to use this replication experiment
to verify our findings related to visual salience and
semantic informativeness described above. Visual
salience maps for each image were generated using the
GBVS, AWS, and RARE models. Semantic interest
maps were generated using ratings from a new sample
of 28 laboratory participants, and meaning maps
were generated using a new sample of 150 MTurk
participants following the same procedures used in
the main study.4 The average mean and maximum
salience and semantic scores of fixated locations
were computed across the fixations that occurred 10
seconds prior to probe onset.5 Each of these dependent
variables was modeled using linear mixed-effects
regression models with probe response (two levels:
paying attention [reference group] and mind wandering)
and image viewing time (z-scored) (Becker et al., 1988)
as fixed-effects variables and participant and image
as random effects. Because this task was randomly
embedded within a larger task battery, we also included
its task order as a categorical fixed-effect covariate.

As with the main study, we first assessed the
sensitivity of this replication study with respect to the
analyses of interest by estimating the MDESs of mind
wandering on each dependent variable following similar
procedures as in the main study. The specific MDES
and associated power for each dependent variable are
reported in Appendix D. The average MDES was 0.50
and ranged from 0.45 to 0.50, which indicates that this
study was on average only powerful enough to detect
an average effect sizes of 0.50 and greater. The largest
effect size observed in the analysis of the main study,
however, was 0.343, indicating that the replication
was not suitably powered to assess the effect of mind
wandering on content-dependent behaviors (which were
substantially smaller than the effects observed using
content-independent measurements by Krasich et al.,
2018). As a result, it would not be surprising to fail to
replicate our previously observed findings related to
mind wandering and visual salience within this dataset
(indeed, analysis of the replication data returned
universally null results; coefficients and test statistics for
each predictor are reported in Appendix F).

We can, however, make use of the replication
from Krasich et al. (2018) by combining it with the
main study in a set of joint-experiment analyses.6 In
doing so, we can ensure that the relationship between
mind wandering and visual salience holds when
additional data, collected from a different group of
participants in a different experimental context, is also
considered. We can also determine if the effects of
semantic informativeness in the main study emerge in
a more powerful statistical analysis. For these analyses,
we modeled each dependent variable (z-scored by
experiment) using mixed-effects linear regressions
with probe response (two levels: paying attention
[reference group] and mind wandering), image viewing
time (z-scored by experiment), and experiment (two
levels: main study [reference group] and replication)
as fixed-effect variables and participant and image as
random effects. Bonferroni corrections were again
incorporated to account for familywise error.

MDESs
The MDESs for these joint-experiment analyses were

estimated following similar procedures as the main
study. The specific MDES and associated power for
each dependent variable are reported in Appendix D.
The average MDES was 0.27 and ranged from 0.25 to
0.30, which shows improved sensitivity over the main
study.

The effect of mind wandering on fixations 10 seconds
prior to thought probes

Coefficients and test statistics for each predictor
are reported in Appendix G, and the most relevant
test statistics are reported in Table 2. The findings
showed that, when measuring visual salience with the
GBVS, there was still no effect of mind wandering
on the average mean and maximum salience score
of fixated locations. Mind wandering was, however,
associated with greater average mean and maximum
AWS and RARE salience scores. These effects survived
Bonferroni corrections and were stronger than those
observed in the main study. There was no effect of mind
wandering on fixations to semantically informative
scene content as measured by the semantic interest
maps, but, when measuring semantic informativeness
with the meaning maps, mind wandering tended to
be associated with greater scores. These effects were
not statistically significant, however, especially after
correcting for multiple comparisons.

We further quantified the observed effects of mind
wandering by comparing the aforementioned regression
analyses with baseline models that predicted salience
and semantic scores without probe response as a
predictor variable. That is, these baseline models
included only image viewing time (z-scored by
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df AIC BIC LLV Deviance χ2(1) p

GBVS
Average mean
Baseline 6 1402 1427 –695 1390
With probe response 7 1402 1432 –694 1388 1.258 0.262

Average maximum
Baseline 6 1405 1430 –696 1393
With probe response 7 1406 1435 –696 1392 1.079 0.299

AWS
Average mean
Baseline 6 1432 1458 –710 1420
With probe response 7 1423 1453 –705 1409 10.783 0.001*

Average maximum
Baseline 6 1402 1428 –695 1390
With probe response 7 1392 1422 –689 1378 11.695 0.001*

RARE
Average mean
Baseline 6 1465 1491 –726 1453
With probe response 7 1458 1487 –722 1444 9.810 0.002*

Average maximum
Baseline 6 1424 1450 –706 1412
With probe response 7 1415 1445 –700 1401 11.259 0.001*

Semantic map
Average mean
Baseline 6 1410 1436 –699 1398
With probe response 7 1412 1442 –699 1398 .066 0.797

Average maximum
Baseline 6 1393 1419 –691 1381
With probe response 7 1395 1425 –691 1381 .160 0.689

Meaning map
Average mean
Baseline 6 1325 1350 –656 1313
With probe response 7 1323 1352 –654 1309 4.217 0.040

Average maximum
Baseline 6 1275 1300 –631 1263
With probe response 7 1273 1303 –630 1259 3.433 0.064

Table 5. Test statistics exploring unique variance in mind wandering explained by visual salience and semantic informativeness. Notes:
LLV = log-likelihood value; df = degrees of freedom; asterisk (*) indicates statistical significance after Bonferroni adjustments
(salience scores p < 0.017; semantic scores p < 0.025).

experiment) and experiment (two levels: main study
[reference group] and replication) as fixed-effect
variables and participant and image as random effects.
The findings for these model comparisons are reported
in Table 5. They showed that including probe response
as a predictor variable significantly improved the ability
of the baseline models to predict average mean and
maximum AWS and RARE scores, as indicated by
lower Akaike information criterion (AIC)/Bayesian
information criterion (BIC) values and significantly
different deviances. Including probe response as a
predictor variable did not significantly improve the
ability of the model to predict average mean and
maximum GBVS, semantic map, and meaning map
scores. These findings further indicate a link between

mind wandering and the propensity to fixate on visually
salient scene content.

Considered collectively, findings from the joint-
experiment analysis were consistent with those observed
in the main study; that is, mind wandering was most
associated with fixations to scene content that was more
visually salient than fixated content before reports of
attentive viewing.

General discussion

The current work focused on visual and cognitive
factors that have been linked to gaze control and
how these relationships vary across attentional states.
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Previous work has shown that mind wandering is
associated with fewer, longer, and more dispersed
fixations in a scene memorization task, with the most
robust effects occurring 10 seconds prior to reported
mind wandering (Krasich et al., 2018). Our goal in this
report was to determine if such shifts in gaze behavior
were characterized by content-dependent adjustments
to gaze control mechanisms. To do so, we assessed
how the visual system samples visually salient and
semantically informative scene content during mind
wandering.

We operationalized mind wandering as moments
directly prior to when participants reported not being
focused on the scene memorization task and, thus, to
some degree were perceptually decoupled from the
processing of the external world (e.g., Murphy et al.,
2018; Schooler et al., 2011). Mind wandering was
self-reported following occasional thought probes that
queried the focus of participants’ attention. We then
compared the associations among fixation location,
visual salience, and semantically informative content
within the scene prior to probes where participants
indicated that they were paying attention to their scene
memorization task and where participants admitted to
mind wandering.

Our main study revealed an increased propensity
for fixated scene content to be more visually salient
(as measured by two of the three models used to
operationalize salience) in the 10 seconds prior to
reported mind wandering compared to reported
attentive viewing. This time window corresponds to
that in which changes in content-independent measures
of gaze behavior were previously observed (Krasich
et al., 2018). This fixated scene content also tended to
be more semantically informative when operationalized
in terms of local identifiability, but the effect of
mind wandering was not statistically significant. No
differences were observed across attentional states when
semantic content took into account the importance of
local scene regions to the overall scene content. As such,
findings from the main study indicate that gaze was
directed to scene content that was more visually salient
during mind wandering compared to attentive viewing.
This suggests that changes in the spatial aspects of gaze
during mind wandering reflect a content-dependent
shift in what visual information is sampled.

Unfortunately, a conceptual replication provided
by Krasich et al. (2018) was underpowered with
respect to the effect sizes observed for visual salience,
even though this same replication study was able
to reveal strong mind wandering-related changes in
content-independent measures of gaze behaviors (i.e.,
fewer, longer, and more dispersed fixations). That
said, combining the data from the main study and the
replication study yielded a more powerful statistical
analysis in which all effects from the main study alone
were maintained. Furthermore, we were able to show

with this analysis that the ability to predict what content
will be fixated by an observer is improved by knowing
the observer’s attentional state while viewing the scene.

Both the main study and the joint-experiment
analyses also highlight a contrast in magnitude between
the smaller association between mind wandering and
what information is viewed (i.e., more salient regions)
versus the much larger association between mind
wandering and how information is viewed (e.g., more
slowly). From a theoretical point of view, this suggests
that the link between mind wandering and changes in
local gaze behaviors are weaker, more fragile, and/or
more sensitive to task-specific idiosyncrasies than
content-independent measures of gaze behaviors.
For example, the effects of mind wandering were
only observed in two of the three models of visual
salience, indicating that at least the idiosyncratic
procedures for computing salience characterizes the
mind wandering–salience link. That is, the AWS and
RARE models reflect contrasts relative to the entire
image and do not incorporate a center bias. The GBVS
model characterizes salience in terms of difference
across local regions and does favor regions centrally
located. Although it is unclear which computational
difference across these models best characterizes the
mind wandering–visual salience link, our findings do
indicate some nuance in this relationship. This nuance
requires further exploration, but it does suggest that
content-independent gaze measures may provide a
more efficacious set of parameters for identifying mind
wandering across a range of contexts and tasks.

Future work is certainly needed to establish the links
among gaze, scene content, and mind wandering, as
well as whether, and to what extent, stimulus-specific
or task-specific idiosyncrasies might influence these
effects. The stimuli used in this study were admittedly
few in number (12) and restricted in range (urban
scenes). Also, beyond memorization tasks like the one
used here, observers have many different goals when
viewing or interacting with visual information. Thus,
the extent to which the relationship between gaze
and mind wandering may be modulated by exposure
to different scenes, tasks, or intensions remains
an interesting question. Despite these limitations,
however, a clear message that emerges from our data
is that contemporary frameworks of gaze control are
incomplete, and explanatory models of gaze must
account for both shifts in sampling rate (i.e., longer
fixations) and shifts in the kind of information that is
sampled (i.e., higher salience, higher local semantics)
during mind wandering.

Although the exact nature of these mechanistic
changes will require a great deal of additional work,
our results give us an important first look into new
ways of thinking about gaze and attention during
mind wandering. Our data, for example, suggest that
gaze control mechanisms may “rebalance” salient and
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semantically informative information during mind
wandering. As attention shifts away from in-depth
visual processing, gaze is more likely to be directed
toward scene content that is visually distinct and
stands out, and less time is spent interrogating visually
indistinct or difficult to interpret scene regions. Our
findings are also consistent with the levels of inattention
hypothesis derived from studies of mindless reading
(Schad, Nuthmann, & Engbert, 2012). The levels of
inattention hypothesis conceptualizes mind wandering
as being a matter of degree, where “weak” and
“deep” mind wandering have different effects on gaze.
During deep mind wandering both low- and high-level
processes are decoupled, whereas during weak mind
wandering high-level processing is decoupled but
low-level processing is intact. The shift in fixations
toward salient information in our study may reflect
weak mind wandering, where low-level properties
become more important in the absence of higher-level
cognition. Thus, the shift from weak to deep mind
wandering may constitute the basis for our proposed
rebalance of information that influences gaze control as
mind wandering occurs.

An alternative account posits that the visual system
may operate following similar principles across
bouts of attentive viewing and mind wandering,
but with an inefficiency that decreases sampling rate
(i.e., fewer and longer fixations) and elicits a sort
of exploration–exploitation tradeoff (e.g., Jepma &
Nieuwenhuis, 2011) reflected by an increase in fixation
dispersion (Faber et al., in press; Krasich et al., 2018).
Moreover, increased noise or variability in gaze control
may inconsistently give rise to content-dependent
changes or unspecified changes not directly captured
by visual salience or semantic informativeness. Future
work should further discern the relationship between
mind wandering and content-dependent factors aside
from visual salience and semantic informativeness to
further assess this possibility.

In conclusion, everyday thoughts frequently consist
of mind wandering, during which visual and cognitive
processing is attenuated. Corresponding changes
in gaze behaviors suggest a shift in how the visual
system samples information in light of perceptual
decoupling thought to occur during mind wandering.
This reflects a prioritization of visually salient scene
content (and perhaps local semantics), although this
effect may be sensitive to task-specific as well as
mind wandering-specific idiosyncrasies. Theoretical
frameworks and computational models of gaze control
that consider fixation allocation should account for
these changes in gaze associated with mind wandering
for a comprehensive account of the visual processing
priorities of the visual system across various attentive
states. Doing so would inform applied efforts to predict
and detect mind wandering in real time (e.g., Hutt,
Krasich, Mills, Bosch, White, Brockmole, & D’Mello,

2019), disentangling how the specific content of a
scene should be considered or whether focusing on
content-independent measures of gaze behavior is
optimal.

Keywords: visual attention, scene viewing, mind
wandering, visual salience, semantic informativeness
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Footnotes
1Exploratory analyses were also conducted using semantic interest maps
that were generated centering Gaussians with full width at half maximum
of 3° and 7° around each selected location, which were explored because
of the similar patch sizes used to generate the meaning maps. The results,
however, were consistent across maps generated with each Gaussian size,
so only the results obtained using the procedures as described in Tatler
et al. (2017) are reported and discussed.
2Across all analyses, there were no significant polynomial effects of image
viewing time; thus, the quadratic term was not included.
3The images used in this study included six images from the main study
that were first cropped then expanded (893 × 1585 pixels) to standardize
the viewing conditions across the entire task battery (see Appendix E for
the images).
4Eight MTurk participants were removed for not properly completing the
task (i.e., pressing the same response for all 300 patches).
5Fixations that occurred outside of the scene borders (2% of fixations)
and/or were shorter than 50 ms (2% of fixations) were excluded. No
fixations were longer than 10,000 ms; therefore, 96% of total fixations
were analyzed.
6We thank an anonymous reviewer for suggesting this analysis.
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Appendix A. Instructions for
semantic informative ratings used
to generate the semantic interest
maps

In the following experiment you will be asked
to select the locations that you feel are the most
SEMANTICALLY INFORMATIVE in each scene
you see. That is, you should select the locations that are

the most informative about the meaning of the scene
you are viewing.

Please try to ignore visual characteristics like
brightness, color, size, etc., and base your selections on
the importance of each location for the meaning of the
scene.

For each scene you will be asked to select FIVE
locations and to select these in the order of the MOST
SEMANTICALLY INFORMATIVE of the five to the
LEAST SEMANTICALLY INFORMATIVE of the
five you select.

In the experiment you will see the following screen:
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To display the first scene, click START.
To select the locations, click on the SET ALL

LOCATIONS button.
You will then see a cross hair as shown below:

Click on the location that you feel is the MOST
SEMANTICALLY INFORMATIVE. Your selection
will be shown with a red circle.
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Then click in turn on the locations you feel are the
2nd, 3rd, 4th, and 5th MOST SEMANTICALLY
INFORMATIVE.

Each selection is shown by a different colored circle
once you have selected it.

If you are unhappy with any of your selections, you
can use the other buttons on the right to clear and reset
individual selections.

When you are happy with all 5 selections, click the
NEXT button to display the next scene.

You will be given a chance to practice this procedure
by the experimenter. If you have any questions, please
ask the experimenter before beginning the main
experiment
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Appendix B. Instructions for
semantic informative ratings used
to generate the meaning maps.

The purpose of this study is to gain a better
understanding of how people perceive real-world visual
scenes like this:

Procedures for real-world visual scene example

If you agree to take part in this study, you will
be presented with a series of images which are small
patches of larger real-world scenes like the one above.

Your task will be to rate how “meaningful” you think
each scene patch is.

What do we mean by “meaningful”? We want you
to assess how “meaningful” an image is based on how
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informative or recognizable you think it is. For example,
here are two scene patches taken from the example
scene above that would be very low meaning:

Without the example scene, it would be difficult to
recognize what either of these image patches is.

And here are two example patches that would be
very high meaning:

Both of these patches contain information that is
easily recognized even without the example scene.

You will be asked to rate how “meaningful” you
think each scene patch is using a 6-point scale. A

rating of 1 means you think the scene patch is very
low meaning, like the sky example. A rating of 6
means you think the scene patch is very high meaning,
like the car example. The 6-point scale will look like
this:

You will select your answer by using the mouse
to click on the bubble below the rating you wish to
select. The task consists of 300 scene patches and
will take approximately 20 minutes or less. This study
will be conducted with an online Qualtrics-created
survey.
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Appendix C

GBVS AWS RARE

Predictors β 95% CI p β 95% CI p β 95% CI p

Intercept –0.028 –0.301 to 0.246 0.843 0.096 –0.354 to 0.163 0.469 –0.072 –0.290 to 0.145 0.515
Probe response, MW 0.076 –0.129 to 0.282 0.467 0.328 .124 to 0.532 0.002 0.281 0.069 to 0.493 0.009*
View time 0.046 –0.042 to 0.134 0.304 0.016 –0.074 to 0.105 0.731 –0.035 –0.128 to 0.058 0.465
Random effects

σ 2 0.73 .81 .89
τ 00 0.11ID; 0.18Image 0.01ID; 0.17 Image 0.00ID; 0.11 Image
ICC 0.28 .19 .11
N 12Image; 51ID 12Image; 51ID 12Image; 51ID
Observations 406 406 406
Marginal R2/conditional R2 0.003/0.284 0.021/0.206 0.016/0.127

Table C1. Coefficients for all variables in the regression models assessing the mean visual salience of fixated scene content prior to
self-reported mind wandering for the main study. Notes: β = standardized coefficients; CI = confidence interval; σ 2 = within-group
variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient; asterisk (*) indicates statistical significance after
Bonferroni adjustments (salience scores p < 0.017; semantic scores p < 0.025).

Semantic map Meaning map

Predictors β 95% CI p β 95% CI p

Intercept 0.008 –0.266 to 0.283 0.952 –0.058 –0.419 to 0.304 0.754
Probe response, MW 0.043 –0.164 to 0.250 0.685 0.174 –0.004 to 0.352 0.055
View time –0.025 –0.114 to 0.064 0.584 0.017 –0.059 to 0.092 0.666
Random effects

σ 2 0.76 0.53
τ 00 0.09ID; 0.18Image 0.15ID; 0.35Image
ICC 0.26 0.49
N 12Image; 51ID 12Image; 51ID
Observations 406 406
Marginal R2/conditional R2 0.001/0.264 0.006/0.490

Table C2. Coefficients for all variables in the regression models assessing the mean semantic informativeness of fixated scene content
prior to self-reported mind wandering for the main study. Notes: β = standardized coefficients; CI = confidence interval; σ 2 =
within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.
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GBVS AWS RARE

Predictors β 95% CI p β 95% CI p β 95% CI p

Intercept –0.027 –0.292 to 0.239 0.843 –0.096 –0.376 to 0.190 0.469 –0.069 –0.376 to 0.237 0.657
Probe response, MW 0.064 –0.145 to 0.272 0.550 0.343 0.144 to 0.543 0.001 0.296 0.100 to 0.493 0.003*
View time 0.045 –0.044 to 0.135 0.320 0.008 –0.079 to 0.096 0.854 –0.032 –0.118 to 0.055 0.472
Random effects

σ 2 0.77 0.77 0.77
τ 00 0.09ID; 0.17Image 0.01ID; 0.22Image 0.00ID; 0.26Image
ICC 0.25 0.23 0.11
N 12Image; 51ID 12 Image; 51ID 12Image; 51ID
Observations 406 406 406
Marginal R2/conditional R2 0.003/0.250 0.023/0.245 0.023/NA

Table C3. Coefficients for all variables in the regression models assessing the maximum visual salience of fixated scene content prior
to self-reported mind wandering for the main study. Notes: β = standardized coefficients; CI = confidence interval; σ 2 =
within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient; asterisk (*) indicates statistical
significance after Bonferroni adjustments (salience scores p < 0.017; semantic scores p < 0.025).

Semantic map Meaning map

Predictors β 95% CI p β 95% CI p

Intercept 0.018 –0.266 to 0.283 0.952 –0.062 –0.454 to 0.329 0.755
Probe response, MW 0.038 –0.164 to 0.250 0.685 0.164 –0.006 to 0.335 0.059
View time –0.023 –0.114 to 0.064 0.584 –0.004 –0.076 to 0.069 0.922
Random effects

σ 2 0.75 0.48
τ 00 0.05ID; 0.22 Image 0.12ID; 0.43 Image
ICC 0.27 0.53
N 12Image; 51ID 12Image; 51ID
Observations 406 406
Marginal R2/conditional R2 0.001/0.270 0.005/0.536

Table C4. Coefficients for all variables in the regression models assessing the maximum semantic informativeness of fixated scene
content prior to self-reported mind wandering for the main study. Note: β = standardized coefficients; CI = confidence interval; σ 2 =
within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.
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Appendix D

Main study Replication Joint experiment

MDES (1 – β) 95% CI MDES (1 – β) 95% CI MDES (1 – β) 95% CI

GBVS
Avg. mean 0.30 0.80 0.78–0.83 0.50 0.87 0.85–0.89 0.25 0.82 0.79–0.84
Avg. maximum 0.30 0.80 0.77–0.82 0.45 0.85 0.83–0.87 0.25 0.81 0.79–0.84

AWS
Avg. mean 0.30 0.82 0.79–0.84 0.50 0.82 0.79–0.84 0.30 0.92 0.91–0.94
Avg. maximum 0.30 0.84 0.82–0.86 0.45 0.84 0.81–0.86 0.25 0.81 0.79–0.84

RARE
Avg. mean 0.30 0.85 0.83–0.87 0.55 0.82 0.79–0.84 0.30 0.90 0.88–0.92
Avg. maximum 0.35 0.89 0.87–0.91 0.50 0.80 0.78–0.83 0.30 0.92 0.90–0.93

Semantic map
Avg. mean 0.30 0.84 0.82–0.86 0.50 0.82 0.79–0.84 0.30 0.92 0.90–0.94
Avg. maximum 0.30 0.81 0.79–0.84 0.50 0.87 0.85–0.89 0.25 0.82 0.80–0.84

Meaning map
Avg. mean 0.30 0.90 0.88–0.92 0.55 0.85 0.82–0.87 0.25 0.87 0.85–0.89
Avg. maximum 0.25 0.80 0.78–0.83 0.50 0.87 0.85–0.89 0.25 0.90 0.88–0.92

Table D1. The minimum detectable effect sizes and associated power for the main study, replication, and joint-experiment analyses.
Notes: MDES = estimated minimum detectable effect size that retained a power of at least 0.80; (1 – β) = average power associated
with the MDES; 95% CI = 95% confidence interval for the estimated average power.
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Appendix E

Figure E1. Example figures from the main study and the corresponding probed images in the replication study. Images in the
replication were first cropped from the top and then expanded to achieve a standard viewing condition across the larger task battery.
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Appendix F

GBVS AWS RARE

Predictors β 95% CI p β 95% CI p β 95% CI p

Intercept –0.078 –1.049 to 0.892 0.875 –0.046 –0.844 to 0.752 0.910 –0.247 –0.833 to 0.339 0.409
Probe response, MW 0.106 –0.216 to 0.428 0.518 0.233 –0.108 to 0.575 0.180 0.345 –0.022 to 0.711 0.066
View time 0.258 0.022 to 0.494 0.032 0.176 –0.075 to 0.427 0.168 –0.094 –0.338 to 0.149 0.448
Trial position 2 –0.410 –1.105 to 0.285 0.248 –0.622 –1.407 to 0.163 0.121 –0.291 –1.075 to 0.494 0.468
Trial position 3 0.467 –0.174 to 1.108 0.153 0.671 –0.054 to 1.396 0.070 0.573 –0.150 to 1.296 0.120
Trial position 4 0.182 –0.380 to 0.743 0.526 0.072 –0.562 to 0.705 0.824 0.231 –0.402 to 0.864 0.475
Trial position 5 –0.235 –0.826 to 0.356 0.435 –0.395 –1.062 to 0.272 0.246 –0.075 –0.740 to 0.589 0.824
Trial position 6 0.207 –0.425 to 0.839 0.521 –0.064 –0.780 to 0.653 0.862 –0.083 –0.795 to 0.630 0.820
Trial position 7 0.369 –0.405 to 1.143 0.350 0.060 –0.814 to 0.934 0.892 0.352 –0.517 to 1.222 0.427
Random effects

σ 2 0.57 0.62 0.77
τ 00 0.12ID; 0.60Image 0.20ID; 0.32Image 0.14ID; 0.10Image
ICC 0.56 0.46 0.24
N 3Image; 41ID 3Image; 41ID 3Image; 41ID
Observations 116 116 116
Marginal R2/conditional R2 0.096/0.600 0.118/0.523 0.090/0.305

Table F1. Coefficients for all variables in the regression models assessing the mean visual salience of fixated scene content prior to
self-reported mind wandering for the replication. Notes: β = standardized coefficients; CI = confidence interval; σ 2 = within-group
variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.

Semantic map Meaning map

Predictors β 95% CI p β 95% CI p

Intercept –0.117 –0.950 to 0.717 0.784 0.071 –0.577 to 0.718 0.831
Probe response, MW –0.208 –0.549 to 0.134 0.233 0.126 –0.238 to 0.491 0.497
View time –0.030 –0.270 to 0.211 0.808 0.256 0.006 to 0.506 0.045
Trial position 2 0.070 –0.610 to 0.751 0.839 –0.461 –1.220 to 0.297 0.233
Trial position 3 0.263 –0.364 to 0.889 0.411 0.165 –0.534 to 0.864 0.644
Trial position 4 0.181 –0.369 to 0.731 0.519 –0.100 –0.713 to 0.513 0.749
Trial position 5 0.467 –0.110 to 1.045 0.113 –0.373 –1.016 to 0.271 0.256
Trial position 6 0.406 –0.209 to 1.022 0.196 –0.035 –0.723 to 0.653 0.921
Trial position 7 0.304 –0.451 to 1.059 0.430 –0.002 –0.843 to 0.840 0.997
Random effects

σ 2 0.70 0.77
τ 00 0.06 ID; 0.41Image 0.11 ID; 0.16Image
ICC 0.40 0.26
N 3Image; 41ID 3Image; 41ID
Observations 116 116
Marginal R2/conditional R2 0.032/0.423 0.084/0.326

Table F2. Coefficients for all variables in the regression models assessing the mean semantic informativeness of fixated scene content
prior to self-reported mind wandering for the replication. Notes: β = standardized coefficients; CI = confidence interval; σ 2 =
within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.
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GBVS AWS RARE

Predictors β 95% CI p β 95% CI p β 95% CI p

Intercept –0.056 –1.106 to 0.994 0.917 0.037 –0.933 to 10.007 0.941 –0.164 –0.730 to 0.402 0.570
Probe response, MW 0.103 –0.202 to 0.408 0.507 0.207 –0.103 to 0.517 0.191 0.355 –0.016 to 0.726 0.060
View time 0.269 0.045 to 0.492 0.018 0.192 –0.040 to 0.424 0.104 –0.048 –0.286 to 0.190 0.691
Trial position 2 –0.406 –1.055 to 0.243 0.220 –0.674 –1.383 to 0.035 0.062 –0.398 –1.224 to 0.428 0.344
Trial position 3 0.439 –0.160 to 1.037 0.151 0.562 –0.092 to 10.216 0.092 0.471 –0.291 to 1.233 0.226
Trial position 4 0.160 –0.364 to 0.684 0.549 –0.051 –0.623 to 0.521 0.861 0.090 –0.576 to 0.756 0.791
Trial position 5 –0.286 –0.838 to 0.266 0.310 –0.506 –1.108 to 0.097 0.100 –0.281 –0.980 to 0.418 0.431
Trial position 6 0.202 –0.387 to 0.792 0.502 –0.028 –0.674 to 0.618 0.933 –0.045 –0.797 to 0.707 0.907
Trial position 7 0.331 –0.391 to 1.053 0.369 –0.029 –0.819 to 0.760 0.942 0.276 –0.638 to 1.191 0.554
Random effects

σ 2 0.52 0.51 0.77
τ 00 0.10ID; 0.74Image 0.16ID; 0.59Image 0.19ID; 0.06Image
ICC 0.62 0.60 0.25
N 3Image; 41ID 3Image; 41ID 3Image; 41ID
Observations 116 116 116
Marginal R2/conditional R2 0.094/0.653 0.106/0.639 0.088/0.313

Table F3. Coefficients for all variables in the regression models assessing the maximum visual salience of fixated scene content prior
to self-reported mind wandering for the replication. Notes: β = standardized coefficients; CI = confidence interval; σ 2 =
within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.

Semantic map Meaning map

Predictors β 95% CI p β 95% CI p

Intercept –0.141 –0.809 to 0.527 0.678 0.104 –0.702 to 0.911 0.800
Probe response, MW –0.163 –0.490 to 0.164 0.329 0.056 –0.279 to 0.391 0.742
View time –0.245 –0.473 to 0.018 0.035 0.285 0.050 to 0.520 0.017
Trial position 2 –0.036 –0.693 to 0.622 0.915 –0.417 –1.077 to 0.243 0.216
Trial position 3 0.651 0.046 to 1.257 0.035 0.210 –0.398 to 0.817 0.499
Trial position 4 0.122 –0.409 to 0.654 0.651 –0.153 –0.687 to 0.381 0.574
Trial position 5 0.417 –0.141 to 0.975 0.143 –0.397 –0.957 to 0.164 0.165
Trial position 6 0.202 –0.393 to 0.797 0.506 0.006 –0.591 to 0.603 0.984
Trial position 7 0.401 –0.329 to 1.130 0.281 0.042 –0.690 to 0.775 0.910
Random effects

σ 2 0.64 0.68
τ 00 0.07ID; 0.22Image 0.05ID; 0.38Image
ICC 0.31 0.39
N 3Image; 41ID 3Image; 41ID
Observations 116 116
Marginal R2/conditional R2 0.105/0.384 0.091/0.446

Table F4. Coefficients for all variables in the regression models assessing the maximum semantic informativeness of fixated scene
content prior to self-reported mind wandering for the replication. Notes: β = standardized coefficients; CI = confidence interval; σ 2

= within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.
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Appendix G

GBVS AWS RARE

Predictors β 95% CI p β 95% CI p β 95% CI p

Intercept –0.034 –0.329 to 0.260 0.820 –0.087 –0.348 to 0.174 0.513 –0.075 –0.291 to 0.140 0.493
Probe response, MW 0.100 –0.074 to 0.273 0.261 0.296 0.120 to 0.473 0.001 0.292 0.110 to 0.474 0.002*
View time 0.066 –0.015 to 0.147 0.112 0.030 –0.053 to 0.113 0.481 –0.039 –0.125 to 0.047 0.373
Experiment [Replication] 0.018 –0.613 to 0.649 0.956 –0.032 –0.597 to 0.533 0.911 –0.059 –0.523 to 0.405 0.803
Random effects

σ 2 0.71 0.79 0.88
τ 00 0.11ID; 0.22Image 0.04ID; 0.17Image 0.01ID; 0.11Image
ICC 0.32 0.21 0.12
N 15Image; 92ID 15Image; 92ID 15Image; 92ID
Observations 0.71 0.79 0.88
Marginal R2/conditional R2 0.11 ID 0.04 ID 0.01 ID

Table G1. Coefficients for all variables in the regression models assessing the mean visual salience of fixated scene content prior to
self-reported mind wandering for the joint-experiment analyses. Notes: β = standardized coefficients; CI = confidence interval; σ 2 =
within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient; asterisk (*) indicates statistical
significance after Bonferroni adjustments (salience scores p < 0.017; semantic scores p < 0.025).

Semantic map Meaning map

Predictors β 95% CI p β 95% CI p

Intercept 0.027 –0.263 to 0.316 0.857 –0.056 –0.404 to 0.292 0.753
Probe response, MW –0.024 –0.199 to 0.151 0.787 0.167 0.007 to 0.327 0.040
View time 0.004 –0.622 to 0.629 0.991 –0.010 –0.762 to 0.741 0.978
Experiment (replication) –0.028 –0.110 to 0.055 0.510 0.040 –0.035 to 0.114 0.295
Random effects

σ 2 0.74 0.57
τ 00 0.08ID; 0.22Image 0.15ID; 0.32ImageF
ICC 0.28 0.45
N 15Image; 92ID 15ImageF; 92ID
Observations 522 522
Marginal R2/conditional R2 0.001/0.282 0.007/0.455

Table G2. Coefficients for all variables in the regression models assessing the mean semantic informativeness of fixated scene content
prior to self-reported mind wandering for the joint-experiment analysis. Notes: β = standardized coefficients; CI = confidence
interval; σ 2 = within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.
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GBVS AWS RARE

Predictors β 95% CI p β 95% CI p β 95% CI p

Intercept –0.035 –0.332 to 0.262 0.818 –0.082 –0.380 to 0.217 0.592 –0.070 –0.359 to 0.219 0.634
Probe response, MW 0.093 –0.082 to 0.267 0.297 0.299 0.128 to 0.469 0.001 0.299 0.126 to 0.472 0.001*
View time 0.066 –0.016 to 0.147 0.114 0.024 –0.056 to 0.105 0.552 –0.028 −0.111 to 0.054 0.503
Experiment (replication) 0.023 –0.618 to 0.664 0.944 –0.032 –0.683 to 0.620 0.924 –0.068 −0.701 to 0.566 0.835
Random effects

σ 2 0.73 0.74 0.80
τ 00 0.08ID; 0.23Image 0.03ID; 0.24Image 0.01ID; 0.23Image
ICC 0.30 0.27 0.23
N 15Image; 92ID 15Image; 92ID 15Image; 92ID
Observations 522 522 522
Marginal R2/conditional R2 0.006/0.304 0.019/0.283 0.018/0.243

Table G3. Coefficients for all variables in the regression models assessing the maximum visual salience of fixated scene content prior
to self-reported mind wandering for the joint-experiment analyses. Notes: β = standardized coefficients; CI = confidence interval; σ 2

= within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient; asterisk (*) indicates statistical
significance after Bonferroni adjustments (salience scores p < 0.017; semantic scores p < 0.025)

Semantic map Meaning map

Predictors β 95% CI p β 95% CI p

Intercept 0.038 –0.268 to 0.344 0.808 –0.057 –0.444 to 0.330 0.774
Probe response, MW –0.036 –0.208 to 0.135 0.678 0.143 –0.009 to 0.295 0.064
View time –0.048 –0.129 to 0.033 0.245 0.024 –0.047 to 0.094 0.511
Experiment (replication) –0.002 –0.670 to 0.666 0.995 0.005 –0.840 to 0.850 0.991
Random effects

σ 2 0.73 0.52
τ 00 0.05ID; 0.25Image 0.12ID; 0.42Image
ICC 0.29 0.51
N 15Image; 92ID 15Image; 92ID
Observations 522 522
Marginal R2/conditional R2 0.003/0.293 0.005/0.510

Table G4. Coefficients for all variables in the regression models assessing the maximum semantic informativeness of fixated scene
content prior to self-reported mind wandering for the joint-experiment analyses. Notes: β = standardized coefficients; CI =
confidence interval; σ 2 = within-group variance; τ 00 = between-group variance; ICC = intraclass correlation coefficient.


