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Abstract: High-performance bioceramics are required for preventing failure and prolonging the
life-time of bone grafting scaffolds and osseous implants. The proper identification and development
of materials with extended functionalities addressing socio-economic needs and health problems
constitute important and critical steps at the heart of clinical research. Recent findings in the realm
of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in
biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since
such bioceramics are able to mimic the structural, compositional and mechanical properties of the
bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the
substitution of calcium ions with a plethora of cationic species has been widely explored in the
recent period, with consequent modifications of its physical and chemical features, as well as its
functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory
of the progresses achieved so far is both opportune and of paramount importance, in order to
not only gather and summarize information, but to also allow fellow researchers to compare with
ease and filter the best solutions for the cation substitution of HA-based materials and enable the
development of multi-functional biomedical designs. The review surveys preparation and synthesis
methods, pinpoints all the explored cation dopants, and discloses the full application range of
substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic
trade-off concentration values for various cell lines, highlighting new prophylactic routes for the
prevention of implant failure. Importantly, the current in vitro biological tests (widely employed
to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo
biological interactions, are also critically assessed. Future perspectives are discussed, and a series of
recommendations are underlined.
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1. Introduction

Over the last decades, the biomedical orthopaedic and dentistry sectors have witnessed an
unprecedented demand for a large variety and number of scaffolds, grafts, implants, and endo-
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prostheses. The increase in life expectancy, and the higher frequency of injuries and diseases are
regarded as the main factors for this growing demand in orthopaedic and dental devices. The quality
of life for millions of people has been drastically improved by using hydroxyapatite (HA) and bioactive
glasses (BGs) for bone repair and tissue regeneration [1–19]. In particular, synthetic stoichiometric
hydroxyapatite (having the Ca10(PO4)6(OH)2 stoichiometry and theoretical Ca/P molar ratio of
1.67), calcium-deficient hydroxyapatite, or oxyapatite have been widely used as prominent bioactive
materials in healthcare due to their excellent biocompatibility, non-toxicity and osteoconductive
properties [1,2,20–22]. This was an obvious choice, since these materials are inspired by nature,
HA being the major mineral component of hard conjunctive tissues (e.g., bone and teeth). Moreover,
HA is able to accommodate healthy osteoblast (bone growth cells) and osteoclast (bone resorption
cells) adhesion and growth, as well as to promote stem cell proliferation and differentiation [1,2,23–26].
However, synthetic HA has poor mechanical properties (e.g., poor tensile strength and low fracture
toughness), and cannot be used for the fabrication of mechanically safe load-bearing bulk implants or
prostheses. Thereby, HA use is limited to porous scaffolds as bone grafts or fillers [27–31] and coatings
for the bio-functionalization of metallic implants [1,2,23,32–39].

Studies concerning the electrical properties of HA occupy a special place in the research topic of
biomaterials. The discovery of the piezoelectric effect in dry bone by Fukada and Yasuda in 1957 [40]
seemed to offer an explanation to certain observed phenomena, such as bone remodelling as the
effect of electric charge accumulation on the surface of crystallites due to mechanical stress. Fast
bone fracture healing was observed when mechanical loading was applied [41,42]. The process of
mechano-transduction was advanced as a possible cause for osteogenesis [41]. It is believed that
the electrical dipoles generated by the action of mechanical stress on the bone matrix (collagen and
hydroxyapatite exhibiting piezoelectric properties) could increase the interaction with the cells pointing
them in the direction of “force lines” (for the production of 3D tracts with a 3D disposition that supports
maximum mechanical stress) and could attract calcium and phosphate ions, leading to the acceleration
of mineralization, regeneration and bone growth processes. Also, the mechanical stress activates
specific adaptive responses in osteoblasts and osteoclast cells, their cytoskeleton being connected
to the bone matrix through cell-matrix junctions. The actin cytoskeleton receives mechanical stress
stimuli from the focal adhesion type of junction, which will activate the YAP (yes-associated protein 1)
transcription co-activator and TEAD (transcriptional enhanced associate domain) transcription factor
(through Hippo signalling pathway). This increases transduction of genes related to proliferation or
differentiation (e.g., c-fos, egr-1, iex-1, c-myc) [43]. The protein p130Cas, a component of the focal
adhesion junction acts also as a mechanical transduction molecule, leading to Rac activation. Another
mechanism of cytoskeleton modulation of cellular function is performed through Rho-family GTPases.
The microtubule and intermediate filaments of the cytoskeleton respond to mechanical stimuli by
spatial migration and cell division direction in the tissue [43].

However, HA seemingly crystallizes in hexagonal symmetry, space group P63/m, with an
inversion centre, which does not allow the piezoelectric effect to occur. In the HA crystal lattice,
the (PO4)3− tetrahedrons are joined together by Ca2+ bridges. The space between (PO4)3− groups is
relatively large allowing the accommodation of foreign atoms with quite different diameters from Ca2+.
The (OH)− ions are aligned along the six-fold axis of the lattice, bounded by columns of Ca2+ and
(PO4)3− forming the so-called “apatitic channel”. Since the (OH)− ions appear to play an important role
in ionic conduction [44,45], a HA crystallite can be regarded as a one-dimensional anionic conductor
along the c-axis [44,46].

Given the non-polar crystal structure of HA, Fukada and Yasuda [40] attributed the observed
piezoelectric effect to collagen, a protein of quasi-ordered, polar structure, which definitely has
piezoelectric behaviour. Although most researchers in the field agree that the responsibility for the
clearly proven piezoelectricity of dry bones is the collagen structure, there are still groups that associate
(at least partially) the phenomenon to the intrinsic structure of mineral HA. A possible alternative
explanation would be that HA nanocrystals actually have a monoclinic, polar structure—space group
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P21/b [47–49]. Since the monoclinic deformation is weak, the HA-monoclinic structure cannot be
practically distinguished from the hexagonal one by powder diffractometry. Lang et al. [47–49] have
obtained clear evidence of piezo-, pyro- [48] and even ferro-electric [49] behaviour of synthetic HA
films (having a (001) preferential orientation of the 70–100 nm large crystallites) deposited by sol-gel
on silicon substrate. The piezoelectric effect was also measured in HA ceramics sintered by spark
plasma sintering [47]. Furthermore, Lang et al. stressed that not all HA particles give the equally
strong piezoelectric signal, which is why the macroscopic effect is not conclusive [49].

The continuous effervescence of the ever-topical HA research field is demonstrated by a
progressive yearly increase of published papers (Figure 1), since 2009 constantly exceeding more
than 1000 items per year. To date more than 21,000 HA papers were published.
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Biological apatites (bioapatites) are carbonated non-stoichiometric Ca-deficient compounds,
substituted with trace amounts of various ions, either adsorbed on the crystal surface or incorporated
in the lattice structure [1,2,5,32,50,51]. As a constituent of bones, HA also contains F which partially
substitutes the hydroxyl group, and impurities such as Mg, Na or Si. Metals usually substitute one
of the two crystallographic positions of Ca, while Si substitutes P. The valence differences between
the host and substitute atoms are usually compensated by oxygen defects. In addition, the natural
bone consists of carbonated HA, with the carbonate group replacing either the hydroxyl group—in
this case the carbonated structure is called type-A, or the phosphate group—denoted as type-B
structure [52]. These two types of carbonated HA structures were intensively studied by different
structural methods, but reliable results were obtained only on synthetic HA, since rigorous structural
studies (e.g., by diffraction on single crystals) on natural HA are limited because of the very small
dimensions of bone crystallites [46]. Typically, the type-A or type-B HA structures are verified by
Fourier transform infrared (FTIR) spectrometry by the identification of the positions of the ν2 and
ν3 stretching vibration modes of the carbonate groups [53]. The mineral bone substitutions with
trace elements are considered reasons for the changes in crystallinity, solubility, and the overall
biological responses.

Besides biological structures/systems, the mineral named apatite—Ca10(PO4)6X2, X = F−, Cl−

or (OH)− is an important host material for rare earth elements, often present as substituent for Ca.
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The crystal symmetry of these minerals is hexagonal with space group P63/m, or, for some ordered
varieties, monoclinic with space group P21/b [54].

The limitation in terms of autografts and allografts has led scientists to the development of
various non-synthetic (e.g., natural resources: animal, aquatic, plants) [21,22,55–64] and synthetic
doped/substituted HA as alternatives [5,65–68]. The first type of “doping” involves cationic
substitution, where monovalent (e.g., Ag+, Na+, K+), bivalent (e.g., Mg2+, Sr2+, Zn2+, Ba2+),
or multi-valent cations move in the lattice sites occupied by Ca2+. A second type of doping implies the
anionic substitution, occurring either at the hydroxyl site (type-A substitution), at the phosphate site
(type-B substitution), or as a mixture of both (type-AB substitution).

Important research activities have been devoted to substituted HA (SHA) compounds [1,2,32,35,
69,70], and a large variety of cation doped/substituted hydroxyapatite materials have been synthesized
(Figure 2). The most intensively studied doping cations were Sr, Ag, Zn, and Mg, with frequencies of
~17.5%, ~16.5%, ~15%, and~13.9%, respectively (Figure 2—inset).
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The great variety of cation doping possibilities, of different ionic radii, is determined by the
high lattice “flexibility”, and good structural stability of hydroxyapatite [5,71,72]. Synthetically
substituted HAs seem to possess a series of significant advantages over stoichiometric HA, imprinted
by the structural (e.g., changes in the lattice constants and unit cell volume, generation of defects,
particular surface charge distributions) and morphological modifications the cation doping is
inducing [1,2,32,35,69,73–76]. For instance, the fracture toughness (KIc) is a decisive material property
when developing reliable ceramic scaffold grafts for load-bearing applications. However, pure HA
is a quite brittle material, with a KIc value situated in the range of 0.5–1 MPa·m1/2 [77], thus much
lower than the cortical human bone which elicits KIc performances in the range 2–12 MPa·m1/2,
depending on the direction of the applied mechanical load [75,77,78]. However, few reports have
already hinted at the possibility of improving this specific mechanical property by controlled cation
substitution in the HA lattice. Specifically, a KIc value of 2.7 MPa·m1/2 was achieved by doping
HA with 0.6 wt.% Mg [79]. S. Lala et al. [80] reported a fracture toughness improvement from
~0.5 MPa·m1/2 (in the case of pure HA) to values of 1.0, 1.5, and 1.6 MPa·m1/2 when doping with



Materials 2018, 11, 2081 5 of 62

5 at.% Mg, Zn and Mn, respectively. Nonetheless, the data on the fracture toughness of doped HA
are not abundant, and thereby further unambiguous explorations are needed to confirm or advance
new doping possibilities able to improve the mechanical properties of HA, allowing for its safe use for
load-bearing biomedical applications. Furthermore, the cation doping of HA started to be recognized
for its ability to lead to improved biological properties such as bioactivity, surface reactivity, and
adsorption of proteins/growth factors, while fostering biocompatibility, non-genotoxicity and ability
to promote cell proliferation [1,2,5,32,69,73,74,81].

As the overall biological performance of bone regeneration substitutes and implants relies on
positive interfacial interaction with body media and the surrounding tissues immediately after the
implantation, the biofunctional advances introduced by cation substitution of HA could prove of high
significance for the biomedical field, and need to be emphasized, as they could pave the road toward
an upgraded generation of bioceramic scaffold and implant coatings.

Moreover, the concerns generated by both the (i) appearance of microorganisms resistant to
all known pharmaceutical antibiotics [82,83] and (ii) increase of implant failure due to nosocomial
infections with various pathogens [84], have lately driven the research into “equipping” the
hydroxyapatite materials (by doping) also with antimicrobial defence mechanisms, with promising
prospects, as will be shown in this review.

Thereby, justified by the ease of doping and the potential great biomedical benefits which could
emerge from such scientific endeavours, hyper-active research has been dedicated to the cationic
doping of HA, with the table of Elements serving as a playground for selecting either rational (based
on the human bone trace elements) or exotic (e.g., lanthanides and actinides) cation dopants.

This review focused on the current status of the cationic-substituted HA materials, their derived
and many times complementary biofunctional effects (with deep regard on their cytotoxicity and
antimicrobial activity), as well as critically surveying the most used in vitro biological interrogation/
investigation assays and conceptual experimental designs, along with their ability to mimic the in vivo
biological interactions. Conclusions will be drawn, future perspectives will be discussed, and a series
of recommendations will be highlighted.

2. Preparation Methods and Synthesis Routes of Hydroxyapatite Materials

Bulk HA can be produced in various forms (e.g., nano-crystalline and micro-crystalline powders,
granules, coatings) and shapes (e.g., spheres, platelets, needles, rods) from either synthetic or non-
synthetic (natural) resources, both having their advantages and limitations.

For example, the methods used to extract/prepare HA from natural (sustainable/renewable)
resources are cheap and simple (in the case of bone waste). Furthermore, the as-fabricated HA materials
are well-suited to achieve a good synergy with biological media since they already contain trace
element substitutions [22,50,85–88]. However, such materials are dependent on the availability of
natural resources and require a well-controlled calcination procedures and cleaning protocols to
remove the organic moieties, and most importantly any bacteria or viruses [22,89–91]. A large palette
of natural HA sources including animal bones (mammalian, fish), plants, and biogenic (egg-shell and
sea-shell) sources have been employed in order to respond to escalating orthopaedic and dentistry
demands [22,55]. It has been argued that HA obtained from natural resources exhibits properties and
a biological response comparable or even better than the synthetic ones, due to their similitude with
bone apatite [92]. HA prepared from natural resources such as bovine, sheep, pig, fish, egg-shell,
sea-shell or marble contain trace amounts of cations such as Na+, K+, Mg2+, Zn2+, Ba2+, or Sr2+ and
anions such as CO3

2−, or SiO4
4−, F− or Cl−, which play crucial roles in biochemical interactions, bone

regeneration and tissue engineering [55].

2.1. Preparation of Bulk Hydroxyapatite (HA) from Natural Resources

HA has been prepared from various animal-origin sources including bovines [57,58,89,93–98],
pigs [99–101], camels [102], sheep [103–105], goats [94], and chickens [94,106,107]. A summary of the
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frequently utilized natural resources for the synthesis of hydroxyapatite materials is presented in
Table 1.

Table 1. Preparation of hydroxyapatite (HA) from natural resources.

Elements Source Synthesis Method Refs.

Bovine

Cortical bone

Pre-cleaning: (i) removal of soft tissue; (ii) cut into small pieces and boiled
in water for 2 to 3 h; (iii) dry in an oven at 80 ◦C for 72 h; (iv) crush and
subsequently grind by ball milling for 24 h.
Heating: calcination in a furnace at temperatures in the range of
600–1100 ◦C, for 3 h, with heating and cooling rates of 5 ◦C min−1.

[93]

Cortical bone
Pre-cleaning: (i) removal of soft tissue; (ii) crushing and milling process.
Heating: sintering in a furnace at 1200 ◦C for 2 h or 4 h, with a heating and
cooling rate of 5 ◦C min−1 and 10 ◦C min−1, respectively.

[92]

Teeth

Pre-cleaning: (i) removal of soft tissue; (ii) removal of remnant impurities by
mechanical scraping; (iii) boiling in distilled water for 30 min; (iv) repeated
the aforementioned steps three times; (v) drying in the sun for 3 days.
Heating: (i) calcination in humid atmosphere at 735 ◦C for 1 h with a
heating rate of 7 ◦C min−1; (ii) sintering at 1150 ◦C for 1 h with a heating
rate of 7 ◦C min−1.

[108]

Pig

Cortical bone

Pre-cleaning: (i) hot water treatment; (ii) removal of organic compounds by
scraping; (iii) de-proteinization in a boiled mixture of 1 M NaOH and 1 M
HCl at 100 ◦C for 5–10 min; (iv) dried in an oven at 100 ◦C overnight; (v)
crushing and grinding.
Heating: calcination in air at 600 ◦C, 800 ◦C or 1000 ◦C at a heating rate of
5 ◦C min−1 followed by cooling to room temperature.

[99]

Cortical bone

Pre-cleaning: (i) removal of soft tissues and fluids; (ii) boiling bone slices at
154 ◦C, 4 atm; (iii) drying in vacuum; (iv) milling; (v) removal of remnant fat
and protein moieties by hydrothermal process.
Heating: (i) calcination at 5 ◦C min−1 at 600 ◦C (allows the decomposition
of organic tissue); (ii) sintering at 1000 ◦C (induces physico-chemical
changes) from 1 to 50 h; (iii) cooling in the furnace in air.

[100]

Camel Cortical bone

Pre-cleaning: (i) removal of organic compound; (ii) dry-heating at 100 ◦C
for 1 h; (iii) cut in small pieces and immersion in acetone for 1 h.
Heating: calcination at 1000 ◦C for 3 h at a heating rate of 10 ◦C min−1, and
then slowly cooled down to room temperature.

[102]

Sheep

Cortical bone
Pre-cleaning: (i) removal of femoral heads; (ii) de-proteinization with
NaOH; (iii) washing and drying.
Heating: (i) calcination at 850 ◦C for 4 h in air; (ii) crushing and milling.

[103]

Dentine
Pre-cleaning: cleaning and washing the teeth.
Heating: (i) calcination at 750 ◦C for 5–6 h; (ii) separation of dentine from
enamel; (iii) ball grinding; (iv) sintering at 1000–1300 ◦C for 4 h.

[109]

Chicken Egg-shells

Pre-cleaning and synthesis: (i) crushing egg-shells; (ii) simultaneous
removal of organics and transformation of CaCO3 into CaO by calcination
at 900 ◦C for 1 h; (iii) addition of water and phosphoric acid; (iv)
precipitation overnight, followed by filtration and washing; (v) drying the
HA product at 60 ◦C for 24 h.
Heating: sintering in air (after sieving and pressing) at 900–1300 ◦C for 1 h,
with a heating rate of 10 ◦C.

[110]

Fish Bones

Pre-cleaning: (i) removal of organic compounds by brushing and then
boiling at 100 ◦C for 10 min; (ii) drying at 90 ◦C for 100 min and then
crushing to powder; (iii) de-proteinization by reflux method using a 5%
KOH solution.
Heating: sintering at 600–1000 ◦C.

[111,112]

Mussel Shells

Pre-cleaning and synthesis: (i) mechanical cleaning and calcination in air
at 1300 ◦C for 6 h (ii) Rathje fabrication method: mixing seashells powder
with water and H3PO4 with magnetic stirring during the synthesis for 2 h at
700 rpm; (iii) filtering, followed by drying at room temperature for 168 h,
and then at 100 ◦C for 24 h.
Heating: sintering at 1200 ◦C for 10 h.

[57]
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Table 1. Cont.

Elements Source Synthesis Method Refs.

Snail Shells

Pre-cleaning and synthesis: (i) thoroughly cleaning of sand particles and
other foreign materials; (ii) drying, crushing into small particles,
ball-milling; (iii) sieving; (iv) mixing the as-obtained CaCO3 powder with
water and H3PO4 solution, followed by continuous stirring at 80 ◦C for 8 h;
(v) drying at 100 ◦C overnight in an incubator.
Heating: calcination at 800 ◦C for 4 h in air.

[63]

Cuttlefish Whole

Pre-cleaning and synthesis: (i) cutting into small pieces; (ii) heat-treatment
at 110, 500, 1000 ◦C with a heating rate of 5 ◦C min−1; (iii) mixing the
as-obtained CaCO3 powder with an aqueous NH4H2PO4 solution to a Ca/P
molar ratio of 1.67; (v) drying at 200 ◦C for 1–72 h, using heating and cooling
rates of 5 ◦C min−1.

[60]

Dolomic
marble

Origin:
Ruschiţa,
Romania

Pre-cleaning and synthesis: (i) mechanical cleaning and calcination in air
at 1300 ◦C for 6 h (ii) Rathje fabrication method: mixing seashells powder
with water and H3PO4 with magnetic stirring during the synthesis for 2 h at
700 rpm; (iii) filtering, followed by drying at room temperature for 168 h,
and then at 100 ◦C for 24 h.
Heating: sintering at 1200 ◦C for 10 h.

[57]

Red
algae Whole

Pre-cleaning: (i) rinsing at high-pressure; (ii) drying at room temperature
for 24 h; (iii) sieving; (iv) thermal treatment to burn-off the organic material,
at 650–700 ◦C for 12 h, with a low heating rate of 0.5 ◦C min−1 to prevent
decomposition of algae; (v) alkalinisation with ammonium hydroxide at
ambient pressure and 100 ◦C for 12 h under continuous stirring at speed of
100 rpm; (vi) filtration and neutralisation by repeating washing and drying
overnight at 90 ◦C.
Heating: thermal treatment at 60 ◦C, 105 ◦C, 450 ◦C, 550 ◦C and 1000 ◦C for
1 h each.

[113]

Bovine and swine bones seem to be the preferred animal resources for biological HA
production [22,57,58,89,96,97,114]. Animal bone-derived HA is typically prepared by a three-stage
process: (i) mechanical scraping of soft tissue; (ii) deproteinization in alkali media; (iii) calcination at
temperatures able to remove any remnant organic and biological hazardous components. HA derived
from animal bone has generally a low degree of crystallinity, and usually calcination between 600
and 1100 ◦C has been found to be the best choice to improve the degree of crystallinity with excellent
thermal phase stability [55,88]. Rincón-López et al. [92] compared the physical and chemical properties
of cortical bovine HA (BHA) with a commercial synthetic HA and observed that although they have
different crystalline size and morphology due to the ionic substitution (e.g., Na+, Mg2+, CO3

2−) in
BHA, both samples exhibited similar biological activity in terms of biocompatibility and non-toxicity
in human osteoblast cell cultures.

Egg-shell structure, which has been frequently described in the literature, is mainly composed
of calcite (94–95%) with trace amounts of inorganic components, such as magnesium carbonate or
calcium phosphates [115]. The synthesis of HA from egg-shells is generally achieved by ball-milling
and subsequent sintering procedures [115].

Aquatic bones and shells are reliable sources for the production of HA since they contain a high
content of minerals, such as calcium carbonate in the form of calcite or aragonite, silica and calcium
phosphate [22,60–64,116–118]. Two main routes are generally used to convert marine-origin material to
HA: (i) hydrothermal synthesis and (ii) hydrothermal hot-pressing. Hydrothermal synthesis involves
heating processes under alkaline conditions at a specific temperature and pressure, while hydrothermal
hot-pressing involves supplementary a compacting process. The temperature used for calcination
and alkaline treatment are crucial parameters influencing the crystallinity, grain size and specific
surface area of the final product [22]. The optimal preparation temperature ranges between 200–250 ◦C.
In contrast to the HA derived from bovine bones, HA prepared from aquatic sources is reported to be
thermally stable at a temperature up to 1200 ◦C [22].
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One of the advantage of non-synthetic HA routes in comparison to the synthetic HA fabrication
methods is their lower cost [22,55]. In this sense, the production of HA from various wastes is an equally
excellent and promising alternative [22]. For example, the use of egg-shell or sea-shell wastes, which
represent the most abundant by-products of the food industry, has been found as a very promising
sustainable resource to produce HA at a low cost with little impact to the environment [88,119–121].
Apart from the method of synthesis, the quality of non-synthetic HA (e.g., purity, grain size, properties)
is strongly dependent on the biological source, location, age and fabrication process [1,55,92–94,99,100,
104,109,111,112,116].

Another major advantage of this fabrication route of HA materials is the extremely low risk
of immune reactions. In order to trigger an immune response, the antigen-presenting cells in the
body need to find an organic compound that is identified as non-self, usually a protein/peptide or
an oligosaccharide with a specific sequence. As previously mentioned, in the process of preparing
animal-bone derived HAs, all organic compounds are completely destroyed by the high processing
temperatures. The inorganic component of animal-bone HA is similar to the major mineral phase of
human bone, thus being safe from immune responses. However, if one further dopes biological HA
with low quantities of various cations (e.g., Cu, Co, Cr, Ni, Ag), rare allergic reactions could occur
due to the fact that such ions act as haptenes [122] (as after binding normal proteins they modify their
conformation forcing the immune system to act against them as non-self material).

2.2. Synthesis of Bulk Synthetic Substituted HA

Synthetic routes, even though costlier, offer the possibility to fine tune the properties of HA by
cation and/or anion substitution, in order to boost its sustainability for specific applications (e.g.,
dental implants could be subjected to more acidic environment) and long-term performance.

The physico-chemical properties of substituted synthetic HAs (SHA) are extremely sensitive
to the processing conditions and type of preparation method. The final features of synthesized HA
(e.g., morphology, structure/crystallinity, composition, porosity, mechanical features and biological
properties) will have a great influence on the overall in vivo performance of the bioceramic.

SHAs have been prepared by different methods, such as wet-chemistry methods (e.g.,
co-precipitation, hydrothermal, sol-gel), solid-state reaction, combustion, microwave and mechano-
chemical synthesis [1,2,5,6,32,69,123–126]. The advantages and limitations of the HA fabrication
methods, as well as their ability to produce bioceramics of different shapes and crystalline quality,
were insightfully reviewed by Mucalo [91], Fihri [6], and Sadat-Shojai [127].

The most widely used synthesis methods are the wet-chemistry ones, with emphasis on the
co-precipitation from the solutions of calcium, phosphate and selected dopant salts [1,5,6,126].
The co-precipitation method, working at temperatures ranging from room temperature to −200 ◦C,
usually provides nanocrystalline HA, thereby with high specific surface area [126,128]. Nevertheless,
it was demonstrated that the size and shape of HA powder particles, prepared by co-precipitation,
can be controlled/tailored by reactants involved in synthesis, concentration of solutions, pH of
the environment reaction, acid addition rate, reaction temperature, and/or post-synthesis thermal-
treatment [2,6,127]. Generally, in order to obtain doped HA with good crystallinity, the addition of the
reactants requires intense stirring, while the time of maturation of the precipitate should be longer.
The crystal shapes can be controlled by the reaction temperature [2,6,127,129].

2.3. Fabrication of Substituted HA Coatings

The poor mechanical properties of HAs have limited their stand-alone use to non-extreme load
biomechanical bearing applications [34,130,131]. The coating of metallic implants and endo-prostheses
with HAs has provided the opportunity to combine the excellent mechanical performances of the
substrate with the superior biological properties of HAs (with emphasis on its ability to form a rapid
and strong interfacial bonding with the host bone). Consequently, the implant-type coatings represent
nowadays one of the prominent clinical applications of HA, and the only current use in load-bearing
implantable devices.
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Bioactive HA coatings have been applied to both metallic [1,2,35] and thermoplastic polymers
(e.g., PEEK—polyetheretherketone) [132] substrates. SHAs could effectively improve the biological
performance of metallic implants, when applied as coatings, due to their superior properties provided
by the controlled doping [20,35].

Nowadays, the commercial solution for producing HA implant coatings on titanium substrates
is plasma spray. Although this implant design had certain clinical success [133–136], it is marred by
a series of deficiencies which raise queries about its long-term operation: due to their typical high
thickness (>50 µm) the implant coatings are susceptible to poor adherence and delamination, whilst
the high-temperature process often induces residual phases with unpredictable degradation rates in
the internal body media. Currently, a plethora of coating techniques exist as possible alternatives.
HA coatings were fabricated by sol-gel [137,138], electrophoresis (EPD) [137,139,140], electro-chemical
deposition (ECD) [141,142], ion-beam assisted deposition [132,143], micro-arc oxidation [144,145],
and biomimetic deposition from supersaturated simulated body media solution [146–148]. Emerging
synthesis approaches include physical vapour deposition techniques such as: magnetron sputtering [35,
67,68,70,131,135,149–151], pulsed laser deposition (PLD) [35,89,97,98,105,135], pulsed electron
deposition [35,135,152–155], and matrix-assisted pulsed laser evaporation [117,135,156–159]. The
advantages and limitations of each technique have been reviewed insightfully by Narayanan and
Bosco et al. [160,161] and Surmenev [131]. Both biological [89,97,98,153,154] and synthetic HAs [131]
have been used as source materials for the fabrication of implant coatings.

Significant efforts have been devoted to the fabrication of reliable coatings, and from the total of
published papers, this specific HA niche represents more than 14% (Figure 3) of the research works.
When comparing the most used deposition techniques, it is evident that the thermal spray family
(here including plasma spray, cold spray, detonation spray, flame spray, high-velocity oxy-fuel spray,
high-velocity atmospheric spray, and high-velocity suspension flame spraying) was the prominent
research choice, followed by the EPD and ECD methods (Figure 3—inset). All the mentioned deposition
technique variants can be adopted for the fabrication of SHA coatings.
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over the 1975–2018 period (15th of August 2018). Database: Clarivate Analytics—Web of Science®

Core Collection. Coupled «title» and «topic» search keywords: “hydroxyapatite”, “hydroxylapatite”,
“HA”, “HAp”, “Ca10(PO4)6(OH)2”, “Ca5(PO4)3(OH)”, “coating”, “film”, and “layer”. Inset: Frequency
comparison of the most used technologies for coating fabrication.
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3. Cation-Substituted Hydroxyapatites

Besides the biomedical field usage, which will be comprehensively reviewed in the following,
cation-substituted HAs have been envisaged to be employed in a variety of other type of applications
(Table 2).

Table 2. Other fields of applications for cation-substituted hydroxyapatite.

Cation Dopant Field of Application [Refs.]

Na Sensors [162]; Catalysis [163]
Sr Catalysis [164]
Ba Water decontamination [165]; Catalysis [166]
Al Environment decontamination [167–169]; Catalysis [170]
Sn Radionuclides and heavy metals scavengers (decontamination) [171]
Pb Catalysis [172,173]
Y Electrochemical devices [174]
Ti Catalysis [175–177]
V Catalysis [178]

Mn Catalysis [179]; Optoelectronics [180]
Fe Sensors [181]; Catalysis [182,183]
Co Sensors [184]
Ni Catalysis [185–188]
Pd Catalysis [189,190]
Pt Catalysis [191,192]
Cu Catalysis [193–196]; Water decontamination [197]
Ag Catalysis [198–200]
Au Catalysis [194,201,202]
Zn Catalysis [203–205]
Sm Optoelectronics [206]
Eu Optoelectronics [206,207]; Environmental [208]
Gd Optoelectronics [206]
Tb Catalysis [209]; Optoelectronics [210]
Dy Optoelectronics [211]

In the framework of this review the cation dopings were categorised with respect to the table
of Elements nomenclature of “blocks”, thereby, based on their electronic configuration (i.e., the
highest-energy electrons for each cation species in a block belong to the same type of atomic orbital).

3.1. s-Block Cation-Substituted Hydroxyapatites

Lithium (Li) is present in organisms as trace metal and it is also used as treatment in
psychiatry (for bipolar disorder) or for haematological conditions (e.g., neutropenia, aplastic anaemia).
Li compounds can be prescribed as prophylactic or adjuvant in the treatment of leukopenia or
thrombocytopenia induced by chemotherapy [212,213]. Moreover, Li treatment is involved in
haematopoiesis by enhancing the production of G-CSF (granulocyte colony stimulating factor) and by
stimulating the proliferation of pluripotent stem cells [214]. Importantly, Li has also demonstrated
a positive role in bone biology [215], boosting fracture healing by activating the canonical Wingless
integrated (Wnt)/β-catenin signalling pathways that are important in the inflammatory phase of
fracture repair [216–220]. Since the Wnt pathways are activated, the differentiation of mesenchymal
progenitor cells into osteogenic agents will be successfully induced.

Li-HA showed a lower degradation rate than pure HA in simulated body fluid (SBF), whilst still
inducing the in vitro formation of a biomimetic apatite layer [221]. Li-doped HA scaffolds showed
efficient osteoblast proliferation and enhanced viability when tested in vitro and also revealed good
osteogenesis and angiogenesis potential when studied in vivo (on Japanese white rabbits) [221,222].
By doping HA with Li+, the osseointegration is accelerated and the anchorage of bone metallic
implants to host tissue is improved [89]. At the studied concentrations (≤2 at.% Li), Li-HA showed



Materials 2018, 11, 2081 11 of 62

good biocompatibility, without traces of cytotoxicity [221–223]. The in vivo tests on animal model
(rabbit) demonstrated the capability of Li-doped (1.5 at.%) HA scaffolds to induce the formation of
new bone with well-defined trabeculae, as evidenced by histological detection of haematoxylin and
eosin and Masson staining [224].

Sodium (Na) is a very important electrolyte in all the living organisms. In humans it has vital
roles in transmission of nerve impulses, muscle functions, regulation of fluid balance, heart activity
and in bone metabolism [225–228]. As a dopant in HA, Na+ enhances the biomineralization capacity
(i.e., carbonated hydroxyapatite formation) in SBF [227,229] and increases the coating adhesion on
reinforced carbon fibres [229]. Na-HA coatings are biocompatible (when tested on mouse skull
osteoblastic cells, MC3T3-E1), increasing cell proliferation [229]. Microscopy investigations showed an
enhanced osteoconduction of Na-HA with respect to pure HA, highlighted by the formation of a thick
and dense new bone in the calvarial defects of rabbits 4 weeks after implantation [227].

Potassium (K) is known as a beneficial element for dental health since it influences the apatite
nucleation and biomineralization processes [230]. Incorporating K+ in HA will positively affect the
thermal stability [231]. K-doped HA is beneficial for protein adsorption and it could be used in
needle-free trans-dermal delivery vehicles for proteins/antigens [232,233].

Magnesium (Mg), the fourth most abundant cation in the human body, has a high biocompatibility
with living cells and an important role in bone health by stimulating osteoblast proliferation at the
early stages of osteogenesis [234]. Deficiency of Mg causes bone loss. Mg-substituted (5.7 at.%) HA has
a comparable composition, morphology and crystallinity to the biological apatite, without cytotoxic
effects [5,235]. Mg doping might induce a partial decomposition of the HA into β-tricalcium phosphate
in the temperature range 650–1000 ◦C [234]. The Mg doping effect on biological properties of HA was
tested on a wide palette of compositions: 1–53 at.% Mg (with respect to [Mg/(Mg + Ca)]·100]) [236–240].
Mg is also a prominent constituent of biodegradable metallic implants due to its biocompatibility and
biodegradability in the physiological environment [2,241].

The formation of a biomimetic apatite-like layer was found to be stimulated in SBF solution by
increasing the Mg doping concentration in HA from 1 to 3 at.% [242]. Mg-HA structures ensured
endothelial and osteoblast (OBs) cells survival and spreading, improved OBs adhesion and promoted
cell proliferation [236,240]. By contrast with most biocompatibility studies performed on several type
of cell lines [236,239,240,243], Lima et al. found that Mg-HA materials induced apoptosis of human
monocytes (isolated from blood) at doping concentrations as low as 1 at.% [238]. However, the high
dissolution rate of Mg-HA still needs to be addressed, since it influences the cell viability and overall
cytotoxicity [1,67]. Mg-HA showed bactericidal effects against Gram-positive (Staphylococcus aureus)
and Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) at doping concentrations
starting from ~6 at.% [237]. The in vivo tests on animal models (New Zealand White rabbits) indicated
that Mg-doped (15 at.%) HA used as filling for femoral bone defects had enhanced osteoconductivity
with respect to the commercial stoichiometric HA [235].

Strontium (Sr) is one of the most promising doping cations, since it is able to promote osteoblast
cell proliferation and stem cell differentiation, therefore enabling new bone formation and fostering
significant roles in osseointegration [243–246]. Being a trace element in natural bone (more abundant in
new bones than in aged ones), Sr2+ is easily incorporated and accepted by tissues. Strontium ranelate
(SrR) has been administered widely as a treatment for osteoporosis [247], due to its ability to boost
osteoblasts proliferation and reduce osteoclast differentiation, allowing for accelerated bone healing
even for elderly patients [215]. SrR influences NF-κB and Wnt/b-catenin signalling pathways in the
mesenchymal stem cells, promoting the proliferation of osteoprogenitor cells [248,249]. SrR can also
stimulate angiogenesis through the PI3K/AKT/mTOR signalling pathway [248].

Sr doping in HA was tested over a wide concentration range (1–40 at.%) [240,244–246,250]. The
ability of Sr-HA to induce an enhanced formation of biomimetic apatite was demonstrated both
in SBF [246,251,252] and cell culture medium (i.e., modified Eagle’s medium) [244]. Regardless of
Sr content, no signs of cytotoxicity were reported, with Sr-HA unanimously promoting osteoblasts
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proliferation and differentiation, corroborated with mitigation of the osteoclasts activity. Furthermore,
the in vitro biological effect of Sr-doped HA bone cements on mesenchymal stem cells (MSCs)
and OBs suggested that the bioceramic was able to respond with great specificity to each type of
cell [240,244,245,247,253]. Besides preventing bone resorption by reducing the osteoclasts activity [245],
Sr doping improves the mechanical properties of HA [250,254–256]. The in vivo tests in animal model
(JW rabbits) coupled with optical microscopy (following hematoxylin and eosin and Masson staining)
and micro-computed tomography studies, showed that higher volumes of new bone are formed in
the case of Sr-HA-based scaffolds with respect to pure HA ones [257]. Similarly promising results
were obtained also when performing in vivo tests on rats, with Sr-HA being able to reduce the area of
calvarial bone defects and induce the formation of a denser bone tissue with respect to the pure HA
groups [249].

Barium (Ba) has been used in dental cements as filling agents in root canals, due to its excellent
mechanical properties and low cytotoxicity [258–260]. But, to date, there is only one paper that studied
Ba-doped HA (mono-doping) for biological applications [261]. In this study, the Ba-HA antimicrobial
activity was tested against S. aureus, Bacillus megaterium DMS 32, E. coli, Klebsiella pneumonia, and
Candida albicans, but no relevant efficacy against these pathogen colonies was noticed [261]. The in vitro
bioactivity tests performed in SBF on pure and Ba-doped (4 and 10 at.%) bi-phasic calcium phosphates
(91 wt.% HA + 9 wt.% β-tricalcium phosphate), disclosed an increased formation of biomimetic apatite
with the Ba concentration [262].

3.2. p-Block Cation-Substituted Hydroxyapatites

There are only a few p-block elements that were tested as cation dopant in HA: aluminium,
gallium, indium, bismuth, and tellurium.

Aluminium (Al) doping in HA had been proposed for its potential use in biomedicine, due to
good biocompatibility in mouse fibroblasts cell cultures. It was highlighted that the cell viability
decreases gradually with the increasing Al3+ concentration (tested in the range 0.5–2.5 at.%) and
incubation time. Al-HA is biocompatible when added in an amount up to 1 mg mL−1 [263].

Gallium (Ga) seems to not substitute Ca2+, but it enters on interstitial positions or it is adsorbed/
chemisorbed on the particles surface [264,265]. Regardless of its site occupancy in the HA lattice or
surface, Ga3+ is a promising candidate for biomedical applications due to its demonstrated Ga-HA
biocompatibility (in RAW264.7 cell cultures) and inhibitory antibacterial effect on P. aeruginosa [264,266].

Indium (In) doping of HA improved the osteoblasts activity by increasing their adhesion and
differentiation rates [267].

Bismuth (Bi) doped HA was found to be cytocompatible with human osteoblasts [267], but
induced certain levels apoptosis of human blood monocyte [238]. Bi3+ is normally not found in the
human body, but when doping HA with Bi the adherence and differentiation of OBs could be enhanced.
Bi-HA possesses the ability to induce the formation well-developed bone-like apatite layers after 1
month of immersion in SBF [268]. Bi3+ doping increased the dissolution rate of HA and elicited an
antibacterial effect against S. aureus and E. coli, which makes Bi-HA a pertinent candidate for bone
implant applications [267,269]. Bi-HA (scaffold)—polyurethane (matrix) composites were tested both
in vitro (human osteoblast-like cells, MG63) and in vivo (in rabbits—subcutaneous and in intraosseous
tibia sites) [268]. Excellent mechanical properties, antimicrobial activity against various pathogens, high
osteoconductivity and in vitro biocompatibility was revealed. The in vivo investigations demonstrated
the osteogenic potential of Bi-HA—polyurethane composite, with the authors advocating for a proper
biomimetic microenvironment for bone regeneration with excellent cytocompatibility [268].

Tellurium (Te) is a metalloid element that has antioxidant and pathogen-inhibiting features [270,271].
The use of Te as a low-level doping element in HA promoted antimicrobial activity against Gram-
positive (S. aureus, Bacillus subtilis, Micrococcus sp.) and Gram-negative (P. aeruginosa, Klebseilla sp.,
Proteus mirabilis, Shigella dysenteriae) bacteria and fungi (Candida albicans) [272]. However, more
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insightful biocompatibility studies should be performed for Te-HA materials, prior to drawing a safe
conclusion on their potential for biomedical applications.

3.3. d-Block Cation-Substituted Hydroxyapatites

Silver (Ag) is known to be a highly effective inhibitory or antimicrobial agent for Gram-positive
and Gram-negative bacteria, as well as for fungi [250,261,273–283]. This dopant is preferred for HA
applications in dentistry and orthopaedics, where the hazard of implant infections has a high rate.
In this respect, the long-term release of Ag+ ions [284], could be an optimal solution. The main issue
that needs to be carefully addressed is the cytotoxicity of Ag+, in order to determine the trade-off
concentration values that will be both effective against microbes and safe for host tissues. Several
studies investigated the toxic effect of Ag+ on pathogens and on various cells culture lines [250,273,280–
283]. Although there is some dispersion in the tested compositions of Ag-HA (0.5–5 at.%), it seems that
the optimum silver doping is situated below the 2 at.% threshold [250,273,280–283]. The fabrication or
preparation of Ag-doped HA have also an influence on its biological activity. Ag-HA coatings with
a Ag content of ~1.7 at.%, synthesized by plasma spray, had highly effective bactericidal properties
against P. aeruginosa, but also a slight cytotoxic effect on human osteoblast hFOB 1.19 cell line, with cells
showing premature apoptosis, delayed differentiation or even death [250]. In the case of processed
powder forms of Ag-HA, the biocompatibility with human osteoblast cells was not affected by Ag
content (at concentrations up to 1.5 at.%), while maintaining a bacteriostatic effect [280]. Although
the antimicrobial properties of Ag-HA were thoroughly investigated, the cytotoxicity coupled with
the ion release rates has not been too frequently addressed [274–279,281]. The antibacterial spectrum
of Ag-HA is very wide, but still there are some pathogens that are not affected by Ag+, such as B.
subtilis, Enterococcus faecalis (ATCC 29212) [275] and Serratia marcescens (0804) [276]. In vivo evaluation
of Ag-HA efficiency against Methicillin-resistant S. aureus (MRSA) was performed on Sprague-Dawley
rats [283]. The Ag-HA implants reduced the MRSA biofilm formation, without inducing argyria
(or any other kind of skin disorder) or being harmful to brain, kidney, liver or spleen. Furthermore,
a good biomineralization capacity was disclosed for Ag-doped (0.13–5 at.%) HA by in vitro assays
performed in SBF [285] and McCoy culture medium [286].

Zinc (Zn), besides being one the most abundant trace cation of bones, plays a crucial part in
several body functions, markedly being a cofactor in hundreds of enzymes involved in bone functions
and metabolism. Doping HA with Zn2+ increased the osteoblast cells viability, adhesion, spreading,
proliferation and differentiation, and stimulated osteogenic activity, bone in-growth and healing [243,
267,287–289]. Restoration of normal Zn2+ and citrate levels have been observed to improve the bone
quality in age-related osteopenia. High osterix levels (induced by the activation of runt-related
transcription factor 2-Runx2) determines the increase of ZIP1 transporter activity, thus elevating
the intracellular Zn levels [290]. Furthermore, the high Zn levels have been linked to the high
concentrations of citrate in the extracellular matrix, leading to a rapid formation of HA and citrate
incorporation into HA [290]. In some situations, the incorporation of Zn in HA powders had a
toxic influence on cells (i.e., HepG2 cells—human hepatocytes [65,291]), as a consequence of Zn-HA
particle sedimentation over cells. Excellent bioactivity of Zn-doped (2.4 at.%) HA was evidenced
after only 3 days of soaking in SBF solution [292]. Zn-doped HA was confirmed as an effective
antimicrobial agent against Gram-positive and Gram-negative bacteria frequently occurring at the
implant site: e.g., S. aureus, Streptococcus mutans, Staphylococcus epidermidis, Enterobacter aerogenes,
E. coli [65,274,288,289,291,293–295]. The Zn2+ release acted against fungal infection, the 72 h C. albicans
biofilms being strongly reduced at Zn concentration of 3 at.% [277]. However, in dark conditions, at a
lower Zn content (i.e., 1 at.%) the number of C. albicans cells was also noticeably decreased [296]. Zn-HA
was proficient in the case of cold-light bleaching-treated enamel remineralisation [289]. Zn2+ doping
had a positive effect on the inhibition of bacterial plaque formation on enamel and on the improvement
of the enamel remineralisation in dental prosthetic restoration. However, at high Zn concentrations
(≥2 at.%) the biocompatibility was affected, even though Zn-HA was efficient against enamel bacteria



Materials 2018, 11, 2081 14 of 62

growth (S. mutans, Lactobacillaceae, and Streptococcus sobrinus), whereas 1 at.% of Zn doping enhanced
both osteoblast proliferation and antibacterial properties. The vast majority of Zn-doped HA is confined
in the 0.1–4 at.% [Zn/(Zn + Ca)·100] doping range [66,243,274,277,281,287,291,293,296]. However, the
influence of higher zinc content (up to 50 at.% as [Zn/(Zn + Ca)·100]) on the biological activity of
HA was also reported [288,294]. The best results in terms of biocompatibility, osteoconductivity and
antimicrobial activity seem to be achieved for Zn2+ concentrations of ~1–2 at.% [243,274,282,288,289].
Remarkably, the in vivo tests on animal model showed the Zn doping capability to enhance the new
bone formation in comparison to pure HA, when implanted in rats [297] and rabbits [298], for one and
two months, respectively.

Copper (Cu) is an important micronutrient in organisms, being involved in the metabolic
processes and in the proper functioning of organs. Cu-doped HA is an acknowledged antimicrobial
agent, acting against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, as well
as fungi (C. albicans) [299,300]. The antibacterial activity of Cu-HA powders seems to be highly
dependent on the doping concentration: low Cu2+ content (<0.5 at.%) was efficient in combating
the Gram-negative bacteria [300,301], while the Gram-positive microorganisms are sensitive only to
higher Cu doping level (~2 at.%) [299]. The antimycotic effect is revealed from low to high Cu2+

concentration ~0.4–5 at.% [299,300]. Cu2+ ions released from Cu-doped (~2.4 at.%) HA coatings have a
strong bactericidal effect against E. coli colonies (bacteria cells were reduced by more than 75%) [302].
In addition to antimicrobial behaviour, the doping of HA with Cu might be beneficial for inducing
protein adsorption, osteogenic differentiation, bone-like apatite nucleation and growth at the implant
site [302,303]. For instance, the superior bioactivity of Cu-doped (2.4 at.%) HA with respect to the
pure compound was demonstrated by Huang et al. [302] after 10 days of immersion in SBF. Moreover,
HA coating doped with low Cu2+ contents (~2 at.%) exhibited good cytocompatibility toward mouse
skull osteoblasts (MC3T3-E1). An IP6-assisted hydrothermal method was used to fabricate Cu-HA
nanoparticles, with a theoretical Cu concentration of ~5 at.%, that were effective against S. aureus and
E. coli stains, while being cytocompatible in a rat calvaria osteoblast (RCO) cell line and promoting
osteogenic differentiation [303]. However, contradictory cytotoxicity results were also published in
the case of Cu-doped HA. If the previous two presented cases indicated a good biocompatibility at
doping levels of 2–5 at.% [302,303], other researchers reported on the alarming cytotoxicity of 1 at.%
doped Cu-HA on to Balb/c 3T3 clone A3 mouse fibroblasts and on human foetal osteoblasts (hFOB
1.19) cell lines [238,301]. Moreover, Lima et al. [238] revealed a significant level of apoptosis when
interacting with human monocytes (isolated from blood). Altogether, it is suggested that besides
doping level, the synthesis technology as well as the testing cell line play prominent roles on the
biological performance of Cu doped-HA.

Manganese (Mn) is a trace ion in organism, being involved in several metabolic processes. As a
doping element in HA, Mn can increase the bonding strength between HA film and metallic (Ti)
implant substrate, while enhancing the corrosion resistance [194]. The Mn-HA possesses the ability to
induce the nucleation and growth of biomimetic apatite layers in SBF [304–306]. Mn-HA stimulated
cell viability and osteoblast proliferation, enhanced protein adsorption on the coating surface, thereby,
and overall improved the metallic implant biocompatibility [305,307,308]. Mn-HA showed no
cytotoxicity in the studies performed by Huang et al. [305], Li et al. [308], and Zilm et al. [309].

Iron (Fe) takes part in various organism functions, including bone metabolism. Fe promotes
apatite nucleation (as demonstrated by both in vitro assays in SBF [310] and in vivo tests in sheep
models [311]), enhances osteoblast adhesion, division and proliferation, and induces osteogenic
function [308,309,312]. Moreover, Fe-HA exhibited antimicrobial effects on S. aureus and E. coli, while
being biocompatible with human osteosarcoma cells (SaOS2), and increasing cell viability without
any signs of cytotoxicity [312]. Magnetic Fe-HA nanoparticles damaged HepG2 cancer cells through
hyperthermia processes [313,314]. A significant and fast effect on murine colon cancer was achieved
within two weeks of Fe-HA action [313]. Such materials showed good biocompatibility and little
toxicity when injected subcutaneously [313]. However Lima et al., previously mentioned in the case of
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Mg-, Bi- and Cu-doped HAs, have shown that the 1 at.% doped Fe-HA, induces, as in the case of the
other dopants, a significant level of human monocyte cell apoptosis [238].

Titanium (Ti) is an excellent choice for biomedical applications mostly due to its biocompatibility
(related to its surface passivation that produces a thin hermetic TiO2 layer) and high mechanical
strength [315]. Besides its use for the fabrication of medical devices (in either pure or alloyed
form), Ti4+ can be integrated as substitutional dopant in HA to enhance cells viability, proliferation
and differentiation, along with the stimulation of the extra-cellular matrix mineralization [68,316].
The in vitro formation of biomimetic apatite layers on top of Ti-HA was evidenced by SBF testing
irrespective of doping level (no pure HA control data were provided) [317,318]. The biological
activity of Ti-HA coatings is dependent on the Ti substrate surface: a rough metallic substrate
enhanced the production and mineralization of the bone matrix compared to a smoother one, therefore
enhancing the osseointegration capability [316]. Ti-HA showed slight bactericidal effect against E. coli,
especially when the system is UV irradiated [177]. An effective antibacterial capability is achieved
at ~13 at.% Ti, although this effect is accompanied also by a slightly cytotoxicity on human foetal
osteoblast cells [301]. Doping HA with Ti was proved to be beneficial for the increase of protein
adsorption [177] and improvement of the mechanical properties (i.e., bonding strength, hardness and
elastic modulus [68,105]).

Chromium (Cr) is a trace element in the human body that is essential to metabolize sugars and
fats. Doping HA with Cr might be beneficial for biomedical applications, but the cytotoxicity of such
materials needs to be properly assessed. In vitro studies performed on cervical cancer cells (HeLa) and
mouse fibroblast cells indicated that in both cases Cr-HA nanoparticles are cytocompatible up to a
concentration of 800 µg mL−1 and for a duration of 24–48 h [319]. In terms of haemocompatibility, the
use of a low content of Cr dopant (0.5 at.%) is compulsory, as the blood cells are highly susceptible
to cytotoxic stimuli [319]. Tests performed on Drosophila melanogaster Meigen genes have shown that
Cr-doped (1 at.%) HA powders do not exhibit genotoxicity [320].

Cobalt (Co) is an important element in human body, being a constituent of vitamin B12. Co ion
doping of HA enabled antimicrobial activity against S. aureus, Microcosus luteus, and Shigella flexneri,
but no such effect was encountered against P. aeruginosa [321]. For a low doping level (i.e., 0.37 at.%),
Co-HA sustained the human osteosarcoma cell viability, proliferation and differentiation, endorsing
both osteogenic and proangiogenic properties [322]. A case of cobalt-doped HA (1 at.%) apoptosis on
human blood monocytes was reported, despite the fact that it simultaneously enhanced the osteoblasts
adhesion [238]. The in vivo tests on animal models (white female Wistar rats) indicated that Co-HA
stimulates the osteogenesis inside mandibular defect, 6 months after implantation [323].

Tantalum (Ta) doping of HA was rarely explored [324,325]. Ta-HA was shown to increase human
osteoblast cell proliferation, hinder charge storage ability, but at the same time induce the partial
decomposition of HA into β- and α-tricalcium phosphate [324].

Nickel (Ni) was shown to possess a dose-dependent cytotoxicity, and was tentatively advanced
for biomedical applications [326,327]. When incorporated in HA, Ni had a positive effect on
human osteosarcoma MG63 cell viability, proliferation and differentiation, with the adhered cells
embedded into the bone matrix. Specifically, Ni-HA with low doping concentration (≤2.4 at.% Ni) is
osteoconductive and proangiogenic [328]. Moreover, when used as a substitution co-dopant (together
with Mg2+ and (SiO4)4−), Ni2+ enhanced the antibacterial effect against E. coli and P. aeruginosa [329].

Molybdenum (Mo) can be used as well as a doping cation in HA. The only paper found
in this regard emphasized that Mo-HA nanorods can be used as antimicrobial agents in bone
cement engineering, due to their bactericidal (S. epidermidis and E. coli) and anti-fungal (C. albicans)
properties [330]. However, prior to being further recommended as a bone cement component, Mo-HA
cytocompatibility should be assessed as well.

Yttrium (Y) is a d-block element that improves HA biocompatibility in human osteoblasts cell
cultures [331,332]. Moreover, Y-HA was used as therapeutic agent for radioactive synovectomy in
haemophilic synovitis [333].
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Cadmium (Cd), although renowned for its toxicity, was tested as doping cation in HA to explore
its action mechanisms. As the Cd content increased, the levels of DNA damage were substantially
augmented in the liver of zebra fish, eventually causing death [334]. Cd-HA had also a detrimental
effect on the growth of plants [335].

Tungsten (W) doped HA has great catalytic activity. W-HA enhanced the biosorption and
adsorption of methyl orange by E. faecalis, having massive decolourization as a consequence [336].
This W-HA feature can be used in wastewater decontamination.

Hafnium (Hf) shows a great potential for oncological applications. Its high electron density and
photo-luminescent properties make it a good candidate for photodynamic therapy [337,338]. In this
respect, Hf-doped HA was tested in vitro on A549 human adenocarcinoma and in vivo in mice with
lung cancer [339]. In vivo studies showed that when Hf-HA nanoparticles (NPs) are bombarded
with ionizing radiation, the mice tumour growth was inhibited due to cell apoptosis. In vitro studies
revealed also a high cytotoxicity towards human adenocarcinoma due to the formation of reactive
oxygen species, while Hf-HA NPs interacted with ionizing radiation [339].

3.4. f-Block Cation-Substituted Hydroxyapatites

Recently, rare-earth metals (REM) (e.g., lanthanides and scandium) and actinides have attracted
great interest in the orthopaedic field due to their high biological activity and ability to replace
calcium ions in HAs [1,126,340]. Different lanthanide and actinide doping in HA have been attempted,
such as lanthanum (La3+) [267,340–343], cerium (Ce3+) [344–349], praseodymium (Pr3+) [345,350,351],
neodymium (Nd3+) [128,345,352,353], samarium (Sm3+) [354–359], europium (Eu3+) [353,360–367],
gadolinium (Gd3+) [128,354,368], terbium (Tb3+) [345,353,361,369,370], holmium (Ho3+) [371], erbium
(Er3+) [353,372], thulium (Tm3+) [360], ytterbium (Y3+) [373], and uranium (U3+) [374,375].

The incorporation of lanthanides and actinides ions into HA is of significant interest for biomedical
applications due to their excellent affinity for Ca2+ sites. In particular, for trivalent lanthanides this
strong affinity is explained by an ion-exchange mechanism; the binding constant for the exchange
increases as the ion size decreases [376]. When trivalent cations substitute Ca2+ ions, the charge
imbalance is compensated for by either the generation of vacant cation sites or a loss of a proton from
(OH)−, and the ion-exchange ability depends strongly on the fluctuation of charge density induced
by the adaptation of the lattice parameters [50,376]. The charge density increases as the lanthanides
ion size decreases [376]. The lanthanides are well-suited elements for cationic substitution due to
their similarities in ionic radii with Ca2+, donor atom requirements and coordination polyhedron
geometries [376]. After substitution with REMs, a general decrease of crystallinity and increase of
surface area was observed for doped HAs with respect to the pure phase [5,377]. REM or actinides-HA
composites exhibited exceptional luminescence properties and are promising for application in
biological fluorescence labelling (e.g., magnetic resonance imaging, multi-imaging diagnosis on single
photon emission computed tomography (SPECT)). Their fluorescence is characterized by narrow
emission bandwidths, high photochemical stability and long fluorescence lifetimes [1,126]. However,
the exploration of the biological response of such doped HA materials is still in its infancy. In particular,
the cytotoxicity effects are still open questions. The authors of this review advocate for the necessity of
clarifications in this respect.

Lanthanum (La) doping can improve various physico-chemical properties of HA such as the
thermal stability, resistance in acidic and physiological media, or inhibition of bone resorption [340,378].
Mechanical properties, such as tensile strength or micro-hardness, have been found to be enhanced
with the increase of La3+ content in HA [340,379]. Also the addition of La ions improved the cell
response and the antibacterial efficiency [378]. Joshy et al. observed in La-doped HA, prepared
by the sol-gel technique, an antibacterial activity against Gram-positive (S. aureus and Bacillus) and
Gram-negative (E. coli and Pseudomonas) [379]. Lou et al. prepared by a wet-chemical method La-doped
HA with a doping atomic concentration up to 30%, and further used it to fabricate implant coatings
on Ti substrates by dip-coating [340]. No phase decomposition was observed. Their results indicated
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good bonding strength at the coating-substrate interface, accompanied by good angiogenesis and
cytocompatibility in mouse calvaria MC3T3-E1 cell cultures (for La concentrations below 20 at.%) [340].
Excellent biocompatibility was also observed in La-doped HA powder with similar doping range for a
mouse L929 fibroblast cell line [342]. However, Jadalannagari et al. reported a cytotoxicity of 40% for
adenocarcinoma MCF-7 cell cultures exposed for 72 h to La-doped (10 at.%) HA at doses in the range
of 5–100 µg/mL [380]. For similar La-HA powder/cell media ratios, no cytotoxicity against human
embryonic kidney (HEK) and MCF-7 cell lines was observed in the case of La-doped (2 at.%) HA. The
viability was ~87% after 72 h of cell culturing [380]. Thereby, promising prospects of La-HA use in
biomedical applications could emerge in the near future.

Cerium (Ce) cation is characterized by an ionic radius and electronegativity similar to Ca2+. Ce can
easily substitute calcium, accumulate in small quantities in bones, and boost the bone metabolism and
the biomimetic HA-forming ability [1,344,381]. Moreover, Ce participates in the prevention of dental
cavities, reduction of enamel demineralisation, acts as an antioxidant, and provides high thermal-phase
stability [344,381,382]. In vitro biomimetic apatite formation, after being soaking in SBF for periods
of 2–3 weeks has been noticed for Ce-HA materials [383,384]. Ce can also stimulate the antimicrobial
activity, pathogen inhibition and regenerative properties [344,377,381,382]. Both Ce4+ and Ce3+ cations
are present in Ce-substituted HAs, but in proportions dependent on experimental procedure [348,349,
385]. Various studies have reported the antibacterial properties of Ce-doped HA for Gram-positive
(e.g., S. aureus [344,348,377,381,382,385], Lactobacillus [377], and B. subtilis [348]) and Gram-negative
(e.g., E. coli [348,377,381,382,385]) strains. However, discrepancies exist in the reported Ce content able
to induce an antibacterial effect. For example, Lin et al. synthesized by the sol-gel supercritical fluid
drying method Ce-HA materials with a [Ce/(Ce+Ca)·100] atomic proportion ranging from 0 to 20 at.%.
They obtained improved antibacterial properties against E. coli, S. aureus, and Lactobacillus when adding
Ce-doped (>8 at.%) HA NPs in concentrations of 100 mg/mL Ce-HA nanoparticles [377]. However, no
indications of these materials’ cytocompatibility were provided. The antibacterial activity for such
high Ce doping levels was also confirmed by Sundarabharathi et al. [344] against P. aeruginosa and
S. aureus, for sol-gel prepared Ce-doped (10 at.%) HA, and G. Ciobanu et al. [385], against E. coli and
S. aureus, for co-precipitation synthesized Ce-doped (10, 20 and 25 at.%) HA. However, some studies
report antibacterial activity below 8 at.% Ce doping levels, specifically in the range for 0.3–1.25 at.%,
for both co-precipitation [382] and sol-gel [348,381] Ce-doped HAs. Since Gram-negative bacteria
have a less complex and thinner cell wall, it is expected that they are more sensitive to antibiotics
than Gram-positive bacteria [348]. Although most studies agree on an enhanced inhibition zone
for Gram-negative bacteria than for Gram-positive ones [348,381,382,385], discrepancies have been
observed by Lin et al. [377] for S. aureus vs. E. coli, Sundarabharathi et al. [344] for S. aureus vs.
P. aeruginosa, and Priyadarshini et al. for S. aureus vs. E. coli and P. aeruginosa or B. subtilis vs. E. coli
and P. aeruginosa [348]. The antibacterial effect was found to increase with Ce content, if adding also
Fe3O4 nanoparticles [381] or Sr ions [344].

On the basis of these studies it is possible to conclude that Ce induces significant antibacterial
properties to HA for a wide concentration range (i.e., 1.25–25 at.%), without the formation of secondary/
residual phases. The mechanism of interaction between bacteria and Ce-HA colloidal solution
was described by the release of Ce cations which penetrate the negatively charged surface of the
microorganism cell membrane, inhibiting the DNA replication [348]. Concerning the biocompatibility,
high concentrations of Ce3+ cations are cytotoxic [344]. MTT assays supported by inverted microscopy
images indicated a good biocompatibility in human osteosarcoma MG-63 osteoblast cells exposed to
concentrations of Ce-doped (1.25 at.%) HA-NPs situated between 200–600 µg/mL, after 24 and 48 h
incubation [348]. Cytotoxicity was encountered only for Ce-HA-NPs concentrations in the range of
800–1000 µg mL−1 [348]. Also, although a slight decrease in cell viability was observed in comparison
to the control, the CCK-8 assay indicated no significant cytotoxicity against mouse L929 fibroblast cells,
when a Ce-doped (5 at.%) HA powder prepared by co-precipitation was added to the medium at doses
lower than 100 µg mL−1 [386]. Slight cytotoxicity was observed for doses of 200 and 500 µg mL−1 [386].
In contrast, in vitro cytotoxicity assessed by MTT against human lung A549 cells exposed to Ce-doped
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(10 at.%) HA-NPs concentrations of 100 µg mL−1 showed a significant decrease in cell viability [344].
Interestingly, Ce-doped (9 at.%) HA coatings, deposited on titanium substrates by DC pulse micro-arc
oxidation, exhibited a good biocompatibility in mouse skull MC3T3-E1 cell cultures at 48 h [346].
It is worth noting that the cytotoxicity of Ce could be alleviated by adding Sr as co-dopant [344,387].
Biocompatible Ce-HA could also find applications as a fluorescent probe for cellular imaging or as an
antioxidant agent.

Praseodymium (Pr) doping in HA was shown to be suitable for applications in radiotherapy [350,351].
Samarium (Sm) is another important REM element for biomedical applications, being a good

candidate for cancer radiation therapies and bone pain treatment [1,357]. Furthermore, Sm is able
to change the permeability of cell membranes and can be used in the treatment of synovitis [357].
Ciobanu et al. reported the synthesis of Sm-doped (0.2–0.5 at.%) HA powder by co-precipitation
and studied the influence of Sm concentration on the antibacterial activity against Gram-positive
(E. faecalis and S. aureus) and Gram-negative (P. aeruginosa and E. coli) strains. The antimicrobial
activity for Gram-positive and Gram-negative bacteria was obtained at Sm contents of 0.2 and 0.5 at.%,
respectively, for Sm-HA-NPs doses in the range of 0.125–1 mg mL−1 [355]. An antifungal effect against
C. albicans ATCC 10231 strain was also observed by colony-forming unit count (CFU) assay and confocal
laser scanning microscopy (CLSM) images of live/dead fungus [357]. Sm-HA exhibited an excellent
biocompatibility (in terms of cell viability and proliferation) in human foetal osteoblast cell (HFOB
1.19) cultures for doping levels up to at 5 at.% [355]. The results revealed that the Sm-HA powder is a
good candidate to treat wounds and prosthetic joint infection. The enhancement of the osteoblastic
performance, cell viability and antibacterial activity was also demonstrated by Sathishkumar et al. [354],
when Sm was present in HA as co-doping along with Gd.

Europium (Eu), like Ce, is present in the human body, in small amounts, in the bones and liver [1].
Eu is an interesting element for the treatment of osteoporosis [365] and for promoting bone remodelling
cycle [366]. Eu is easily incorporated in the HA crystal lattice due to their similar ionic radius. Eu-HA
induces the in vitro formation of bone-like apatite in SBF [388]. Eu-doped HA (0.1–2 at.%) showed good
antibacterial activity against Gram-positive E. faecalis and Gram-negative P. aeruginosa, at powder doses
of 31–1000 µg mL−1 and 125–1000 µg mL−1, respectively [362,389]. The antibacterial action against
Gram-positive S. aureus strain has been demonstrated at powder doses of 31–1000 µg mL−1 [389].
No antibacterial activity was found for Gram-negative E. coli even at low concentration of Eu3+.
Furthermore, at 2 at.% of Eu, Iconaru et al. [389] observed a good fungicidal activity against C. albicans.
Various studies have shown the excellent biocompatibility of Eu-doped HA. Frumosu et al. [363]
synthesized Eu-doped (0.5 and 1.5 at.%) HA by co-precipitation and observed for up to 4 days the
cell proliferation of osteosarcoma MG-63 cells. Ca10-xEux(PO4)6(OH)2 bioceramics (with x = 0.01 −
0.2) prepared by co-precipitation enabled the excellent proliferation of human embryonic kidney
(HEK 293) cells, with no sign of cytotoxicity after 24 and 48 h [365,390]. Eu-doped (5 at.%) HA NPs,
used in doses of 0.3–30 µg/mL was not found compatible with transformed human umbilical vein
endothelial cells (T-HUVEC) [391]. In vitro tests with L929 mouse fibroblasts and ex ovo tests using
aqueous injection into vitelline vein of chicken egg, were performed by Tesch et al. [392] for Eu-doped
(10 at.%) HA at doses of 25–500 µg mL−1 and 500 µg mL−1, respectively. Their results indicated a
cell viability of more than 80% after 24 h incubation and no toxicity (i.e., thrombosis and vascular
lysis) [392]. Zheng et al. [393] indicated that Eu-doped (15 at.%) HA nanorods, prepared by the
hydrothermal route, have excellent biocompatibility with pulmonary adenocarcinoma A549 and HeLa
cells (i.e., viability of more than 100% after being exposed for 24 h at Eu-HA doses of 20–320 µg mL−1).
Miranda-Melendez et al. [364] showed a low or absent cytotoxicity at 24 h, for Eu-HA materials
synthesized by wet-chemical precipitation, when cultivating human gingival fibroblast (HGF-1) cell
cultures with doses of 500–2000 µg mL−1 of HA having Eu doping contents up to 20 at.%. After 48 h
incubation, the best Eu-HA biological performance was met for the 5 at.% doping. Amazingly, a low
toxicity (i.e., HeLa cell viability of more than to 80%) was revealed for HA NPs with large contents of
Eu (~9–17 at.%) used at high doses (10,000–30,000 µg mL−1) [366]. However, when coupled with 5
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fluorouracil (5FU), a drug used for cancer treatment, Eu-HA shown the potential to kill HeLa cells,
indicating the applicability of such composites as theranostic agents [364,366].

Terbium (Tb) has attracted extensive attention due to its multiple potential application in
biomedical field when combined with HA, Tb being one of the most luminescent rare-earth biological
probes due to its excellent emission feature with a main signal at 544 nm [209,394–397]. Furthermore,
Tb exhibits excellent photocatalytic [394] and gene delivery [370] properties, as well as potential
bactericidal activity and an ability to inhibit cancer cell development [398]. However, Tb is harmful
for the human body at high concentrations [398]. CLSM images indicated that Tb-doped (2 at.%)
HA samples, prepared by co-precipitation, showed a good biocompatibility with transformed
T-HUVEC [361]. Wei et al. [399] synthesized Tb-doped (~17 at.%) HA nanorods by hydrothermal
method, and showed via optical density analysis using Counting Kit-8 assay, an excellent MC3T3-E1
cells viability when exposed to Tb-HA concentrations of 25–100 µg mL−1 over a period of 7 days. The
results were further confirmed by the unaltered morphology of the luminescent cells. The lack of
in vivo toxicity in animal model of Tb-HA nanorods was also emphasized by the histological analysis
of various organs of rats [399]. Zheng et al. [393] indicated that Tb-doped (15 at.%) HA nanorods,
prepared by the hydrothermal route, have good biocompatibility with pulmonary adenocarcinoma
A549 cells after being exposed for 24 h to colloidal concentrations between 20–320 µg mL−1. Their
results have been also confirmed by CLSM analysis.

Gadolinium (Gd), dysprosium (Dy), and neodymium (Nd)-substituted HA composites have
been widely used for such a purpose in magnetic resonance imaging (MRI) [392,400]. It is worth
mentioning also that paramagnetic elements play an important role in multimodal imaging as contrast
agents [392]. Gd3+ and Nd3+ have been also used as theranostic NPs for early stage diagnosis of cancer
by near-infrared fluorescence techniques [352,368]. The thermo-luminescence properties of Gd-HA
could also be used in gamma radiation dosimetry applications [401]. However, few studies concerning
their biological activity were reported to date.

Li et al. [128] synthesized nanocrystalline Gd-HA and Nd-HA with different doping levels (1, 4.8,
9, and 17 at.%) and observed a de-hydroxylation of HA without significant changes in the lattice
parameters. The doped-HA samples showed a significant increase of the electrical conductivity in
comparison to pure HA which is important for the electromagnetic sector and for the acceleration of
bone fracture healing [128]. The agar diffusion method and live/dead cell assays indicated that all but
one Gd-HA samples (i.e., 17 at.% Gd-doped HA) studied by Li et al. [128] were not cytotoxic for human
foetal osteoblast (hFOB 1.19) cells at 24 h; 9 at.% Gd was the optimum concentration showing good
biocompatibility. Li et al. [128] mentioned that the presence of non-coordinated or free Gd3+ cations
could explain the toxicity of the 17 at.% Gd-doped HA, but more insightful biocompatibility tests are
required, since the deleterious role of secondary Gd2O3 phase and possible Gd(OH)3 moisture cannot
be excluded. Laranjeira et al. [402] synthesized Gd-doped (2.5–9 at.%) HA by the co-precipitation
method and showed no in vitro cytotoxicity effect on human dermal microvascular endothelial cells
(hDMECs) at any of the Gd doping concentrations. The morphology of the cells was not affected.
Furthermore, the Gd-HA samples dosed to a concentration up to 4000 µg mL−1 were haemocompatible,
non-haemolytic and non-thrombogenic, which is a crucial for magnetic resonance imaging (MRI)
applications. Important to note, Laranjeira et al. [402] reported no phase separation or the advent of
metallic oxides/Gd(OH)3.

Victor et al. [352] studied the biocompatibility at 24 h of the Nd-doped (at.% 11) HA NPs on L929
fibroblast cell line, by MTT and Live/dead cell assays, using doses of 10,000 and 20,000 µg mL−1. A
cell viability of more than 90%, with negligible influence on their proliferation, was observed [352]. The
increased uptake by HeLa cells of Nd-HA containing alginic acid-4-acetyl salicylic acid nano-platforms,
from 4 to 16 h, was confirmed by Raman microscopic imaging, which indicated a growing cluster
size and localization in the cytoplasm. Victor et al. [352] showed also that Nd-doped HA are able to
deliver with great specificity anticancer drugs and simultaneously allow for fluorescence imaging,
which would be an important advance in cancer therapy.



Materials 2018, 11, 2081 20 of 62

Lafarga et al. [403] evaluated in vivo on an animal model (rats) the toxicity of Dy-substituted
(5 at.%) HA, synthesized by co-precipitation, and observed an increase of the oxidative stress indicators
(i.e., lipoperoxides, nitric oxide) in the kidneys, lungs and liver, as well as a lower activity of the
anti-oxidant enzyme (i.e., glutathione peroxidase). However, no significant change was observed
in the membrane fluidity and adenosine triphosphate (ATP) activity. By functionalizing the HA
nanoparticles with folic or glucuronic acid the toxicity could be significantly diminished. A MTT
test with L929 mouse fibroblasts and aqueous HA injection into vitelline vein of egg indicated no
toxicity of Dy-doped (10 at.%) HA used in doses of 25–500 µg mL−1 [392]. However, in this study
performed by Tesch et al. [392] the real amount of Dy-doping evaluated by inductively coupled plasma
mass spectrometry (ICP-MS) was approximatively half of the quantity theoretically inserted during
the synthesis.

Erbium (Er) is a promising REM element due to its light emission and enhancement of biological
properties of HA [372,404]. A strong and stable near-infrared emission at ~1540 nm, compatible
with telecommunication applications, has been observed in Er-doped (~4.4 at.%) HA synthesized by
co-precipitation [404]. Alshemary et al. [372] studied the in vitro bioactivity of Er-doped (2–10 at.%)
HA fabricated by microwave-assisted precipitation from SBF solution, and showed the formation of a
biomimetic apatite layer after 24 h of immersion.

Uranium (U)-doped HA with doping levels up to 10 at.%, remarkably did not alter MC3T3-E1
osteoblast viability and proliferation [375]. Further studies are necessary to understand the lack
of toxicity when such an exogenous actinide metal is introduced in a controlled but large quantity
into HA.

The nature of our exhaustive review of the literature allowed us to devise Table 3, which now
encompasses, for the first time, the plethora of doping possibilities able to expand the biofunctional
response of HA, with an emphasis on the role and the impact of each cation-doping species.

Table 3. Synopsis of the bio-functionality realm of cation-substituted hydroxyapatites.

Cation
(M)

Sample
Form

Doping Range
[M/(M + Ca)]·

100 (at.%)
Bio-Functionality/Effect of the Dopant Refs.

Li
Powder
Scaffold
Coating

0.5–2

# Stimulates in vitro bone-like apatite growth in
simulated body fluid (SBF);

# In vitro cytocompatibility with bone marrow
mesenchymal stem cells (BMMSCs), calvaria isolated
osteoblasts, human osteosarcoma (MG63) cell lines;

# Increases cell viability and proliferation;
# Li-HA scaffolds revealed in vivo (Japanese white

rabbits) good osteogenesis and
angiogenesis potential;

# Improves the compressive mechanical strength;
# Induces the new bone formation in animal model.

[98,221–224]

Na Powder
Coating 5

# Enhances the in vitro biomineralization of apatite
in SBF;

# In vitro cytocompatibility with mouse skull
osteoblastic cell (MC3T3-E1) lines;

# Promotes osteoblast proliferation;
# Increases coating adhesion on reinforced

carbon fibres;
# Stimulates dense new bone formation in

animal model.

[227,229]

K Powder 2.5–47

# The adsorption of bovine serum albumin increases
with dopant concentration;

# Constitutes a potential needle-free protein/antigen
trans-dermal delivery system.

[232,233]
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Table 3. Cont.

Cation
(M)

Sample
Form

Doping Range
[M/(M + Ca)]·

100 (at.%)
Bio-Functionality/Effect of the Dopant Refs.

Mg Powder
Coating 1–53

# Mg doping stimulates bone-like apatite growth
in SBF;

# In vitro cytocompatibility with MC3T3-E1, MG63,
primary rat osteoblasts (rOBs) and endothelial cells
(rECs);

# Improves the adhesion and stimulates the
proliferation and differentiation of osteoblasts;

# Mg (~1 at.%) induces apoptosis of human
monocytes;

# Antibacterial effect against S. aureus (ATCC 29213),
E. coli (ATCC 25922), and P. aeruginosa (ATCC 27853);

# Enhances osteoconductivity as demonstrated
in vivo on animal model.

[235–240,242,
243]

Sr Powder
Coating 1–40

# Improves the biomineralization capacity (both in
SBF and modified Eagle’s medium (MEM) media);

# In vitro cytocompatibility with MG63, human foetal
bone—cloned osteoblast (OPC1), MC3T3-E1, human
osteoblast (hFOB 1.19) cell lines;

# Enhances the osteoblast cells proliferation and
differentiation (enabling new bone formation);

# Inhibits osteoclast production and proliferation
(reducing bone resorption);

# Enhances new bone formation.

[240,243–246,
249–252,255,

257]

Ba Powder 0.5–2

# Increases the biomineralization capacity of CaPs
in SBF.

# No information on in vitro or
in vivo biocompatibility;

# Does not inhibit the proliferation of pathogens
such as: S. aureus (COWAN 1), Bacillus megaterium
(DMS 32), E. coli (ATCC 259225), K. pneumonia (FMC
5), and C. albicans (FMC 17).

[261,262]

Al Powder 0.5–2.5
# In vitro cytocompatibility with mouse fibroblast cell

(L929) line. [263]

Ga Powder n/a

# In vitro cytocompatibility with murine cells
(RAW264.7);

# Antibacterial effect against P. aeruginosa (MW1);
# Non-effective against E. coli and S. epidermidis.

[264,266]

In Powder 1; 3

# In vitro cytocompatibility with human limb tissue
osteoblast cells line (ATCC CRL-11372);

# Improves the osteoblasts’ adhesion and
differentiation;

# Induces certain levels of blood monocyte apoptosis.

[238,267]

Bi Powder 5–25

# Increases HA dissolution rate;
# Induces the in vitro formation of bone-like apatite

in SBF;
# In vitro cytocompatibility with human limb tissue

osteoblast cells from (ATCC CRL-11372);
# Improves osteoblast adhesion and differentiation;
# Bi-HA (scaffolds)—polyurethane (matrix) elicit

excellent mechanical, biocompatible and
osteoconductive properties in vivo (rabbits);

# Antibacterial effect against S. aureus and E. coli;

[267–269]

Te Powder 0.04–0.22
# Antimicrobial effect against S. aureus, Bacillus

subtilis, Micrococcus sp., P. aeruginosa, Klebseilla sp.,
Proteus mirabilis, Shigella dysenteriae and C. albicans.

[272]
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Table 3. Cont.

Cation
(M)

Sample
Form

Doping Range
[M/(M + Ca)]·

100 (at.%)
Bio-Functionality/Effect of the Dopant Refs.

Ag
Powder
Scaffold
Coating

0.5–5

# Induces the in vitro biomineralization of biomimetic
apatite layers in both SBF and McCoy media;

# In vitro cytocompatibility with L929 (at Ag
concentrations <3 at.%), hFOB 1.19 (induces
premature apoptosis, delayed differentiation or cell
death at high Ag contents (>3 at.%) [250], but at low
Ag concentrations (~0.5–2 at.%) sustains the cell
functions without interference [280]), human
embryonic palatal mesenchymal (HEPM) (Ag = 2 at.%)
[273]) cell lines;

# In vivo evaluations on Sprague-Dawley rats showed
efficiency against methicillin-resistant S. aureus
(MRSA) strains, while not producing argyria, or any
other kind of skin disorder or affecting the brain,
kidneys, liver or spleen of the animals [283];

# Antibacterial effect against: MRSA (UOEH6), S.
aureus (ATCC6538, Cowan I, 0364, ATCC 25293), S.
epidermidis (ATCC 35984), Enterococcus faecalis (ATCC
29212), P. aeruginosa, Bacillus megaterium (DMS 32), E.
coli (ATCC25922, ATCC25923), Klebsiella pneumoniae
(ATCC4352, 2968, ESBL, FMC 5), Enterobacter cloacae
(61R), Providencia stuartii (1116), and Citrobacter
freundii (1748);

# Antifungal effect against yeast strains: Candida
krusei (963) and C. albicans (FMC17);

# Not effective as antibiotic against: Bacillus subtilis
[275] and Serratia marcescens (0804) [276];

# Ag+ does not affect the densification of HA;
# At low concentrations it decreases HA solubility;
# Hardness is affected by Ag doping.

[250,261,273,
275–286]

Zn Powder
Coating 0.1–50

# Excellent in vitro bioactivity in SBF;
# In vitro cytocompatibility with MC3T3-E1, MG63,

mouse Balb/c 3T3 clone A3 fibroblast cell lines;
# No inflammatory effect;
# Positive effect on osteoblast cells viability,

adhesion, spreading, proliferation and
differentiation; stimulates osteogenic activity and
bone growth or healing;

# Cytotoxic to human hepatocarcinoma (HepG2) cells at
concentrations <1 at.%, function of
particle morphology;

# Antibacterial effect activity against: S. aureus
(CECT 976, ATCC 25923, ATCC 43300), MRSA, S.
epidermidis (ATCC 14990), Bacillus subtilis (ATCC
6051), S. mutans (ATCC 25175), Lactobacillaceae,
Streptococcus sobrinus, E. coli (CECT 434, MG1655,
ATCC 12435, ATCC 25922), and Enterobacter
aerogenes (ATCC 13048);

# Antifungal effect against C. albicans (ATCC 10231);
# Enhances new bone formation as demonstrated

in vivo on animal model.

[66,238,243,
274,277,281,
282,287–289,

291–298]
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Table 3. Cont.

Cation
(M)

Sample
Form

Doping Range
[M/(M + Ca)]·

100 (at.%)
Bio-Functionality/Effect of the Dopant Refs.

Cu Powder
Coating 0.04–5

# Excellent in vitro bioactivity in SBF.
# Beneficial for inducing protein absorption,

osteogenic differentiation, bone-like apatite
nucleation and growth at implant site;

# In vitro cytocompatibility with MC3T3-E1 and rat
calvarial osteoblast cell lines;

# A doping concentration of 1 at.% is cytotoxic to
Balb/c 3T3 clone A3 mouse fibroblasts and to HFOB
1.19 cellular lines, reducing the cells viability;

# A significant level of apoptosis is recorded for a
concentration of 1 at.% for the human monocytes
isolated from blood;

# Antimicrobial effect against S. aureus (ATCC 25923)
and E. coli (ATCC 25922);

# Antifungal effect against C. albicans (ATCC 24433).

[238,299–303]

Mn Powder
Coating 0.4–20

# Possesses the ability to induce the in vitro growth on
biomimetic apatite in SBF;

# In vitro cytocompatibility with MC3T3-E1 and
hFOB 1.19 cell lines;

# Stimulates cell viability and proliferation, and
improves metallic implant biocompatibility;

# Increases bonding strength between HA coating
and metallic (Ti) implant;

# Enhances the corrosion resistance.

[304–309]

Fe Powder 1–50

# In vitro cytocompatibility with MC3T3-E1, hFOB
1.19, MG63 cell lines;

# Increases osteoblasts adhesion and proliferation;
# Fe3+ is involved in osseointegration;
# Not cytotoxic for doping levels <12 at.%;
# Induces certain levels of human blood monocyte cells

apoptosis;
# Fe-HA has a great potential as heating mediator in

hyperthermia therapy of cancer, showing a fast and
effective effect on hepatic and colon cancer;

# Antibacterial effect against S. aureus and E. coli;
# Promotes bone-like apatite nucleation both

in vitro in SBF and in vivo in animal model.

[308–314]

Ti Powder
Coating 1–13

# Induces in vitro formation of biomimetic apatite
in SBF;

# In vitro cytocompatibility with rat bone marrow
stromal, HFOB 1.19 (up to ~13 at.%), and MG63
cell lines;

# Enhances cell proliferation, differentiation in
osteoblasts and matrix mineralization;

# Antibacterial effect against E. coli (IFO 3310);
# Hardness and elastic modulus increases with

Ti addition.

[68,177,301,
316–318]

Cr Powder 0.5–2.5

# In vitro cytocompatibility with L929 and cervical
cancer (HeLa) cell lines up to a concentration of 800
µg mL−1;

# In vitro haemocompatibility in the case of low
doping concentrations (~0.5 at.%);

# Cr-HA does not exhibit mutagenicity on Drosophila
melanogaster Meigen larvae.

[319,320]
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Cation
(M)
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Form

Doping Range
[M/(M + Ca)]·

100 (at.%)
Bio-Functionality/Effect of the Dopant Refs.

Co Powder 0.2–27

# In vitro cytocompatibility with MG63 cell line;
# Elicits proangiogenic and osteogenic properties;
# No haemolytic effect for doping levels up to 37

at.%;
# Might induce human blood monocyte cells apoptosis;
# Antibacterial effect against S. aureus, M. luteus, and

S. flexneri;
# Ineffective against P. aeruginosa bacterial stain;
# Stimulates the osteogenesis as demonstrated by

in vivo tests on animal model.

[238,321–323]

Ta Powder 0.13–0.27
# In vitro cytocompatibility with hFOB cell line;
# Promotes osteoblast proliferation. [324]

Ni Powder

0.8–8.3
(theoretical)0.2–
2.4(determined

by ICP-OES)

# In vitro cytocompatibility with MG63 cell line;
# Increases osteoblasts viability, proliferation and

differentiation;
# Antibacterial effect against E. coli (ATCC 25922)

and P. aeruginosa (DSM50071), when tested in
combination with other dopants.

[328,329]

Mo Powder 0.05–5.2

# Antibacterial effect against S. epidermidis and E. coli;
# Antifungal effect against C. albicans;
# Enhances HA’s ability to absorb the

electromagnetic gamma radiation.

[330]

Y Powder
Coating 1.3–7

# In vitro cytocompatibility with human osteoblast
cells from limb tissue (ATCC CRL-11372);

# Stimulates osteoblasts adherence and
proliferation;

# Can be used for radioactive synovectomy to treat
haemophilic synovitis.

[267,331–333]

Cd Powder n/a
# High toxicity on zebra fish, which died after

Cd-Ha exposure;
# Toxic effect on the growth of plants.

[334,335]

W Powder 0.7–32.3

# Catalytic activity by enhancing the biosorption and
adsorption of methyl orange by E. faecalis bacteria
and further decolourization and removal from
waste water;

# Increases gamma radiation absorption, which
makes it useful in radiation shielding.

[336]

Hf Powder 0.5–15

# Cytotoxic to A549 human adenocarcinoma
alveolar epithelial cells, when Hf-HA is used in
combination with ionizing radiation
(photodynamic therapy);

# In vivo (mice) tests show tumour reduction after
using ionizing radiation and Hf-HA nanoparticles.

[339]

La Powder
Coating 2–30

# In vitro cytocompatibility with MC3T3-E1 and
L929 cell lines;

# No cytotoxicity for adenocarcinoma (MCF-7) and
human embryonic kidney HEK cells at a doping
level of 2 at.%;

# Antibacterial effect against S. aureus (e.g., ATCC
25175), E. coli, P. aeruginosa, and Bacillus;

# Improvement of mechanical properties: bonding
strength and Vickers hardness.

[314,340,342,
379,380,405]
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Cation
(M)

Sample
Form

Doping Range
[M/(M + Ca)]·

100 (at.%)
Bio-Functionality/Effect of the Dopant Refs.

Ce
(3+)

Powder
Coating 4–20

# Induces the in vitro formation of bone-like apatite
in SBF;

# In vitro cytocompatibility with L929 (for Ce-HA
dose <100 µg mL−1) and MC3T3-E1 cell lines;

# Cytotoxicity on pulmonary adenocarcinoma (A549)
cells in Ce0.1HA, but improvement of cell viability
in conjunction with strontium [344];

# Antibacterial effect against S. aureus (ATCC 6538),
Lactobacillus (ATCC 393), E. coli (8099), and P.
aeruginosa; enhanced zone inhibition is achieved for
Gram-negative E. coli with respect to Gram-positive
S. aureus.

[344,346,377,
382–384]

Ce
(4+) Powder 0.1–0.5

# In vitro cytocompatibility with MG63 (Ce-HA-NPs
at doses in the range 200–600 µg mL−1);

# Increase of MG-63 cell viability, proliferation and
differentiation at doses of 200–400 µg mL−1;

# Antibacterial effect against S. aureus (ATCC 6538),
Lactobacillus (ATCC 393), Bacillus subtilis, E. coli (714),
and P. aeruginosa;

# Significant decrease of bacteria number when
coupled with Fe3O4 NPs.

[348,381,385]

Sm Powder
Coating 0.2–0.5

# In vitro cytocompatibility with HFOB 1.19 cell line
(comparable to pure HA control specimens);

# Antibacterial effect against S. aureus, E. faecalis, E.
coli, and P. aeruginosa. Differences in the extent of
antibacterial activity for Gram-positive and
Gram-negative stains;

# Antifungal effect against C. albicans (ATCC 10231).

[355,357]

Eu Powder 0.1–20

# Induces the in vitro formation of bone-like apatite
in SBF;

# In vitro cytocompatibility with MG-63 (cell
proliferation up to 4 days), HeLa, human embryonic
kidney HEK 293, L929 (viability >80% for Eu-HA
doses of 25–500 µg mL−1);

# Low cytotoxicity for human gingival fibroblast
(HGF-1) cells after 24 h (500–2000 µg mL−1);

# Cytotoxicity for transformed human umbilical vein
endothelial cells (T-HUVEC) after treatment with at
0.3–30 µg mL−1 of 5 at.% doped HA;

# Ability to kill cervical HeLa cells after 24 when
combined with 5 fluorouracil (5FU);

# Negligible toxicity by hen’s egg test on the chick
area vasculosa (HET-CAV);

# Antibacterial effect against E. faecalis (ATCC 29212),
S. aureus (0364), and P. aeruginosa (1397); No
antibacterial activity against E. coli even at
high doping;

# Antifungal effect against C. albicans (ATCC 10231)
with only for a doping content of 20 at.%.

[361–366,388–
393]

Tb Powder 2–17
# In vitro cytocompatibility with MC3T3-E1 (doses of

25–100 µg mL−1 Tb-HA-NPs) and A549 (doses of
20–320 µg mL−1 Tb-HA-NPs) cell lines.

[361,393,399]

Gd Powder 1–17
# In vitro cytocompatibility with HFOB 1.19 for xGd

< 17% [Ca10-xGdx(PO4)6(OH)2] cell line;
# Cytotoxicity for HFOB 1.19 cells at xGd ~17%.

[128]
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Dy Powder 0.5–10

# In vitro cytocompatibility with L929 cell line;
# Negligible toxicity by hen’s egg test on the chick

area vasculosa (HET-CAV);
# Increase of oxidative stress lipoperoxides and nitric

oxide indicators in kidney, lungs and liver of rats;
lower activity of anti-oxidant glutathione
peroxidase enzyme.

[392,403]

Nd Powder 1–17

# In vitro cytocompatibility with HFOB 1.19 (for
doping concentrations of 1–17 at.%) and L929 (cell
viability at 24 h > 90% for doses of Nd-HA of 10 and
20 mg mL−1) cell lines.

[128,352]

Er Powder 2–10
# Induces the formation of biomimetic apatite

in-growths in SBF. [372]

U Solution 0.1–10
# In vitro cytocompatibility with MC3T3-E1 cell line

(not sensitive to the presence of uranium). [375]

3.5. Cytotoxic Concentration of Cationic Species

Literature data on the actual cytotoxic cation release rates for this large variety of doped/
substituted hydroxyapatite materials are rather scarce. Most researchers prefer to discuss the
theoretical and/or experimental total cation dopant concentration [doping cation/(doping cation
+ Ca)] introduced into hydroxyapatite, and/or total dose concentration of doped-HA added to the
cell media. When examining the dopants’ total content and their influence, contradictory cytotoxic
levels are often signalled. This is to be expected since the cation release rate is governed by a series
of factors such as crystallinity or particle morphology and size of the tested material, which are
strongly dependent on dissimilarities in the chosen synthesis method, technological preparation
recipes and post-synthesis processing stages. The authors advocate a more intimate understanding of
the cation-substituted HA interaction with physiological media and cells, which can only be achieved
by insightful studies (always including a control specimen of pure stoichiometric HA, comparing
in the framework of a study the effect of more than one cation, focusing on the actual ionic release
rates and not on the doped HA powder doses only). It is recommended for researchers to couple
their bio-functional assays with determination of the temporal ion-release profiles, determined for
instance by ICP techniques (with ppm/ppb sensitivity). Such systematic studies could help collate
the prerequisite multiple and congruent demonstrations on the promise of a given cation and its
optimal action dose, enable trustworthy conclusions, and allow for a reliable and safe transition of
doped-HA from research bench-work to commercial and/or clinical applications, with great health
and societal impacts.

Further scientific literature surveys were dedicated to the identification of cytotoxic concentration
of the cations under scrutiny here, irrespective of their host material. The gathered information,
presented in Figure 4, indicates a seemingly non-inhomogeneity of existing data. But this is only
apparent because the cytotoxic concentration threshold which induced a cell’s growth decrease
by 50% is dependent on a large palette of influential factors: source material of the ion [406–408],
crystalline quality (a lower crystallized material will possess a higher free energy and ion molecular
mobility, the consequence of which is accelerated degradation rates, and thereby faster release
of active agents [409,410]), particle size (which influence the total active surface area) [411–415],
shape/morphology of the particles (e.g., spheres, polyhedra, rods, platelets, random) [414,416–419],
valance and oxidation state of the cation [420–425], cells line type, and incubation time [407,408,413,
419,426,427].
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Figure 4. Half-maximal cytotoxic concentration (in mM) of various cationic species: Li [428–430],
Na [431–434], Mg [435–438], Sr [439–441], Al [442–444], Ga [408,445], Sn [406,446,447], Te [448–450],
Pb [427,451], Bi [452–455], Ti [406,408,443,444,456,457], V [408,442–444], Cr [408,442–444], Mn [443,458–
460], Fe [426,442,443,461], Co [406,408,442–444,462,463], Ni [406,408,430,443–445,462–465], Cu [406,408,
445,462,466], Zn [406,408,457,462,467], Y [468–470], Zr [406,442], Mo [442,443,471,472], Ag [406,408,445,
471,473–476], Cd [408,462,471], La [477–479], Ce [406,480–482], Pr [480,483], Nd [480,484], Sm [480,485],
Eu [477,480], Gd [480,486,487], Tb [488], Dy [485], Ho [480,485,489], Er [480,483,485], U [490,491].

4. Rigorous In Vitro Testing of Bioactive Materials

With the current regulations regarding in vivo studies (highly restrictive in the European Union)
it is mandatory to identify in vitro protocols that would return reliable results, and reduce the number
of materials suitable to enter in the in vivo studies to one or maximum two.

Thereby, when designing a medical device with enhanced properties (e.g., biomineralization
capacity, osteoconductivity, angiogenic potential, or antimicrobial activity), the in vitro assay protocols
need to allow a facile and trustworthy comparison between studies and results reported by individual
research groups.
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At the international level, there are a series of ISO standards that include recommendations
concerning biological testing procedures and qualitative and quantitative evaluation markers.
However, each of the ISO standards is dedicated to a definite material property, and employs a
different type of testing media, with different degree of compositional complexity, used under various
ambient conditions:

• ISO 10993-14:2001—Biological Evaluation of Medical Devices—Part 14: Identification and
Quantification of Degradation Products from Ceramics. Medium for extreme tests: buffered
citric acid solution, pH = 3.0 ± 0.2 at a temperature of 37 ± 1 ◦C, in normal atmosphere;
Solution for simulated tests: buffered tris(hydroxymethyl)aminomethane (Tris)-HCl solution,
pH = 7.4 ± 0.1 at a temperature of 37 ± 1 ◦C, in normal atmosphere.

• ISO 16428:2005—Implants for Surgery—Test Solutions and Environmental Conditions for Static and
Dynamic Corrosion Tests on Implantable Materials and Medical Devices. Medium: aqueous solution
of sodium chloride (0.9% NaCl mass fraction) or Ringer’s solution isotonic aqueous solution of NaCl,
pH = 7.0 at a temperature of 37 ± 1 ◦C, in normal atmosphere.

• ISO 16429:2004—Implants for Surgery—Measurements of Open-Circuit Potential to Assess Corrosion
Behaviour of Metallic Implantable Materials and Medical Devices over Extended Time Periods. Medium:
aqueous solution of sodium chloride (0.9% NaCl mass fraction), pH = 7.0 at a temperature of 37
± 1 ◦C, in normal atmosphere. For more stringent test conditions, more acidic test solutions
are recommended.

• ISO 23317:2014—Implants for surgery—In vitro Evaluation for Apatite-Forming Ability of Implant
Materials. (i.e., Bioactivity/Biomineralization Capacity Testing). Medium: Tris-buffered simulated
body fluid (ionic concentration in mM: 142.0 Na+, 5.0 K+, 1.5 Mg2+, 2.5 Ca2+, 147.8 Cl−, 4.2 HCO3

−,
1.0 HPO4

2−, and 0.5 SO4
2−), pH = 7.4 at a temperature of 36.5 ± 0.2 ◦C, in normal atmosphere.

• ISO 10993-5:2009—Biological Evaluation of Medical Devices—Part 5: Tests for in vitro Cytotoxicity.
Medium: culture medium (e.g., Dulbecco’s Modified Eagle Medium) with or without serum such as to
meet the growth requirements of the selected cell line, pH = 7.4 at a temperature of (37 ± 1) ◦C,
in a humidified atmosphere of 5% CO2.

• ISO 22196:2011—Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces.
Medium for suspension assays: nutrient broth (containing meat extract, peptone, NaCl), at a
temperature of (35 ± 1) ◦C and a relative humidity of not less than 90% for 24 ± 1 h,
in normal atmosphere.

In vivo testing should never be considered before a thorough in vitro investigation.
We shall briefly discuss the positive aspects and the shortcomings of the most frequently used

in vitro tests.

4.1. Biomineralization Capability (Bioactivity Testing)

The existence of a soundly crafted standard is welcomed in our opinion, since it can lead to
meta-analyses and to facile comparisons between materials explored in different studies. However,
a poorly and outdated standard can harm scientific endeavours and limit important and significant
discoveries that can be safely transferred into medical practice.

For instance, the current in vitro standard for biomineralization testing (i.e., ISO 23317:2014)
is, in our opinion, scientifically outdated, as it uses a purely inorganic solution (simulated body
fluid, SBF), supersaturated towards the HA components, under normal atmospheric conditions [492].
It has the “advantage” of delivering fast and almost always positive results, even for materials
otherwise widely-considered inert [147,493–495]. Many groups have started to acknowledge these
limitations and are actively seeking a more reliable bioactivity assay [492,496–500], proving that even
in complex organic–inorganic media, under the correct biomimetic conditions, biomineralization can
be successfully, but rigorously, tested.
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For some of the ISO tests performed in purely inorganic media (e.g., ISO 10993-14:2001) it is
recognized that supplementary biological factors, such as amino-acids, enzymes and proteins, can
change the solubility/degradation rate of the material, and this it is not accounted for. Since the
doping ion release would be different in each of these dissimilar media, it seems rather difficult
to cross-examine results obtained by applying such standardized in vitro testing protocols. When
studying the capacity of a biomaterial to induce a process, the in vitro protocol should mimic as
much as possible the conditions that the implant would encounter in vivo. Although, the in vivo
conditions are very difficult to be replicated with high fidelity in vitro, we should all acknowledge
the acute need for improved and congruent protocols. As opposed to the SBF assay, which suggests a
nearly universal biomineralization capability of materials, a test performed in complex media such as
Dulbecco’s modified Eagle’s medium (DMEM)-like cell culture medium supplemented with serum
(10%), produces biomineralization only for truly bioactive materials [496–500], being thus a reliable
refinement tool for innovative material designs.

Only a rigorous and homogenous testing of bioceramics can filter the best material designs from
abundant possibilities, and allow for a rapid translation to clinical applications. Thereby, we, along
with an increasing number of researchers [497–500], would recommend advanced biomimicry testing
of the biomineralization potential, using cell cultures media supplemented with 10% serum at 37 ◦C,
in a humid atmosphere with 5% partial pressure of CO2 (as found in living tissues).

4.2. Degradation and Corrosion Tests

Three ISO standards (ISO 10993-14:2001, ISO 16428:2005, ISO 16429:2004) offer recommendations
for such tests, but a series of issues persist:

i Using pure inorganic fluids for testing (i.e., citric acid, (Tris)-HCl, 0.9% NaCl, Ringer’s solutions)
is not a viable choice because, as presented before, the organic component of the intercellular
fluid interacts with the implant surface and greatly modifies the interactions with the biomaterial.
The use of a suitable testing environment is of foremost importance since these specific material
features (degradation rate and corrosion resistance) are dependent on the material surface
properties and its ability to adsorb organic moieties, partial dissolution and the consequent
ionic exchanges.

ii In the attempt to compress the time needed for a degradation test and peek into the future, the ISO
10993-14:2001 standard uses buffered citric acid solution (at a pH = 3.0 ± 0.2) to force degradation.
However, since this solution is only inorganic and with a pH value never to be encountered at the
implantation site, results can significantly vary from the actual events that will occur in vivo for
the tested material over the long-term.

iii Such standards are designed mainly for testing bulk materials, and are focused on the weight
of the specimen, not taking into account one of the most important parameters: the contact area
with the fluid. The focus is on the ratio between the mass of specimen and volume of fluid,
but systems to be studied differ a lot with respect to the interaction area per gram of substance.
Pellets, scaffolds (with macro- and micro-porosity), powders with different particle size, and
thin (or thick) smooth (or rough) films induce huge differences in the ratios between the mass of
substance and the area of interaction with the testing medium. An overview of this particular
matter along with a several proposals can be found in [492].

4.3. Biocompatibility Assays

Nowadays, the biocompatibility testing of a material with prospects for biomedical application,
is mandatory. Different cell lines are used to assess cell proliferation, cell toxicity, capacity to induce
bone matrix formation, and cell differentiation. The ISO 10993-5:2009 standard recommends for extract
testing, direct contact, and indirect contact procedures testing periods of 24 h, at least 24 h, and between
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24 and 72 h, respectively. The standard lays the ground for some basic biocompatibility tests, but its
concepts might be considered somewhat outdated.

Cell proliferation can be evaluated by:

i Classic, MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), MTS (3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)), XTT
(2,3-bis-(2-methoxy-4-nitro-5-sulphenyl)-(2H)-tetrazolium-5-carboxanilide) assays, that returns a
value linked to general mitochondrial activity of the cells. Errors are given by different factors
(e.g., differentiation of stem cells induces growth of mitochondria number per cell and increased
activity). Advantages: simple and fast procedure, reliable results when working with homogenous
terminally differentiated cells, cheap equipment and kits; Disadvantages: low reliability when
working with heterogeneous cell cultures for differentiating experiments, indirect measure
of proliferation;

ii Quantifying double-stranded (ds) DNA by fluorescence (more ds-DNA, means more cells, ergo
higher proliferation). Commercial kits are available. Advantages: direct measure of proliferation,
very good and reliable results when working with heterogeneous cell cultures with many cell types
(differentiation experiments), affordable equipment (98 well fluorescence reader), commercial kits
are available; Disadvantage: complicated procedure;

iii Cell counting when possible. Advantage: can be somewhat automated with a flow cytometer;
Disadvantages: the classic counting technique uses microscopy, which is very laborious, time
consuming, and impossible when dealing with a large number of situations (i.e., at least 10
microscopy fields per situation are required, with minimum 500 cells, numbered by three different
examiners).

Cell toxicity can be evaluated by:

i Studying their morphology, when possible (as presented in ISO 10993-5:2009). This is a laborious
method as it requires examination of a minimum 500 cells per situation acquired from a minimum
10 different randomly-chosen microscopy fields by three separate individuals. This renders the
method almost impossible, when the experiment would involve a large number of materials;

ii Measuring the LDH (lactate dehydrogenase) activity in the medium in which the cells were
cultivated. LDH is an active intracellular enzyme found in all cells. Upon death, the cell releases
this LDH into the medium and, therefore, this enzyme activity is proportional to the number of
dead cells [501]. The method is easy to perform, fast, and returns reliable results on the same
samples investigated for cell proliferation by mitochondrial activity tests;

ii Measuring mitochondrial activity (MTT, MTS, XTT), as presented in the ISO 10993-5:2009 standard.
It is a surrogate test for cytotoxicity: lower values with respect to control, due to lower general
mitochondrial activity, are interpreted as results of cellular death, but this can also be an effect of
slower proliferation values induced by the material. Thereby, it should not be used as stand-alone
assay for cytotoxicity;

iv Fluorescence apoptosis and cell viability kits (e.g., DAPI, annexinV, propidium iodide kit and
Calcein AM/EthD-1 kit) are simple and widely used assays that provide good results, especially
for flat substrates and examination with a confocal microscope. Calcein AM enters live cells and
is converted in the cytoplasm in a green fluorescent compound, which does not exit from the
cytoplasm. The dead cell nuclei have a red fluorescence due to EthD-1 that can penetrate only
through the membrane of dead cells. As such, by fluorescence confocal microscopy the ratio of
dead cells can be assessed. For 3D scaffolds it provides good results when the reading is done by
a flow cytometer only, if the protocol recuperates and counts also the prior detached cells (which
makes it a more difficult variant);

v Measuring the intracellular colorant uptake, as presented in the ISO 10993-5:2009 standard. The
procedure is time consuming, but offers reliable results.
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For biocompatibility we would suggest using a LDH activity kit in conjunction with a
MTS/XTT/MTT assay in order to counteract the errors that may occur from high proliferation
coexistence with high apoptosis.

The shape of the material to be tested can vary and can pose great challenges. The easiest situation
for cell culturing is constituted by dense and smooth coated specimens. In the case of bulk material
specimens, flat surfaces (to be obtained by polishing) with same area are needed as well.

The most problematic situation is represented by the porous scaffolds, produced by various
additive manufacturing techniques. Frequently these types of testing samples have two degrees of
porosity: (i) micro-porosity generated by elimination of substances needed to produce the ink or the
carrying thermoplastic filament compounds; and (ii) a macro-porosity resulting from the designed
spacing between the individual material rods, which is usually situated in the range 100–500 µm.

The challenge arises from the difficulty of uniformly seeding a certain number of cells into the
scaffold. The detached cells have a diameter of ~15 µm and fall through the rods of the scaffold to the
bottom of the well. Also, when comparing scaffolds with different macro-porosity (different spacing
between the rods) the problem becomes even more complicated, as the available space in the scaffold
is different.

We did not find in the literature a protocol that would allow the seeding of identical numbers of
cells in scaffolds with different macro-porosity.

4.4. Osteoinduction Ability

In order to enhance bone healing, few methods to boost osseointegration, cytocompatibility and
bone matrix production were envisioned. As such along with incorporation/adsorption of growth
factors that stimulates osteoblastic lineage [502–504], some cation doping into HA was also extensively
investigated, as was shown in the previous sections of this review.

The most common protocols to assess the formation of new bone matrix involve the alizarin red
technique. However, when cells are grown on opaque substrates (such as titanium) that do not allow
bright-field microscopy assessment, other means of investigation must be searched for.

One other solution is to quantify the proteins (i.e., collagen, ostein, osterix, osteopontin) present
in the matrix formed by the cells, by immunofluorescence techniques. Quantification of such protein
and cell solubilisation markers by enzyme-linked immunosorbent assay (ELISA) or the Western blot
method is more difficult, but delivers better results.

4.5. Cell Differentiation Capacity

In order to boost bone healing, a great number of osteoblasts is needed, and the simplest
solution would consist in the ability of the implant material to boost stem cell differentiation toward
osteoprogenitor cells and osteoblasts.

Nowadays, seemingly the most desired property of HA materials is the capacity to induce stem
cell differentiation. In the quest to obtain fast healing, the scientists could fall into the grave error of
inducing the disappearance of the stem cell pool, and thereby generating a high risk of implant failure
in the long-term. Indeed, in a study performed by Popa et al. [15], it was shown that bone is a complex
organ subjected to continuous remodelling processes, and if inducing a rapid large-scale differentiation
of stem cells, a great number of osteoprogenitor cells would be produced, but, after a period of time,
the osteoprogenitor cells will cease to exist as a consequence of the stem cell pool absence.

The generation of osteopotent daughter cells in sufficient number to induce healing, is a complex
phenomenon which should be reserved to the cell signalling between stem cells and their niche and
inflammatory cells present at implantation site/wound. The stem cells pool, along with its niche
and the complex signalling processes are a micro-universe yet to be fully understood. The authors
advise fellow researchers to act with caution when integrating biomaterials that possess the ability to
force abrupt stem cell differentiation. In the absence of long-term in vivo evidences on the biological
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outcome of such materials, awareness/caution on the risks of meddling with stem cell signalling is in
our opinion still necessary.

Osteogenic differentiation can be studied using immunofluorescence for markers specific to
osteoblastic lineage such as: extracellular matrix proteins (e.g., collagen, osteopontin, osteocalcin, bone
sialoprotein) or intracellular proteins which have enzymatic function (e.g., alkaline phosphatase) [505].
The cells marked with fluorochromes can be viewed with an epi-fluorescence or confocal microscope.
Production of bone by osteoblasts could be investigated also by cyto-chemistry methods (e.g., alkaline
phosphatase activity assay). More complex techniques, that are not at hand for most scientists due to
the high cost of equipment and kits, are transcriptomics, proteomics and metabolomics. An extensive
survey of the RNA profile of the cells by DNA microarray or real-time polymerase chain reaction
(real-time PCR) can confer clarity regarding the stage of cell differentiation and the mechanism of this
process [506].

The von Kossa assay produces a black-grey stain where Ca deposits are located in the tissue
by replacing Ca ions with silver ones. Therefore, the von Kossa assay could be only applied for
in vitro tests that incubate osteoprogenitor cells with cell-growing medium that was in contact with
the powders/scaffolds of calcium phosphates (HAs included).

4.6. Pro-Angiogenic Properties

The capacity to induce angiogenesis is envisioned as an important trait of a scaffold, since it
will help healing by generating a sufficient blood supply for the cells that will colonize the implant.
For metallic implants coated with HA there is no need for a pro-angiogenesis property, since the
healing will take place only on a surface and the normal bone around the implant will produce all the
blood vessels it needs.

The cells that will produce new blood vessels derive from stem cells through proliferation towards
an angiogenic fate. The angiogenic lineage results from the modifications in a constellation of signalling
molecules: pro-inflammatory cytokines, interleukins, stem cell factor, Notch, Vascular endothelial
growth factor (VEGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet derived
growth factor (PDGF), insulin-like growth factor (IGF), tumour necrosis factor alpha/beta (TNF),
transforming growth factor beta 1 and 2 (TGF-β1 & TGF-β2), or Wnt [507,508].

One possibility for generating blood vessels in the scaffold is to use recombinant pro-angiogenic
growth factors such as, VEGF, PDGF, IGF, or TGF-β1 & TGF-β2 adsorbed into the scaffold [502,509].
These proteic substances are difficult to manage and manipulate, expensive and would require a
complex authorization and quality control. Therefore, some ion additions (e.g., Li, Co, Ni, Mg, Sr, La)
in the HA scaffold have been envisaged as a simple and cheap alternative [222,328,340,510,511]. To date,
more than 120 articles have been published on this topic. Some of these studies reached an in vivo
phase with encouraging results [512–516]. However, it is important to use a doping concentration that
generates the desired angiogenic effect, but does not exhibit toxic side effects on a long-term ion release.
In vivo angiogenesis studies typically witness micro-vascularisation formation, along with growth of
blood vessels with a greater diameter. However, questions about the long-term adverse side-effects
on the healing process, such as the generation of too many blood vessels and the out-growth of the
implant, need to be addressed as well in the future.

Furthermore, numerous groups found that macro-porosity greatly influences the vascularisation
of ceramic scaffolds. While a pore dimension over 30–40 µm can enable endothelial cells to enter the
scaffold [517,518], larger pore sizes (>150 µm) facilitate the development of blood vessels with greater
diameter and total volume, upon in vivo implantation [519]. This effect is observed until a pore size of
500 µm, where the plateau of blood vessels diameter and volume is reached [520–522].

In vitro pro-angiogenic properties investigations can be carried out on endothelial cell cultures,
as the viability, proliferation, and cytotoxicity of such cell lineages is basic.
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More complex experiments would imply (i) measuring of the amount of pro-angiogenic factors
secreted by these cells when cultivated in the presence of HA materials, or (ii) RNA quantification of
the activation of the proangiogenic genes.

4.7. Antimicrobial Activity

Most studies determine the antimicrobial activity on both Gram-positive and Gram-negative
bacterial strains, having as major exponents S. aureus and E. coli. These bacteria are the most frequently
met in implant infections.

The ISO 22196:2011 standard provides a protocol for antimicrobial testing of bulk and thin films
of biomaterials with nutrient broth and S. aureus or E. coli. There are some limitations:

i The tested material should be flat and compact with a surface of minimum 6.25 cm2, of which
4 cm2 should be reserved for bacterial interaction;

ii Various types of nutrient broth have been observed to interact differently with the biomaterials,
causing a variety of degradation rates, and therefore dissimilar antibacterial activities;

iii Because of their nature and geometry, powders and 3D scaffolds with macro- and micro-porosity,
cannot be tested according to this ISO standard protocol. Therefore, adaptive measures should
be devised.

For powders:

# A nutrient media powder suspension is inoculated with a known number of colony-forming
units (CFU) to a final concentration of around 105−106 CFU mL−1, under continuous agitation in
an incubator at 37 ◦C for a desired period of time. The number of bacterial cells that remained
viable (viable cell count, VCC) is to be investigated by serial dilutions from each situation and
seeding on simple agar plates (in an analogue manner to the ISO standard protocol);

# Colorimetric or fluorescence tests can be performed on samples, and rapid results are obtained
based on previous control measuring curves established for each type of bacteria (e.g., MTS/XTT,
cresyl violet, fluorescein diacetate). The fluorescence techniques use more expensive reagents
and readers, but their measurement is more reliable since turbidity of the sample generated
by powder material dissolution does not affect the reading. Fluorescein diacetate is used in a
standard method for the assessment of water contaminated with microorganisms and could be
considered very reliable.

For 3D scaffolds:

# The scaffold would require an incubation in a given volume of nutrient media inoculated with a
known number of CFU;

# Antimicrobial activity of a 3D structure is very hard to investigate because not all the bacterial
cells can be harvested, since some of them could be very strongly adhered inside the scaffold,
and therefore hard to detach;

# After the desired testing period, since the bacterial cells could be adhered inside the scaffold
and cannot be reached, only a reading of a soluble coloured/fluorescent product of bacterial
metabolism can provide insights. Some materials absorb coloured substances and make such
tests impossible to carry out.

5. Future Perspectives: Co-Substituted Hydroxyapatite Bioceramics

Nowadays, as we enter the era of personalized medicine, the design of a successful implant
implies making the right compromises with respect to the material formulation, shape, structure,
mechanical performance, biocompatibility, pro-angiogenic or pro-osteogenic properties, and wide-
range antimicrobial activity, so as to aptly and comprehensively respond to the patient’s problem.
Starting with natural cation and anion doping (Na, Mg, Sr, carbonates, Cl, F) and the trace elements
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(Zn, Cr, Co, Mn, Si) that are naturally found in human bones [5], the synthesis of co-substituted HA
could pave a way toward the design of implants with combined multi-biofunctionality.

In the realm of antimicrobial efficiency, multiple doping with low ionic contents in HA seems to
be the key to achieving potent activity, capable of combating the resilience of the microorganisms even
adapted to conventional antibiotics, while limiting the toxic side effects. The simultaneous release of
ions with different action mechanisms could enable not only preventing the adaptation of bacteria and
fungi, but also widening the antimicrobial range against more pathogen strains.

In this respect, we acknowledge the recent contributions focused to ascertain both synergic
ion doping combinations and their optimal concentration. So far, HA has been co-substituted
with: Ag/Bi [523], Ag/F [524], Ag/Mg [525,526], Ag/Si [527], Ag/Sr [528,529], Ag/Zn [281,530],
Ce/Fe [381], Ce/Eu [531], Sr/Ce [344,532], Sr/Cu [533], Sr/Zn [534,535], Zn/Cu [533,536], Zn/F [78],
Zn/Fe [537], La/Ag [405], La/Cu [538], Sm/Gd [354], Tb/Gd [539], Ce/Zr/F [540], Ag/Ti/F [541],
Mg/Zn/Co [542], Sr/Co/F [543], Ag/Cu/Zn/F [544], or Ag/Cu/Zn/Ti [545].

HA-based medical devices could also be coupled with cell therapy, enhancing their short- and
long-term performances. In this respect, promising results were obtained for autologous stem cells,
osteoprogenitor cells, or bone marrow aspirates. Quarto et al. [546] have used with clinical success
autologous stem cells to induce healing of large defects of long bones. Scaffolds of biomaterials
cultivated with autologous osteoprogenitor cells, implanted to boost bone healing, have shown
good results up to 7 years [547]. Bone marrow aspirates, “a cocktail” of stem cells, niche cells and
differentiated cells, were also used in clinical studies with success rates of 80–90% to heal delayed or
non-unions of long-bone fractures [548–551].

In the light of the numerous contradictions, signalled in this review, a more rigorous and
systematic scientific approach is recommended, studying compositional series of substituted HA
samples, avoiding splitting the research into a number of manuscripts, and always coupling the
antimicrobial effect demonstration with cytotoxicity assays and determinations of the actual temporal
release profiles of the therapeutic ions.
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157. Janković, A.; Eraković, S.; Ristoscu, C.; Mihailescu, N.; Duta, L.; Visan, A.; Stan, G.; Popa, A.;
Husanu, M.; Luculescu, C. Structural and biological evaluation of lignin addition to simple and silver-doped
hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J. Mater. Sci. Mater. Med.
2015, 26, 17. [CrossRef] [PubMed]

158. Popescu-Pelin, G.; Sima, F.; Sima, L.; Mihailescu, C.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.;
Mihailescu, I. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser
evaporation: Comparative study. Appl. Surf. Sci. 2017, 418, 580–588. [CrossRef]

159. Visan, A.; Stan, G.E.; Ristoscu, C.; Popescu-Pelin, G.; Sopronyi, M.; Besleaga, C.; Luculescu, C.; Chifiriuc, M.C.;
Hussien, M.; Marsan, O. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated
from chitosan and biomimetic apatite powders. Int. J. Pharm. 2016, 511, 505–515. [CrossRef] [PubMed]

160. Bosco, R.; Van Den Beucken, J.; Leeuwenburgh, S.; Jansen, J. Surface engineering for bone implants: A trend
from passive to active surfaces. Coatings 2012, 2, 95–119. [CrossRef]

161. Narayanan, R.; Seshadri, S.K.; Kwon, T.Y.; Kim, K.H. Calcium phosphate-based coatings on titanium and its
alloys. J. Biomed. Mater. Res. Part B 2008, 85, 279–299. [CrossRef] [PubMed]

162. Hontsu, S.; Nakamoru, M.; Nishikawa, H.; Kusunoki, M. Characteristics of a humidity sensor using a
Na-doped hydroxyapatite thin film. Mem. Fac. Biol.-Oriented Sci. Technol. Kinki Univ. 2010, 26, 87–91.

163. Essamlali, Y.; Amadine, O.; Larzek, M.; Len, C.; Zahouily, M. Sodium modified hydroxyapatite: Highly
efficient and stable solid-base catalyst for biodiesel production. Energy Conv. Manag. 2017, 149, 355–367.
[CrossRef]

164. Sugiyama, S.; Iguchi, Y.; Nishioka, H.; Minami, T.; Moriga, T.; Hayashi, H.; Moffat, J.B. Effects of the thermal
stability and the fine structure changes of strontium hydroxyapatites ion-exchanged with lead on methane
oxidation in the presence and absence of tetrachloromethane. J. Catal. 1998, 176, 25–34. [CrossRef]

165. Fierascu, I.; Avramescu, S.M.; Petreanu, I.; Marinoiu, A.; Soare, A.; Nica, A.; Fierascu, R.C. Efficient removal
of phenol from aqueous solutions using hydroxyapatite and substituted hydroxyapatites. React. Kinet.
Mech. Catal. 2017, 122, 155–175. [CrossRef]

166. Sugiyama, S.; Shono, T.; Nitta, E.; Hayashi, H. Effects of gas- and solid-phase additives on oxidative
dehydrogenation of propane on strontium and barium hydroxyapatites. Appl. Catal. A Gen. 2001, 211,
123–130. [CrossRef]

167. Chen, Z.; Liu, Y.; Mao, L.; Gong, L.; Sun, W.; Feng, L. Effect of cation doping on the structure of hydroxyapatite
and the mechanism of defluoridation. Ceram. Int. 2018, 44, 6002–6009. [CrossRef]

168. Nie, Y.; Hu, C.; Kong, C. Enhanced fluoride adsorption using Al(III) modified calcium hydroxyapatite.
J. Hazard. Mater. 2012, 233–234, 194–199. [CrossRef] [PubMed]

169. Thom, N.T.; Thanh, D.T.M.; Nam, P.T.; Phuong, N.T.; Hong, C.T.; Xuyen, N.T.; Van Trang, N.;
Buess-Herman, C. Treatment of Cd2+ ions using aluminum doped hydroxyapatite (AlHAp) powder.
Viet. J. Chem. 2017, 55, 393–399. [CrossRef]

170. Rahmanian, A.; Ghaziaskar, H.S. Continuous dehydration of ethanol to diethyl ether over aluminum
phosphate–hydroxyapatite catalyst under sub and supercritical condition. J. Supercrit. Fluids 2013, 78, 34–41.
[CrossRef]

171. Neidel, L.L.; Moore, R.C.; Salas, F.; Grouios, F.; Holt, K.C.; Helean, K.B. Sequestration of radionuclides
and heavy metals by hydroxyapatite doped with Fe, Cu and Sn. Geochim. Cosmochim. Acta 2005, 69, A70.
[CrossRef]

172. Matsumura, Y.; Moffat, J.B.; Sugiyama, S.; Hayashi, H.; Shigemoto, N.; Saitoh, K. Selective oxidative coupling
of methane catalysed over hydroxyapatite ion-exchanged with lead. J. Chem. Soc. Faraday Trans. 1994, 90,
2133–2140. [CrossRef]

http://dx.doi.org/10.1155/2017/3579283
http://www.ncbi.nlm.nih.gov/pubmed/29201060
http://dx.doi.org/10.1016/j.jinorgbio.2018.02.024
http://www.ncbi.nlm.nih.gov/pubmed/29525694
http://dx.doi.org/10.1007/s10856-014-5333-y
http://www.ncbi.nlm.nih.gov/pubmed/25578691
http://dx.doi.org/10.1016/j.apsusc.2016.10.043
http://dx.doi.org/10.1016/j.ijpharm.2016.07.015
http://www.ncbi.nlm.nih.gov/pubmed/27418570
http://dx.doi.org/10.3390/coatings2030095
http://dx.doi.org/10.1002/jbm.b.30932
http://www.ncbi.nlm.nih.gov/pubmed/17853421
http://dx.doi.org/10.1016/j.enconman.2017.07.028
http://dx.doi.org/10.1006/jcat.1998.1992
http://dx.doi.org/10.1007/s11144-017-1197-8
http://dx.doi.org/10.1016/S0926-860X(00)00864-4
http://dx.doi.org/10.1016/j.ceramint.2017.12.191
http://dx.doi.org/10.1016/j.jhazmat.2012.07.020
http://www.ncbi.nlm.nih.gov/pubmed/22841297
http://dx.doi.org/10.15625/2525-2321.2017-00480
http://dx.doi.org/10.1016/j.supflu.2013.03.021
http://dx.doi.org/10.2172/840147
http://dx.doi.org/10.1039/ft9949002133


Materials 2018, 11, 2081 43 of 62

173. Oh, S.C.; Xu, J.; Tran, D.T.; Liu, B.; Liu, D. Effects of controlled crystalline surface of hydroxyapatite on
methane oxidation reactions. ACS Catal. 2018, 8, 4493–4507. [CrossRef]

174. Wei, X.; Yates, M.Z. Yttrium-doped hydroxyapatite membranes with high proton conductivity. Chem. Mater.
2012, 24, 1738–1743. [CrossRef]

175. Hu, A.; Li, M.; Chang, C.; Mao, D. Preparation and characterization of a titanium-substituted hydroxyapatite
photocatalyst. J. Mol. Catal. A Chem. 2007, 267, 79–85. [CrossRef]

176. Salhi, A.; Aarfane, A.; Tahiri, S.; Khamliche, L.; Bensitel, M.; Bentiss, F.; El Krati, M. Study of the photocatalytic
degradation of methylene blue dye using titanium-doped hydroxyapatite. Mediterr. J. Chem. 2015, 4, 59–67.
[CrossRef]

177. Wakamura, M.; Hashimoto, K.; Watanabe, T. Photocatalysis by calcium hydroxyapatite modified with Ti(IV):
Albumin decomposition and bactericidal effect. Langmuir 2003, 19, 3428–3431. [CrossRef]

178. Nishikawa, M.; Tan, L.H.; Nakabayashi, Y.; Hasegawa, T.; Shiroishi, W.; Kawahara, S.; Saito, N.; Nosaka, A.;
Nosaka, Y. Visible light responsive vanadium-substituted hydroxyapatite photocatalysts. J. Photochem.
Photobiol. A Chem. 2015, 311, 30–34. [CrossRef]

179. Chlala, D.; Griboval-Constant, A.; Nuns, N.; Giraudon, J.M.; Labaki, M.; Lamonier, J.F. Effect of Mn loading
onto hydroxyapatite supported Mn catalysts for toluene removal: Contribution of PCA assisted ToF-SIMS.
Catal. Today 2018, 307, 41–47. [CrossRef]

180. Ravindranadh, K.; Babu, B.; Pushpa Manjari, V.; Thirumala Rao, G.; Rao, M.C.; Ravikumar, R.V.S.S.N.
Optical and structural properties of undoped and Mn2+ doped Ca–Li hydroxyapatite nanopowders using
mechanochemical synthesis. J. Lumines. 2015, 159, 119–127. [CrossRef]

181. Kanchana, P.; Radhakrishnan, S.; Navaneethan, M.; Arivanandhan, M.; Hayakawa, Y.; Sekar, C.
Electrochemical sensor based on fe doped hydroxyapatite-carbon nanotubes composite for l-dopa detection
in the presence of uric acid. J. Nanosci. Nanotechnol. 2016, 16, 6185–6192. [CrossRef] [PubMed]

182. Khachani, M.; Kacimi, M.; Ensuque, A.; Piquemal, J.-Y.; Connan, C.; Bozon-Verduraz, F.; Ziyad, M.
Iron–calcium–hydroxyapatite catalysts: Iron speciation and comparative performances in butan-2-ol
conversion and propane oxidative dehydrogenation. Appl. Catal. A Gen. 2010, 388, 113–123. [CrossRef]

183. Padayachee, D.; Dasireddy, V.D.B.C.; Bharuth-Ram, K.; Singh, S.; Friedrich, H.B. Phase transformation of
iron in hydroxyapatite in the activation of n-octane. Hyperfine Interact. 2014, 231, 131–136. [CrossRef]

184. Mene, R.U.; Mahabole, M.P.; Khairnar, R. Surface modification of cobalt doped hydroxyapatite thick films via
swift heavy ion irradiations for CO and CO2 gas sensing application. In Proceedings of the 14th International
Meeting on Chemical Sensors (IMCS 2012), Nuremberg, Germany, 20–23 May 2012; pp. 1180–1183. [CrossRef]

185. Emayavaramban, P.; Babu, S.G.; Karvembu, R.; Dharmaraj, N. Nickel oxide doped hydroxyapatite for
catalytic oxidation of alcohols to carbonyl compounds at room temperature. Adv. Sci. Eng. Med. 2014, 6,
659–666. [CrossRef]
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