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Abstract

Routine screening of lung transplant recipients and hospital patients for respiratory virus infections allowed to identify
human rhinovirus (HRV) in the upper and lower respiratory tracts, including immunocompromised hosts chronically infected
with the same strain over weeks or months. Phylogenetic analysis of 144 HRV-positive samples showed no apparent
correlation between a given viral genotype or species and their ability to invade the lower respiratory tract or lead to
protracted infection. By contrast, protracted infections were found almost exclusively in immunocompromised patients,
thus suggesting that host factors rather than the virus genotype modulate disease outcome, in particular the immune
response. Complete genome sequencing of five chronic cases to study rhinovirus genome adaptation showed that the
calculated mutation frequency was in the range observed during acute human infections. Analysis of mutation hot spot
regions between specimens collected at different times or in different body sites revealed that non-synonymous changes
were mostly concentrated in the viral capsid genes VP1, VP2 and VP3, independent of the HRV type. In an
immunosuppressed lung transplant recipient infected with the same HRV strain for more than two years, both classical
and ultra-deep sequencing of samples collected at different time points in the upper and lower respiratory tracts showed
that these virus populations were phylogenetically indistinguishable over the course of infection, except for the last month.
Specific signatures were found in the last two lower respiratory tract populations, including changes in the 59UTR
polypyrimidine tract and the VP2 immunogenic site 2. These results highlight for the first time the ability of a given
rhinovirus to evolve in the course of a natural infection in immunocompromised patients and complement data obtained
from previous experimental inoculation studies in immunocompetent volunteers.
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Introduction

Human rhinoviruses (HRV) usually cause self-limited upper

respiratory tract (URT) illness. However, they are increasingly

reported to be associated with complications, such as asthma

[1,2,3], chronic obstructive pulmonary disease (COPD) exacerba-

tions [4], pneumonia, and bronchiolitis in young children [5].

HRVs have the ability to infect the lower respiratory tract (LRT)

[6,7] and can cause chronic infections in immunocompromised

hosts [8,9]. Unlike enteroviruses, most rhinoviruses replicate

optimally at lower airway temperatures, which is thought to

explain their URT tropism [10]. Rhinovirus strains infecting the

LRT may require specific adaptative genomic changes that have

not yet been identified.

For most viral infections, disease severity is the result of a close

interplay between viral and host factors. The host immune status is

known to play a critical role for viral clearance and resolution of

infection. Abnormal innate immune responses to HRV have been

observed in individuals presenting HRV-induced COPD or

asthma exacerbation [11,12]. By contrast, reports are rare on

the implication of viral determinants in HRV disease severity.

Palmemberg et al proposed that the rhinovirus 59UTR polypyr-

imidine tract may affect virulence [13]. At the serotype or species

level, a clear association between the genotype and induced

pathology remains to be demonstrated. HRVs were previously

classified into two species, HRV-A and HRV-B. In 2006, a third

species, HRV-C, was identified [14,15,16,17,18,19] and appears

to be highly prevalent and circulating worldwide [20,21,22].

Several studies have suggested that HRV-C types are prone to

induce more severe illness in children [17,21,23,24,25].

Due to their error-prone RNA polymerase, RNA viruses are

subject to constant evolution. The error rate of picornavirus RNA

polymerases has been estimated to range between 1023 and 1024

errors/nucleotide/cycle of replication [26,27]. This variability is a

driving force for virus evolution. The number of genera, species,

and serotypes illustrates this diversity (http://www.picornaviridae.
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com) with at least 74 HRV-A and 25 HRV-B serotypes identified,

and 61 HRV-C types proposed [22].

While the evolution of rhinoviruses has been well characterized

at the serotype or species level [13,28,29,30,31,32], little is known

about the diversity generated during the course of a natural

human infection. Several studies have investigated the genomic

variability of enteroviruses and vaccine-derived polioviruses during

chronic infections in immunocompromised patients, but there is

no such report for rhinoviruses [33,34,35,36].

Our group analyzed recently HRV-39 genome evolution in

experimental immunocompetent human infections [37]. We

estimated an in vivo mutation frequency of 3.461024 mutations/

nucleotides over the entire open reading frame (ORF) during a

five-day acute infection period, and identified regions of mutation

hot spots in the viral capsid (VP1, VP2 and VP3), and 2C and 3C

genes.

In the present study, we performed first a phylogenetic analysis

to compare the relative distribution of HRV species or serotypes

according to the respiratory site (URT versus LRT) and in

protracted infection in hospital patients and lung transplant

recipients. In the latter group, we evaluated the frequency of

mutations and characterized mutation hot spot regions during the

course of five natural human protracted infections, each caused by

a different rhinovirus serotype. In one case, we followed intra-host

rhinovirus genome variation at different time points in the URT

and LRT over a period of 27 months using both classical and

ultra-deep sequencing methods.

Materials and Methods

Ethics statement
Written informed consent was obtained from all individuals

prior to study participation. The studies were approved by the

Institutional Review Board of the University of Geneva Hospitals.

RNA extraction, RT and real-time PCR assay
Clinical specimens were extracted by the HCV Amplicor

Specimen Preparation kit (Roche, Rotkreuz, Switzerland), TRIzol

(Invitrogen, Carlsbad, CA, USA), or Easymag (bioMérieux,

Geneva, Switzerland), according to the manufacturers’ instruc-

tions. Reverse transcription (RT) and real-time PCR with the

‘‘Panenterhino/Ge/08’’ primers and probe assay were performed

as previously described [38]. Picornavirus-positive samples were

detected in patients enrolled in a cohort of lung transplant

recipients (September 2008 to November 2010) [6,39] and in

hospital patients screened by the routine laboratory of the

University of Geneva Hospitals (February to November 2009)

(Table S1).

Sequencing
Complete genome sequences were obtained from the LRT and

URT samples of five chronically-infected individuals collected at

different time points during the course of infection. Fragments

were amplified by PCR using degenerate primers designed to

anneal highly-conserved sequences of the corresponding HRV

reference strain. Overlapping fragments were assembled and,

when necessary, specific non-degenerate primers were designed to

fill the gaps between the original PCR products. All primers used

in this study are listed in Table S2. PCR (primers 46 and P1.204)

and semi-nested PCR (primers 47 and P1.204, Table S2) were

performed for VP4/VP2 sequences.

PCR products were purified with the microcon columns

(Millipore, Zug, Switzerland) before sequencing. Each PCR

product was sequenced at least twice. Nucleotide changes were

confirmed by a second PCR and sequencing. Chromatograms

produced with the ABI Prism 3130XL DNA Sequencer (Applied

Biosystems, PE Europe BV, Basel, Switzerland) were directly

imported for proofreading with the Geneious Pro 5.0.3 software

(Biomatters Ltd., Auckland, New Zealand). All sequences are

available at GenBank under accession numbers HM347236-727;

JF285163-176; JF285179; JF285186; JF285192,193,195,197,198,

200,204,206-8,210,213-214,224-225, JF285228-307.

Phylogenetic analysis
Alignments were constructed using Muscle [40] with a

maximum of 64 iterations. Multiple FastA was converted into

PHYLIP format (for tree-building) with the EMBOSS program

‘seqret’ [41]. Trees were built with PhyML [42] using the GTR

model BIONJ for the initial tree and optimized tree topology and

branch lengths. Trees with fewer than 50 species used 16 rate

categories and larger trees used 8. Transition/transversion ratio,

proportion of invariant sites, and the shape parameter (alpha) of

the gamma distribution were estimated. Tree processing (including

rooting, computation of support values, and displaying) was done

with the Newick Utilities [43].

Statistical tests
All statistical data analyses were carried out using the SAS/STAT

software version 9.1.3 (SAS Institute Inc., Cary, NC, USA).

Associations between HRV species, infection site, and study cohorts

were evaluated using chi-square tests when possible, or Fisher’s

exact tests when some expected values were smaller than 5.

Full-length genome amplification for ultra-deep
sequencing

URT and LRT full-length sequences were obtained by

amplification of eight overlapping nested PCR products with

forward and reverse primers (Table S2). RT-PCR assays were

performed in duplicate to discard any mutations introduced by

polymerase errors. We used Platinium Taq DNA Polymerase

High Fidelity (Invitrogen) for PCRs, according to the manufac-

turer’s instructions. All amplicons were purified with the microcon

columns (Millipore) before sequencing. The eight overlapping

PCRs were pooled at equimolar concentrations and used for ultra-

deep sequencing for each individual sample.

Ultra-deep sequencing analysis
Samples. Libraries were prepared according to the

manufacturer’s protocol (Illumina, Inc., San Diego, CA, USA)

using indexed adapters designed by Fasteris (Fasteris SA, Plan-les-

Ouates, Switzerland) (see Methods S1).

Genome analyzer run. Libraries were pooled and sequenced

on an Illumina Genome Analyzer GAIIx (Illumina) single-read

channel for 76 cycles using a version 4 sequencing kit. We performed

base-calling using Illumina pipeline RTA SCS.2.6 and CASAVA

1.6, which produced over 24 million pass filter reads attributed

unambiguously or 1.85G bases.

Bioinformatics data analyses. Mapping was performed

using the MAQ software version 0.7.1 (http://maq.sourceforge.

net/maq-man.shtml). An average of 95% reads were mapped

on the ‘‘F78 URT 1.4 m’’ consensus sequence for each sample

analyzed with a mean coverage of 21.2K reads per nucleotide.

Mapping results were used to extract a list of single nucleotide

polymorphisms (SNPs) throughout the genome (see Supplementary

method: bioinformatics data analyses).

Mutation analysis along the whole HRV genome. Density

of mutations was represented with a Gaussian kernel density
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function using a smoothing band width of 0.1 kernel standard

deviation. Curves are shown at the same scale and normalized so

that a value of 1 is the highest density found over all genomes.

Graphs, including kernel estimates, were produced with the R

statistical package.
HRV ORF amino acid conservation plot. The conservation

plot was computed with the EMBOSS package Plotcon

program using default parameters, except for the sliding

window size, which was set to 30 aa. The same program was

used in text mode to compute the mean and standard

deviations.

Results

Prevalence of each rhinovirus species in protracted and
LRT infections

We reported previously three cases of patients chronically

infected with a unique rhinovirus strain [8]. Since then, we have

identified two additional similar cases. All five patients were

immunocompromised lung transplant recipients infected both in

the URT and LRT (Table 1). Three were infected with a HRV-A

species (HRV-A64, -A24 and -A9), and two with a HRV-B species

(HRV-B3 and -B27).

We genotyped strains found in nasopharyngeal specimens

(URT), bronchoalveolar lavage fluids (LRT), and strains identified

in cases with infections lasting more than three weeks (protracted

infection) to assess whether members of the HRV-A, -B and -C

species were equally represented in the LRT and/or in the case of

protracted infection. Samples were collected from a prospective

cohort of lung transplant recipients screened routinely from

September 2008 to November 2010, as well as hospital patients

screened at the routine laboratory of the University of Geneva

Hospitals between February and November 2009 (Table S1).

VP4/VP2 sequencing was performed on all positive cases

whenever possible. Sequences were obtained for 50 HRV-positive

specimens collected from the lung transplant recipient cohort, and

94 specimens collected from hospital patients (56 from children, 36

from adults, and 1 with age not available). Phylogenetic analysis

was performed on all sequences obtained, as well as corresponding

sequences of HRV-A and -B reference types and proposed HRV-

C reference types [22]. Of the 144 sequenced samples, 127

represented different infectious episodes with 71 (55.5%) due to

HRV-A types, 10 (7.8%) to HRV-B types, and 47 (36.7%) to

HRV-C types (Figure 1 and Figures S1A, B, and C).

No association was observed between a given rhinovirus

species and the type of infection (URT, LRT, protracted

Table 1. Baseline and main characteristics of lung transplant recipients with chronic rhinoviral infection.

Patient1
Year of
birth

Date of first
HRV positivity

Outcome
after first
HRV
positivity

Respiratory
site infected1

Nearest
rhinovirus
genotype

Time of complete
genome sequence
afterfirst HRV
positivity

Mutations/nt/day
between first and
last complete
genome sequence

Duration of
infection
(months) URT1 LRT1

P372 1937 24-Jan-01 Died after 13 m URT and LRT HRV-A64 *0 d - 3.88610205

*15 d -

11 m *86 d (2.9 m) -

- *229 d (7.6 m)

V382 1938 15-Oct-04 Recovered URT and LRT HRV-B3 76 d (2.5 m) - 9.54610206

8 m 188 d (6.3 m) -

208 d (6.9 m) -

A462 1946 18-Dec-03 Died after 18 m URT and LRT HRV-B27 201 d (6.7 m) 201 d (6.7 m) NC

15 m

R58 1958 13-Jan-04 Recovered URT and LRT HRV-A24 7 d 7 d 2.34610205

3.3 m 23 d -

86 d (2.9 m) -

F78 1978 4-Jul-06 Died after 27.7 m URT and LRT HRV-A9 42 d (1.4 m) 42 d (1.4 m) 7.27610206

- 217 d (7.2 m)

287 d (9.6 m) -

- 462 d (15.4 m)

27.4 m - 506 d (16.9 m)

731 d (24.4 m) 731 d (24.4 m)

798 d (26.6 m) 798 d (26.6 m)

821 d (27.4 m) 821 d (27.4 m)

1Upper respiratory tract specimens (URT) are nasopharyngeal swabs or aspirates; lower respiratory tract specimens (LRT) are bronchoalveolar lavage fluids.
2Partial VP1 sequence of these cases has been reported previously [8].
*Sequence obtained from cell culture isolates.
-: not available; NC: not calculated in the absence of two time points; d: day; m: months.
1Patients are designated by the first letter of their family name and the last two numbers of their birth year.
doi:10.1371/journal.pone.0021163.t001
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infection) in the whole study population (Fisher’s exact test, 4DF;

P = 0.41). HRV-A and -C were present at similar frequencies

among LRT infections (22.45% and 19.15%, respectively) in lung

transplant recipients and hospital patients (Figure 1). We found

also a good representation of different rhinovirus serotypes in all

types of specimens (URT, LRT, protracted infection) (Figure S1).

By contrast, there was a clear association between the populations

studied (lung transplant recipients versus adult and pediatric

hospital patients) and the type of infection (URT, LRT,

protracted infection) (Fisher’s exact test, 2DF; P,0.05). Six

protracted infections were observed; five in lung transplant

recipients and one in a 3-month-old infant. Finally, we observed

an association between the infecting HRV species and patient age

(Fisher’s exact test, 2DF; P,0.05). The proportion of HRV-C

positive samples (LRT, URT, protracted infection) was signifi-

cantly higher in pediatric hospital patients than in adult hospital

patients (51% versus 17%, respectively) (chi-Square 1DF;

P,0.05) (Figure 1B).

Mutation frequency and mutation hot spots in chronic
cases

Complete genome sequences were obtained at different time

points in the URT and/or LRT for the five chronically-infected

lung transplant recipients (Table 1). The number of substitutions

per nucleotide and per day is reported in Table 1 for each patient,

Figure 1. Repartition of upper respiratory tract, lower respiratory tract, and protracted infection episodes according to HRV
species. A. Percentage of each species associated with upper respiratory tract infection (URT), lower respiratory tract infection (LRT), and protracted
infection (PI) among lung transplant recipients and hospital patients. B. Detailed repartition of URT, LRT and PI episodes in lung transplant recipients,
and pediatric and adult hospital patients according to HRV species. Details of HRV-A, -B and -C types are shown in Figures S1A to C.
doi:10.1371/journal.pone.0021163.g001
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except for A46 for whom samples collected at different time points

were not available. Calculated mutation frequencies ranged

between 7.2761026 and 3.8861025. No overlapping mutations

in the URT or LRT were found between the five patients.

However, superimposition of all changes along a reference

genome (HRV-A2) (Figure 2A) revealed that whereas synonymous

changes were distributed along the genome without any apparent

specific pattern, non-synonymous mutations were clustering

mostly in the capsid genes VP2, VP3 and VP1, the first half of

2A genes, and in 3A genes. Cold spot regions were located in the

viral capsid gene VP4, as well as in 2B, 2C, 3B, 3C, and most of

3D. Only three changes were found in the 59UTR and one in the

39UTR. The variation hot spots observed in the capsid genes were

similar to the amino acid variability observed among HRV

reference types (Figure 2B).

Intra-host rhinovirus genome variation according to time
and respiratory site

Genetic variation was extensively studied for patient F78 as

several samples were available throughout his entire 27-month

infection period, including samples collected the same day in the

URT and LRT. A phylogenetic tree (Figure 3A) performed with

11 complete genome sequences showed that the URT and LRT

Figure 2. Synonymous and non-synonymous mutation hot spot regions. A. The synonymous (upper panel), 59UTR and non-synonymous
(lower panel) changes observed between the first and last samples sequenced from patients P37, V38, R58 and F78, as well as between the URT and
LRT samples from patient A46, were plotted together along the HRV-2 genome (GenBank accession number X02316) to map mutation hot and cold
spot regions. B. The conservation plot was calculated based on an alignment of the amino acid sequence of 99 rhinovirus serotypes and clinical
strains as previously published [13]. The average sequence similarity measure for the ORF was 0.114 (red line). sd: standard deviation.
doi:10.1371/journal.pone.0021163.g002
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viral populations did not segregate for at least 26 months.

Furthermore, a LRT subpopulation present in a sample collected

after 15.4 months was the founder of all URT and LRT viral

populations later collected. The non-synonymous changes that

appeared and subsequently fixed were located in VP2 (3), VP3

(1), VP1 (6), 2C (1), 3A (1), and 3D (1). The mutation rate then

slowed down shortly before the patient’s death (4.36107 and

1.36108 viral copy/ml for the last URT and LRT, respectively),

despite a high viral load at the end of our follow-up period. This

may account for the overall slower mutation rate calculated for

this patient when compared with those infected for a shorter

period (Table 1). The last three samples collected simultaneously

in both the URT and LRT were further analyzed by high

throughput sequencing to compare variation at the minority

population level ($5% of the total population). Most minority

variants present in the LRT after 26.6 months persisted in this

site, but were absent in the corresponding URT viral populations

(Figure 3B). A similar observation was made with the majority

variants and demonstrates that the genomes of the URT and

LRT viral populations varied separately, despite high replication

levels at both sites. Of note, several samples from this patient

(including sample F78 LRT 26.6 m) were successfully grown in

cell culture. Finally, the sequences of the last URT (F78 URT

27.4 m) and LRT (F78 LRT 27.4 m) samples were compared to

the first complete genome sequence (F78 URT 1.4 m) and

changes specific to the URT (upper panel) and LRT (lower panel)

were mapped along the HRV genome (Figure 3C). Specific

synonymous changes were found in both the URT and LRT

sequences. However, non-synonymous changes were observed

only in the LRT where we identified one change in the 59UTR

polypyrimidine tract [44], one non-synonymous change in the

VP2 immunogenic site 2, and one non-synonymous change in

protein 2A [32,45].

Discussion

Based on our phylogenetic analysis, the respective frequency

distribution of strains infecting the URT and LRT did not reveal

Figure 3. Intra-host genetic variation in patient F78 at the majority and minority population level. A. Phylogenetic tree of the 11
complete genome sequences corresponding to samples collected over a 27.4-month infection period in the URT and LRT of patient F78, as well as
HRV-A67 reference type (FJ445149) and 3 HRV-9 complete genome sequences (FJ445114,15,17). HRV-A 67 and FJ445117 were used as outgroups to
root the tree and are not shown. B. Minority mutation repartition along the HRV genome as recorded for the last 3 URT and LRT samples collected
from patient F78. Curves indicate minority mutation densities (estimated by a Gaussian kernel function) along the genome. C. Changes specific to the
URT and LRT. The sequences of the last URT and LRT samples collected from patient F78 were compared to the first complete genome sequence (F78
URT 1.4 m) and changes specific to the URT (upper panel) and LRT (lower panel) are mapped along the HRV genome.
doi:10.1371/journal.pone.0021163.g003
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any apparent correlation between a given HRV serotype or

species and their ability to infect the LRT. In both lung transplant

recipients and hospital patients, HRV-A and -C strains presented

a similar propensity to infect the LRT. No HRV-B strains were

found to be associated with LRT, but the relatively small number

of infected samples precludes us from drawing firm conclusions. In

this respect, we have previously described chronic LRT HRV-B

infections [8]. In our study, protracted infections were all found in

hosts with a very low level of immunity (mostly lung transplant

recipients and a 3-month-old infant). These results suggest that

host factors are determinants of disease outcome, rather than virus

type.

Five lung transplant recipients were chronically infected with

HRV during periods of time ranging from three to 27 months,

thus allowing us to study the intra-host genetic variation during

natural chronic infections in immunocompromised hosts. Com-

plete Sanger-based and ultra-deep genome sequencing were

performed at different time points and sites during infection.

Mutation mapping along the HRV genome pointed out that

synonymous changes were roughly spread along the entire ORF,

whereas non-synonymous changes clustered mostly in the capsid

VP2, VP3, and VP1 genes. These capsid genes are also the most

variable during acute infections in immunocompetent hosts [37],

as well as the most diverse among the 99 HRV reference types

[13]. The VP2, VP3 and VP1 proteins form the outer shell of the

virion and are under immune pressure, which explains their fast

evolution. The localization of mutation hot spots in these genes

in immunocompromised hosts may appear unexpected. Howev-

er, although these patients are highly immunosuppressed at the

time of transplantation, immunosuppressive therapy is then

adapted to prevent graft rejection and to preserve a residual

cellular and humoral immunity that may account for this

observation. This residual immunity is also necessary for the

control and recovery of viral and bacterial infections observed in

these patients.

We calculated the mutation frequency occurring during these

five chronic infections, each caused by a distinct HRV serotype

and for various periods of time. Mutation frequency was different

in each host and likely reflects different viral replication levels,

different host environments, and different durations of infection.

The calculated mutation frequency ranged between 7.27610206

and 3.88610205 change/nt/day. Recent data on HRV-39

genome evolution over a 5-day acute experimental infection in

human immunocompetent volunteers revealed a mutation fre-

quency of 3.461024 change/nt (equivalent to 6.8361025 change/

nt/day) [37]. Therefore, the HRV mutation frequency observed in

some immunocompromised hosts infected over months was of the

same order of magnitude as that observed in acute 5-day

infections.

Extensive analysis of rhinovirus genome modification was

performed in the case of one patient (F78) infected for more than

two years with a HRV-A9 strain. Phylogenetic analysis of 11

complete genome sequences (including ultra-deep sequences

performed at three different time points) revealed that the

URT and LRT populations were phylogenetically indistinguish-

able for a prolonged period of time, either because of co-variation

or, more likely, constant viral population mixing. Once

potentially adapted to the host through the accumulation of

non-synonymous changes mainly in the capsid gene VP1, the

viral populations appeared to evolve more slowly. Finally, we

observed signatures of putative adaptation to lower airway

conditions after several months of infection. Indeed, the last

two LRT populations studied presented specific changes in the

59UTR polypyrimidine tract and two non-synonymous changes,

one in the VP2 immunogenic site 2 and the second in protein 2A.

These changes were absent in the URT population and, upon

their appearance, the two populations remained separated as

confirmed by ultra-deep sequencing analysis. Although the direct

impact of these changes on virus growth ability at lower airway

conditions remains to be demonstrated experimentally, the very

high viral load observed at this stage suggests that both popu-

lations were adapted to their sites.

Taken together, our data suggest that immunocompromised

patients cannot clear viral infections as immunocompetent

individuals, and represent a potential reservoir for the

emergence of new variants and inter-host transmission due to

longer chronic viral infection. In addition, these patients may be

co-infected by two viruses, thus opening the door to recombi-

nation, another putative driving force of rhinovirus evolution

[30]. With the emergence of new therapies and progress in

transplantation, the population of immunocompromised pa-

tients is constantly increasing. Our results suggest that this could

accelerate the ability of viruses to adapt to the host, evolve, and

propagate and may favor a more rapid emergence of new viral

variants.

Supporting Information

Figure S1 Repartition of protracted and lower respira-
tory tract infections among the HRV-A (panel A), HRV-B
(panel B), and HRV-C (panel C) reference serotypes.
VP4-VP2 cladograms of rhinoviruses isolated from lung transplant

recipients (blue) and routinely screened hospital patients (red)

(Table S1), as well as the 74 HRV-A (panel A), 25 HRV-B (panel

B), and 61 proposed HRV-C reference types (black) (panel C).

SV1 (GenBank accession number AY064708) was used as an

outgroup. LRT and PI are highlighted by arrows and black lines

respectively.

(PDF)

Table S1 Samples collected from the lung transplant
recipient cohort and samples from hospital patients
screened by the routine laboratory of the University
Hospitals of Geneva. *Samples are designated by the first letter

of their family name followed by the last two numbers of their

birth year (eg. B48), the month and year of sample collection (eg.

0209), and the site of sampling (U, upper respiratory tract; L,

lower respiratory tract).

(XLS)

Table S2 Primers used to amplify and sequence the
genomes of the clinical strains described in Table 1.

(XLS)

Methods S1 Ultra-deep sequencing analysis.

(DOC)
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