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Interest in nanomedicines has grown rapidly over the past two decades, owing to the
promising therapeutic applications they may provide, particularly for the treatment of
cancer. Personalised medicine and ‘smart’ actively targeted nanoparticles represent an
opportunity to deliver therapies directly to cancer cells and provide sustained drug
release, in turn providing overall lower off-target toxicity and increased therapeutic effi-
cacy. However, the successful translation of nanomedicines from encouraging pre-clinical
findings to the clinic has, to date, proven arduous. In this review, we will discuss the use
of nanomedicines for the treatment of cancer, with a specific focus on the use of poly-
meric and lipid nanoparticle delivery systems. In particular, we examine approaches
exploring the surface functionalisation of nanomedicines to elicit active targeting and
therapeutic effects as well as challenges and future directions for nanoparticles in cancer
treatment.

Introduction
Cancer is one of the most significant global health burdens and the leading cause of mortality world-
wide. Despite notable improvements in cancer treatment, one of the most prominent challenges affect-
ing the development of novel therapeutics is controlling the biological fate of the active
pharmaceutical ingredient (API) following administration. Current first-line therapies, specifically
within the field of cancer, are often limited by poor stability, solubility and rapid metabolism, resulting
in poor pharmacokinetics [1]. Furthermore, major off-target effects result in adverse toxicities in
healthy cells, in turn contributing to reduced treatment tolerability and poorer patient outcomes.
Failure of treatment is therefore frequently attributable to inadequate drug delivery to the tumour site,
as opposed to the efficacy of the drug itself.
One means of overcoming this issue is through incorporation of the drug within nano-based drug

delivery systems. Nanomedicine is rooted in the concept of developing improved formulation of diffi-
cult/insoluble APIs, but is now an exponentially evolving interdisciplinary field. A substantial amount
of research has been carried out investigating nanoparticle design and development, including assess-
ment of passive targeting/accumulation, active targeting, and triggered drug release.
A particular benefit of nanoparticles is the opportunity to entrap APIs within their structure, pro-

viding a transient barrier for labile therapeutics as well as enhancing the bioavailability of drugs which
ordinarily exhibit poor solubility. Thus nanocarriers can be used to protect drug cargos while in circu-
lation, improving both pharmacokinetic and pharmacodynamic profiles of APIs [2–4]. Furthermore,
nanoparticles have the ability to preferentially localise within the tumour tissue due to the increased
permeability of the tumour microenvironment (TME) neovasculature, resulting in sustained drug
release [5–7]. Essentially this means that the therapeutic window of the payload agent can be
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broadened by nanoformulation through simultaneous reduction in systemic toxicity and enhancement of drug
efficacy. These properties are particularly appealing within the field of oncology for sustained delivery of potent
cytotoxic chemotherapeutic agents [8–15].
Although the majority of research has focused upon the entrapment of cytotoxic agents, nanoparticles for

the intracellular delivery of proteins and small molecules is an avenue which has enormous potential. To date
there are >200 FDA approved proteins and peptides to treat a variety of diseases, but efficacy is often compro-
mised by poor penetration across biological membranes, their immunogenicity and short plasma half-life (due
to inadequate stability and rapid clearance) [16]. Therefore, the entrapment of proteins and peptides within
nanocarriers has potential to overcome these limitations. This can be achieved by either encapsulating the
protein/peptide within the nanoparticle itself or via chemical conjugation to the particle surface [17].
Moreover, studies have shown that hydrophobic ion pairing is a method in which the solubility of charged
hydrophilic molecules can be modulated, where pairing with oppositely charged counter molecules (e.g.
nuclear localisation sequence) can be utilised to increase the loading of peptides and nucleic acids within nano-
particle cores [18,19].
The use of nanoparticles and other nanomedicines as drug delivery systems is an approach now established

clinically since the first FDA approval of a nanomedicine, DOXIL® (liposomal doxorubicin) in 1995 [20]. Since
then, the field of nanomedicine has developed substantially, with several other nanomedicines entering the
market. However, the application for use in non-cancer related conditions is also of particular interest, espe-
cially for vaccine delivery, notably implemented within the formulation of the numerous SARS-CoV-2 vaccines
approved in 2021 [21–24]. More recently, the emergence of targeted therapies has significantly altered the
design process of novel drug modalities, particularly when considering the treatment of solid tumours. These
next generation nanoparticles are more frequently multifunctional, where their surface can be functionalised
while also entrapping therapeutics within the nanoparticle, leading to more innovative approaches in actively
targeting tumour sites and eliciting biological effects that have therapeutic usefulness, independent of enhanced
delivery alone.

Nanoparticles in cancer therapy
Despite the growth of the nanomedicine field and promising pre-clinical data, to date only 12 nanoformula-
tions have been FDA/EMA approved for the treatment of cancer (Table 1).
Whilst initial successes in the clinic have predominantly used lipid-based carriers such as liposomes, many

other opportunities exist through a broad range of polymers and materials which are FDA/EMA ‘generally
regarded as safe’ (GRAS) [25]. A growing area of interest focuses on the synthesis of polymeric nanoparticles as
delivery systems where GRAS biodegradable synthetic polymers are commonly utilised (e.g. poly(DL-lactic
acid) (PLA), poly(glycolic acid)(PGA) and poly(lactic-co-glycolic acid)(PLGA)) [26].

Mechanisms of cellular targeting
Passive targeting nanoparticles
It is now well established that the presence of a leaky vasculature is a feature frequently associated within the
hypoxic TME, where angiogenesis must occur simultaneously to fulfil the metabolic requirements of the
rapidly proliferating tumour cells, resulting in a disorganised dense neovasculature. A particular feature of the
majority of tumour vessels formed is that they are defective, with apertures (<600 nm) left between the endo-
thelial cells [27]. Consequently, this leaky vasculature, coupled with poor lymphatic drainage in the tumour
tissue, permits large macromolecules (>40 kDa) and nano-sized drugs to passively diffuse and accumulate at
the disease site. This passive targeting phenomenon was first described in 1986 by Matsumura and Maeda and
became known as the enhanced permeability and retention (EPR) effect [28–30] (Figure 1). Despite the
approval of some nanoparticles which rely on the EPR Effect (e.g. Doxil © and Caelyx ©), robust exploitation
of passive targeting for nanoparticle delivery has proven challenging. The foremost issue is the deep reliance of
the EPR effect on intrinsic tumour biology, in particular: (1) intratumoural pressure, (2) degree of angiogenesis
(endothelial gap size and blood supply), (3) stromal density of the tumour and perivascular growth [31]. As a
result, the EPR effect is inevitably heterogenous with vast variation across tumours and individual patients [32–34].
Often only a small percentage (<1%) of nanoparticles accumulate within the tumour site [35], most often
attributed to the multiple challenges aforementioned. Approaches to improve the EPR effect is an area of
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ongoing research with the use of vasodilating agents and vascular disruption to enhance uptake under investi-
gation [36–40].

Actively targeted nanoparticles
Since Paul Ehrlich suggested the concept of the ‘magic bullet’ in the early 1900’s, where a therapeutic has the
ability to selectively target diseased cells while avoiding/limiting intervention with healthy tissues, the concept
of actively targeting tumour cells has been a focus of intense research [41]. Whilst nano-sized systems possess
inherent delivery benefits, advances in synthesis/formulation approaches have resulted in the concept of active
or site-specific targeting. This model has many benefits and is particularly relevant in the treatment of cancer,
where the ability to selectively target the tumour site is desirable to reduce off-target toxicity towards healthy
tissues.
Active targeting has already been used with success in the clinic, with a total of 11 antibody-drug conjugates

(ADCs) approved (e.g. Adcetris™ and Kadcyla™) [42,43]. ADCs use monoclonal antibodies linked to a cyto-
toxic payload, where the antibody is employed to specifically target and deliver the payload to be internalised
and released within the target cell of interest (Figure 2A). ADCs are becoming an important therapeutic devel-
opment approach, proving a favourable treatment option for a variety of cancer patients. Indeed, one specific
attribute of these drugs is that they can overcome resistance to a cell target, providing a second line treatment
to patients who have acquired resistance. The classic example of this is the treatment of HerceptinTM resistant
Her2 positive breast tumours with KadcylaTM, which uses Herceptin as the targeting agent to deliver the micro-
tubule inhibitor maytansine payload [16]. ADC development includes the development of stable linkers

Table 1 Advantages of clinically approved nanoparticles in the field of oncology

Name Nanoparticle subtype
Clinical
advantage Cancer indication

Clinical
approval

Doxil® Pegylated liposomal
(Doxorubicin)

Reduced systemic
exposure

Ovarian cancer and multiple
myeloma

FDA (1995)
EMA (1996)

DanuoXome® Non-pegylated
Liposome (Daunorubicin)

EPR effect HIV-associated Kaposi’s
Sarcoma various leukaemia’s

FDA (1996)

DepoCyt® Liposomal Cytarabine EPR effect Lymphoma
Leukaemia

FDA (1999)

Myocet® Non-pegylated
Liposome (Doxorubicin)

Sustained release Metastatic breast cancer EMA (2000)

Abraxane® Albumin bound
nanoparticle (paclitaxel)

Sustained release Metastatic breast cancer
Metastatic pancreatic cancer
Non-small cell lung cancer

FDA (2005)
EMA (2008)

MEPACT® Non-pegylated liposome
(mifamurtide)

Sustained release Osteosarcoma EMA (2009)

NanoTherm® Iron Oxide Hyperthermic
treatment

Brain tumours EMA (2011)

Marqibo® Non-pegylated liposome
(vincristine sulfate)

Sustained release Acute lymphoblastic
leukaemia

FDA (2012)

Onivyde® Pegylated
Liposome (Irinotecan)

Immune evasion Advanced pancreatic cancer FDA (2015)

Vyxeos® Liposome (cytarabine
and daunorubicin)

Combination
therapy
Sustained release

Acute myeloid leukaemia FDA (2017)
EMA (2018)

Apealea® Paclitaxel Micelle EPR effect
Sustained release

Ovarian, peritoneal, and
fallopian tube cancer

EMA (2018)

NBTXR3® Hafnium oxide NPs Radiotherapy Locally advanced soft tissue
sarcoma

EMA (2019)

(This table summarised information which is available at accessdata.fda.gov (https://www.accessdata.fda.gov) and ema.europa.eu.en/medicines
(https://www.ema.europa.eu/en/medicines) 22th September 2021).
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adopting more innovative site-specific conjugation methods to improve conjugation stability, as well as reducing
variability and optimisation of Drug:Antibody ratios (DAR). The conjugation characteristics of the linker are
vital in controlling the therapeutic window and effectiveness of the ADC, where the DAR determines overall
potency and toxicity. DAR represents the average number of cytotoxic drug molecules attached per single anti-
body (typically <10) which means that the key limiting factor for ADC effectiveness is receptor copy number
on the target cell; therefore, the lower the receptor density on the cell surface, the less drug will be successfully
internalised. Many studies have shown that increasing the DAR can destabilise the antibody and therefore
ADCs normally explore the use of high-potency payloads to compensate, which inherently have narrower
therapeutic windows [44]. The majority of ADCs under investigation utilise potent microtubule inhibitors, yet
many have failed to reach the clinic due to their dose limiting toxicities. In an attempt to overcome this,
current research focuses on the use of less potent cytotoxic drugs, with a lower IC50 than maytansine or aurista-
tin, such as topoisomerase targeting agents (e.g. camptothecin derivatives), highlighted by the recent FDA
approval of trastuzumab deruxtecan (approved 2019), and more recently, Sacituzumab Govitecan, (approved
2021) an ADC which targets Trop2 linked to SN-38, the active metabolite of irinotecan [45–48].
Following on from the experience of developing ADCs, the ability to conjugate targeting moieties such as

antibodies to the surface of nanoparticles represents an exciting approach to develop a new type of ‘magic

Figure 1. The enhanced permeability and retention (EPR) effect.

During the initial stages of tumour formation, there is a rapid pro-angiogenic neovascularisation to supply the tumour with all

nutritional requirements to survive. As a result of the rapid pace of formation, blood vessels are often defective, with large

apertures left between endothelial cells resulting in a leaky vasculature. Nanoparticles have the capacity to exploit this defect in

vessels, allowing them to pass from the blood vessels into the tumour site. Additionally, retention of the nanoparticles occurs

within the tumour site as a result of poor lymphatic drainage. Image created with the use of Smart Servier Medical Art.
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bullet’ therapy [49] (Figure 2A). As with ADCs, the binding of the tumour-specific antibody with its cognate
antigen on the diseased cell can trigger internalisation of the complex to deliver the payload internally and
elicit its cytotoxic effect, thus limiting payload exposure to healthy tissues [50] (Figure 2B). An interesting facet
of antibody targeted nanoparticles is that they have the potential to enhance the DAR which remains one of
the key efficacy-limiting factors with ADCs. This is because nanoparticles can be packed with an increased
payload resulting in DARs of >100 as opposed to <10 with current ADC technologies, ensuring the internalisa-
tion of a much higher concentration of drug, which compensates for limitations such as low copy number [49].
Despite the clear opportunities provided by the exquisite selectivity and affinity of antibodies, it is important

to realise that they are only one class of agent that can be used to target nanomedicines. In the following sec-
tions, the application of antibodies and other targeting agents will be further discussed.

Functionalisation of nanomedicines
The surface of a nanoparticle represents a bioengineer’s dream! The ability to coordinate the presentation of
functional handles on the nanoparticle surface that can be modified in a range of different ways to achieve the
exact specification required for their intended use is potentially unlimited. Not only can nanoparticles be func-
tionalised for use in active targeting; nanoparticle surfaces can be further manipulated to change surface charge
and incorporate stimuli responsive properties (Figure 3).

Figure 2. Structure, binding and internalisation of Antibody-drug conjugate’s (ADCs) and multifunctional antibody

conjugated nanoparticles.

Schematic representation highlighting (A) the conceptual structure of an ADC and a multifunctional antibody conjugated

nanoparticle and (B) internalisation, breakdown, and drug release within the cell. The tumour-specific ligand of the ADC or

nanoparticle interacts with and binds to the cell surface expressed antigen. Upon binding, the antigen–protein complex

becomes internalised via receptor mediated endocytosis. The nanoparticle or ADC linker is degraded within the

endo-lysosomal system, resulting in drug release within the cell. Illustrations not to scale. Image created with the use of Smart

Servier Medical Art.
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PEGylation
For polymeric nanoparticles to reach their target tissue they should be capable of avoiding clearance through
the mononuclear phagocytic system (MPS). The MPS functions to remove foreign material from the blood
stream and is the first barrier which nanoparticles encounter in vivo. Through opsonisation, immunoglobulins
and complement system proteins adhere to the hydrophobic nanoparticle surface effectively ‘flagging’ them for
recognition by macrophages and removal via phagocytosis [51]. To avoid/limit MPS uptake, researchers have
developed a strategy which involves coating the surface of the nanocarrier with a hydrophilic polymer. The
presence of hydrophilic PEG chains on the hydrophobic nanoparticle surface creates a barrier which permits
the nanoparticle to evade opsonisation through camouflaging the surface charge and steric repulsion, limiting
the ability of opsins to bind to the nanoparticle surface [52]. This significantly reduces the rate at which nano-
particles are removed from the blood stream [53]. Whilst a range of polymers may be utilised, PEG is by far
the most commonly used as it is generally regarded as safe in formulations with an extensive track record in a
variety of clinically approved drugs [5,52].
Many studies have illustrated the integration of PEG within formulations to increase circulation time for

both liposomes and polymeric nanoparticles [54,55]. Importantly, the use of PEGylated products is now well
established in the clinic. Notably, the first formulation to be approved by the FDA, Caelyx® (DOXIL, 1995), is a
doxorubicin entrapped PEGylated liposome. In vivo studies demonstrated clearly that the serum half-life of the
doxorubicin payload could be significantly enhanced by the addition of PEGylation in the formulation [20,56].
Additionally, PEGylated liposome formulations also have an increased ability to penetrate the leaky tumour
vasculature, thus resulting in enhanced drug accumulation [56–58]. More recently, PEGylated formulations
such as Onivyde® (PEGylated Irinotecan liposome) for the treatment of advanced pancreatic cancer have been

Figure 3. Different strategic approaches for the surface functionalisation of nanoparticles.

Nanoparticle surfaces can be modified through the incorporation of different polymers/lipids to modify surface charge as well

as thermo and pH sensitive properties. PEGylation of the nanoparticle surface can be used to extend half-life of the

nanoparticles in vivo. Furthermore, nanoparticles can be targeted through the conjugation of targeting moieties to the

nanoparticle surface. In addition to surface modification, nanoparticle design can vary based on the nature of the therapeutic

agent entrapped within the nanoparticle core. Abbreviations: PEG, Polyethylene glycol; vNAR, Variable new antigen receptor;

scFv, single-chain variable fragment; sdAb, single domain antibodies. Image created with the use of Biorender & Smart Servier

Medical Art.
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approved, whilst Genexol® (PEG-PLA micelles containing paclitaxel) for the treatment of metastatic breast
cancer is currently under clinical investigation [15,53,59–61].

Targeting moieties
This approach requires the presence of a target antigen which is highly or uniquely expressed on tumour cells
in comparison with normal healthy tissues, as well as the identification of a targeting moiety which binds with
high affinity and specificity to the target antigen selected [50]. The ideal targeting ligand should possess a func-
tional handle which aids stable conjugation without diminution of ligand affinity. Conjugation should result in
targeted nanoparticles which display minimal aggregation and have an adequately dense coating of the target-
ing moieties [62]. To date, a wide range of targeting moieties have been studied to functionalise nanoparticles
including traditional antibodies formats, F(Ab)2 fragments, proteins, peptides and aptamers to more innovative
approaches through the use of small single chain antibodies such as ScFv’s, VHH domains and vNARs [63–69].
When exploiting such ligands for the targeted delivery of nanoparticles, it is often necessary to introduce the
appropriate reactive moiety on the surface of the nanoparticle, to facilitate conjugation. Countless bioconjuga-
tion methods may be applied, with the most common approach being the use of carbodiimide and maleimide
chemistries. However, alternative approaches, including ‘click’ chemistries, are now being evaluated with super-
ior conjugation efficiencies and biological functionalities reported [64,65,70–72].
A significant volume of research has been carried out investigating surface functionalisation of nanoparticles.

BIND-014 (Accurins), a polymeric nanoparticle with a therapeutic payload (Docetaxel) designed to target
tumours with an anti-PMSA (Prostate-specific membrane antigen) targeting ligand grafted on the nanoparticle
surface was the first to enter clinical trials [73,74]. Despite not achieving clinical approval, experience gained
from the development of BIND-014 has highlighted the need for a programmable nanoformulation, a combin-
ation of controlled release polymer and a targeting moiety which has the capacity to target the tumour at three
levels: (1) tissue, (2) cellular and (3) molecular (Figure 4).
As a result, many researchers have exploited this model of triple targeting, where studies have indicated that

conjugation of Trastuzumab (anti-HER2) or Rituximab (anti-CD20) to PLA-nanoparticles results in a six-fold
increase in the rate of nanoparticle uptake compared with similar controls lacking antibody functionalisation
[75]. Further studies have focused on optimising the conjugation of both Trastuzumab and Cetuximab F(ab)2
fragments to PLGA-PEG nanoparticles, through a selectively re-bridged strained alkyne handle on the F(ab)2
fragments to permit azide ‘click’ conjugation chemistry [65,76]. This advanced conjugation method resulted in
significant improvement in antigen binding owing to the production of a highly uniform nanoparticle where
the targeting moiety is conjugated in a site-selective and optimally orientated manner, when compared with
conventional amine-selective carbodiimide chemistry [71]. In addition to the use of monoclonal antibodies and
fragments, research has also more recently focused on the use of antibody like molecules (e.g. vNARs), peptides
and aptamers as next generation targeting agents [77,78]. As a result of their unique properties these new tar-
geting agents have the capability to enhance tissue penetration and extend tumour retention times, improving
upon previously utilised nanoparticle targeting ligands [79,80]. Whilst their potential use for nanoparticle func-
tionalisation has already been demonstrated within the literature, they are yet to enter clinical investigation
[63,64,81–83].
The role of active targeting can be further enhanced in some settings through receptor activation, which can

be utilised as a dual approach concurrently with active targeting. Some receptor targeted monoclonal antibodies
have showed limited efficacy in clinic (e.g. AMG655 and Death Receptor 5 (DR5)), which is thought to be as a
result of weak receptor activation [84]. For instance, DR5 requires cross-linking or receptor clustering for acti-
vation and therefore recent DR5-targeted therapeutic design has progressed towards multivalent agents,
whereas first-generation DR5-targeting antibodies were bivalent [85–87]. Alternatively however, through the
use of a multi-functional antibody-conjugated nanoparticle, a high number of antibody molecules can be con-
jugated per particle, resulting in a sufficient density of antibody paratopes to induce apoptosis via effective DR5
clustering, unlike free antibody alone [66,88,89]. Furthermore, studies have indicated that the entrapment of a
cytotoxic payload can enhance drug targeting to antigen-expressing cells resulting in superior toxicity [65].

Surface charge
Altering the surface charge of nanoparticles is another potential avenue to tailor nanoparticle delivery systems,
where nanoparticles can possess an anionic, cationic, or neutral charge. To date, the use of anionic/neutral
nanoparticles have shown success within the clinic (Table 1), however utilisation of cationic nanoparticles is of
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much interest due to their ability to enhance cellular uptake (in comparison with neutral/anionic nanoparti-
cles), and manipulate intracellular trafficking once internalised (e.g. endo/lysosomal escape) [90]. Cationic
nanoparticle interactions with the cell are promoted via electrostatic attraction owing to the net negative charge
which is characteristic of the plasma membrane. This in turn enhances clathrin-mediated endocytosis of the
nanoparticle, when compared with anionic or neutral nanoparticles [91]. Additionally, studies have indicated
uptake may also be ATP-independent as a result of direct translocation into the cell [90,92–94]. One drawback
however in the use of cationic nanoparticles is the associated increased cell cytotoxicity, which is significantly
increased compared with anionic/neutral nanoparticles. The exact mechanism of action associated with the

Figure 4. Evolution of targeted therapies from the approval of small molecules to the first approval of nanomedicines

and molecular targeting small molecule kinase inhibitors.

A schematic representation of the progression of targeted therapies from the use of small molecules alone, through to

targeting at a tissue, cellular and molecular level. Such advancement has paved the way for potential triple targeting

approaches, wherein future targeted nanoparticle formulations, possessing a range of targeting moieties and advanced

polymer chemistries, may target all three levels simultaneously and in turn greatly enhance treatment specificity and efficacy.

Image created with the use of Biorender & Smart Servier Medical Art.
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toxicity is not fully elucidated, however it has been suggested that cationic nanoparticles activate caspase 3/7
and cleave PARP, signifying stimulation of apoptosis and cell necrosis. In addition to cytotoxicity, cationic
nanoparticles are more rapidly cleared from the blood stream as a result of their charge, however this can be
lessened by incorporation of PEG within the nanoparticle formulation to increase plasma circulation time, as
discussed above. Aside from cationic nanoparticle toxicity and clearance, with the correct formulation, cationic
nanoparticles may reduce cargo degradation and elicit desired intracellular effects at a rapid pace via escaping
the endo-lysosomal pathway. This can be achieved through exploiting phenomenon such as the proton sponge
effect, where pH buffering agents can be manipulated due to the acidic nature of endosomal/lysosomal vesicles
to stimulate cargo release as a result of membrane destabilisation [95,96]. Under acidic conditions, numerous
macromolecules which exhibit low pKa amine groups (e.g. PEI) promote release, whereby unprotonated amines
within the cationic polymer become protonated, which in turn leads to an influx of chlorine ions and water
into the lysosome. This influx of water results in osmotic swelling and lysis, whilst paired forces of repulsion in
the cationic polymer results in further disruption of the lysosomal membrane (Figure 5) [96–99].

pH/thermo sensitive nanoparticles
Stimuli responsive nanoparticles have generated interest due to their potential to improve drug delivery by
releasing therapeutics in response to pH and/or temperature alterations. pH sensitive nanoparticles are often
tailored to respond to a fluctuation in pH found within the TME, in particular the acidified vesicles of the
endo/lysosomal systems where nanoparticles accumulate following endocytosis. Thus pH-sensitive polymers
such as PDPA (poly(2-diisopropylamino)ethyl methacrylate) and PPAA (Poly(propylacrylic acid) can be uti-
lised to exploit the acidic pH of endosomes and lysosomes [99–101]. Cytosolic delivery of therapeutic agents
from the endosome is crucial in order to protect drugs susceptible to degradation by lysosomal enzymes. In
such cases, nanoparticle formulation can be tailored through incorporation of polymers which disassemble at
endosomal pH, promoting endosomal escape, or via the incorporation of cell penetrating molecules, such as

Figure 5. The proton sponge theory.

Cationic nanoparticles have the ability to escape the endo-lysosomal pathway, allowing cargo to enter the cytosol using

methods such as the proton sponge effect. Endosomes fuse into lysosomes, where unprotonated amine groups on cationic

nanoparticles become protonated. The protonation results in the influx of chlorine ions and water causing the osmotic

rupturing of the lysosomal membrane, stimulating stimulate cargo release. Image created with the use of Biorender.
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peptides which exclusively promote endosomal escape [102]. Activated upon a fall in pH (4.5–6.0), these nano-
particles enable the release of their cargo within these more acidic environments and subsequent release into
the cytoplasm [103,104]. Furthermore, thermosensitive liposomes (e.g. ThermoDox), modified via the addition
of thermosensitive lipids (e.g. distearoyl phosphocholine and 1,2-dipalmitoyl-sn-glyce-ro-3-phosphocholine)
and/or polymers [e.g. poly(N-isopropylacrylamide)] are considered favourable for site-specific delivery, where
particles remain in a stable state at their lower critical solution temperature. Upon undergoing slight change in
temperature, most often induced by radiofrequency ablation, which induces mild hyperthermia of the tumour
site (∼40–43°C), thermosensitive nanoparticles have the ability to trigger cargo release predominantly within
the TME [105,106]. However, issues have been raised on delivery effectiveness, as localised therapy depends on
the ability to accurately maintain a controlled elevated temperature, specifically within the tumour site while
minimising exposure to surrounding healthy tissue. As a result, the ability to target deep within tissues has
proven problematic, thus currently limiting treatment to superficial tumours. However research is progressing
through the use of focused high density ultrasound to allow more controlled and specific targeting [107].

The future of nanomedicine
The amalgamation of a small size, high surface area: volume ratio and ability for extensive functionalisation
endow nanoparticles with the capability to address a range of drug delivery challenges [1,8]. However, success-
ful clinical application of nanomedicines has been limited. Whilst the total number of nanoformulations which
are FDA approved has increased in the last decade, many of these are for non-biomedical implications. Whilst
early-stage research demonstrates the advantages of nanomedicine delivery approaches, several issues must be
addressed to translate this more readily from bench to clinic, such as better understanding the biological fate of
nanomaterials in vivo, better appreciation of their interactions within the blood stream and further investigation
of their trafficking through intracellular compartments. In addition to investigations into their biological fate,
issues relating to manufacturing on large scale must also be considered. Whilst complexity of design may theor-
etically aid delivery, this must be implemented in a manner which is both reproducible and scalable. Such
manufacturing issues have recently been addressed through the advancement of microfluidic technology, which
holds great promise for nanomedicine production at an industrial scale [108,109]. Whilst nanomedicines have
been granted approval in the oncology setting, advancements of the field such as improved targeting strategies,
has led to the development of innovative formulations, some of which are now undergoing clinical trials
(Table 2).
Advanced nanotechnology provides the opportunity to combine numerous treatment avenues within the

same nanoparticle to develop multifunctional nanoparticles combining chemotherapies, targeting agents,
immunotherapies and photodynamic therapies, highlighting the potential scope for ‘precision’ nanoparticle
development, which could be particularly important for addressing the need of targeting metastatic cancer in
complex evolving tissue milieu [110]. Furthermore, nanoparticles can be designed to respond to specific
stimuli, such as fluctuations in temperature or pH, as well as hypoxia and the presence of specific enzymes
within the TME [110–115].
In addition to chemotherapeutic indications; immune therapy, gene delivery and gene silencing are rapidly

emerging treatments within the field of oncology, offering a variety of advantages including high specificity,
potency, reduced off-target effects, as well as the possibility of targeting multiple genes, thereby concurrently
targeting many of the hallmarks of cancer [116,117]. Immunotherapy is a catch-all term that involves harnes-
sing or manipulating the patient’s own immune system to not only to recognise but kill cancer cells.
Nanomedicine may offer opportunities to enhance this revolutionary approach, for example through delivering
chemotherapies such as oxaliplatin which can induce immunogenic cell death, thus not only killing the tumour
cell, but changing the TME to unleash an anti-tumour immune response [118]. Additionally, surface modifica-
tion of nanoparticles to incorporate immune stimulation such as the use of an anti-CD40 monoclonal antibody,
has been shown to induce potent CD8+ T cell responses resulting in tumour growth attenuation and prolonged
survival in preclinical models [118,119].
Other than the more conventional use for entrapment of APIs, nanocarriers have the potential to target spe-

cific genes. Gene therapy has shown great promise in the literature, both as single agents and in combination
with cytotoxic agents, where RNA molecules such as small interfering RNAs (siRNAs) and micro-RNAs
(miRNAs) are capable of regulating expression of certain genes which contribute to cancer development.
Despite preliminary success, clinical application remains largely limited; a result of poor pharmacokinetics and
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potency as well as off target effects and intolerable levels of toxicity. Delivery of large negatively charged
nucleic acids which are fragile inside the cell can also be problematic, therefore the use of a nanocarrier could
be a solution to protect the cargo while aiding delivery to the TME as well as minimising toxicity [120]. Since
the introduction of the first liposome based siRNA delivery system in clinical trials in 2008, the development of
DNA/RNA based nanocarriers has been an evolving field [121]. Studies have looked at systemic delivery of
RNAs using scFv modified liposome-polycation-hyaluronan nanoparticles in lung cancer models, which
through inducing apoptosis led to significant tumour inhibition [122]. Additional studies have investigated the
use of a nanosized immunoliposome-based anti-HER-2 siRNA delivery complex to preferentially target tumour
cells, where efficiency of the complex was improved by the inclusion of a pH-sensitive histidine-lysine peptide
[123]. The complex demonstrates the ability to sensitise tumours to chemotherapeutic agents and silence the
target gene of interest, effecting downstream pathways in vivo, as well as significantly inhibiting tumour growth
in a pancreatic cancer model [123].
Within the past year, the subject of mRNA has become more of a ubiquitous topic, owing to the approval of

RNA-based vaccine nanocarriers for COVID-19 worldwide [23]. The remarkable speed at which these vaccines
were advanced is majorly owed to the fact that delivery of nucleic acids using lipid nanoparticles has been
widely examined, where structure, uptake, surface-functionalisation endosomal escape, cargo release, clearance
and, importantly, safety had to a degree already been optimised. This recent interest in nanomedicines

Table 2 A promising future: a selection of nanoparticles currently undergoing clinical trials within the field of
oncology (with clinical stage)

Name Nanoparticle subtype
Clinical
advantage Cancer indication Status

Clinicaltrial. gov
identifier

MM-310 Liposome (Ephrin type-A
receptor targeted docetaxel)

Targeted therapy Solid tumours Phase I
ongoing

NCT03076372

PROMITIL Pegylated liposome
(mitomycin-C)

Immune evasion Solid tumours Phase I
complete
Phase Ib
recruiting

NCT03823989

ANTI-EGFR-IL
dox

Liposome (Doxorubicin)
Anti-EGFR

Targeted therapy Advanced triple
negative EGFR positive
breast cancer

Phase I/II
recruiting

NCT02833766
NCT03603379

ThermoDox Liposome
Thermosensitive
(Doxorubicin)

Temperature
triggered sustained
release

Breast Cancer
Liver tumours
Hepatocellular
carcinoma

Phase I/II/
III

NCT02536183
NCT02181075
NCT02112656
NCT00826085

Genexol-PM Polymeric micelle
nanoparticle
(Paclitaxel)

Sustained release Ovarian cancer Phase II NCT01276548

NK105 Polymeric nanoparticle
(Paclitaxel)

Sustained release Breast cancer Phase III NCT01644890

CTX-Somatostatin Polymeric nanoparticle
(Cetuximab), somatostatin
decorated

Targeted therapy
Sustained release

Colon cancer Phase I NCT03774680

PRECIOUS-01 PLGA nanoparticle
(immunomodulating agent)

Sustained release
Cargo delivery

NY-ESO-1 positive
cancers

Phase I NCT04751786

AR160 Paclitaxel albumin-stabilized/
Rituximab-coated
nanoparticle

Targeted therapy
Sustained release

Non-Hodgkin’s
lymphoma

Phase I NCT03003546

NK012 Polymeric nanoparticle
(SN38)

Sustained release Solid tumours Phase II NCT00951613
NCT00951054

Anti-EGFR-IL-dox EGFR-targeting liposome
(Doxorubicin)

Targeted therapy
Sustained release

Solid tumours
Breast cancer

Phase I
Phase II

NCT01702129
NCT02833766

(This table summarised information which is available at Clinicaltrials.gov (https://clinicaltrials.gov) as of 22nd September 2021).
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highlights the abundance of research which is on-going, where combination with other therapies as well as
further optimisation of the delivery system may hold the key to improve mRNA-based therapies and gene
editing.

Conclusion
Despite many advances in cancer treatment, there is still a clinical need for superior, kinder, and more effective
therapies. The extensive application of nanomedicines within oncology has yielded some significant benefits
but there is much greater potential to be still realised. With formulation advancements in terms of entrapping
therapeutics within the nanoparticle core, as well as the concept of surface functionalisation aiding active tar-
geting, an ever-growing number of formulations are likely to enter clinical trials for the treatment of cancer in
the coming years. Further work to better understanding the biological fate of nanomaterials in vivo as well as
improvements on large scale manufacturing and stability will further increase the success of the nanomedicine
field within oncology.

Perspectives
• In summary, nanoparticle drug delivery systems offer significant advantages when compared

with their free drug counterparts, overcoming limitations in delivery via controlling the bio-
logical fate of drugs in vivo, including higher drug deposition at the tumour site, in turn
increasing drug efficacy and reducing undesirable off-target side effects.

• Advancement within the field, particularly in regard to improved targeting strategies, has led to
the development of innovative formulations, with a particular focus on surface functionalisa-
tion using targeting ligands, many which are currently in clinical trials.

• Whilst 12 nanomedicine therapies have been clinically approved for an oncology indication,
these have primarily focused on entrapment and PEGylation to improve API performance.
Therefore, combination of entrapment with advancements in active targeting and surface
modifications of nanomedicines have the potential to realise tangible patient benefit via
exploiting a triple targeting approach. This, in combination with improved manufacture
scale-up to ensure a commercially viable system, should facilitate the advent of next gener-
ation nanomedicines into the clinic.
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