
https://doi.org/10.1177/1753466620971143 
https://doi.org/10.1177/1753466620971143

Therapeutic Advances in Respiratory Disease

journals.sagepub.com/home/tar 1

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Ther Adv Respir Dis

2020, Vol. 14: 1–17

DOI: 10.1177/ 
1753466620971143

© The Author(s), 2020. 

Article reuse guidelines:  
sagepub.com/journals-
permissions

Introduction
Idiopathic pulmonary fibrosis (IPF), a chronic 
and fatal fibrotic lung disease in people over 
50 years old is estimated to affect 14–42.7  
per 100,000 people.1 IPF is characterized by pro-
gressive subpleural and paraseptal fibrosis, heter-
ogeneous honeycomb cysts (honeycombing), and 

clusters of fibroblasts and myofibroblasts.2 The 
median survival time of patients with IPF is  
2.5–3.5 years, with 5-year survival rate around 
20%.1 Currently, two small molecules (pirfeni-
done and nintedanib) are approved for IPF  
and are reported to slow down lung function 
decline caused by disease progression. However, 
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Abstract
Background: There are two US Food and Drug Administration (FDA)-approved drugs, 
pirfenidone and nintedanib, for treatment of patients with idiopathic pulmonary fibrosis (IPF). 
However, neither of these drugs provide a cure. In addition, both are associated with several 
drug-related adverse events. Hence, the pursuit for newer IPF therapeutics continues. Recent 
studies show that joint analysis of systems-biology-level information with drug–disease 
connectivity are effective in discovery of biologically relevant candidate therapeutics.
Methods: Publicly available gene expression signatures from patients with IPF were used to 
query a large-scale perturbagen signature library to discover compounds that can potentially 
reverse dysregulated gene expression in IPF. Two methods were used to calculate IPF–compound 
connectivity: gene expression-based connectivity and feature-based connectivity. Identified 
compounds were further prioritized if their shared mechanism(s) of action were IPF-related.
Results: We found 77 compounds as potential candidate therapeutics for IPF. Of these, 39 
compounds are either FDA-approved for other diseases or are currently in phase II/III clinical 
trials suggesting their repurposing potential for IPF. Among these compounds are multiple 
receptor kinase inhibitors (e.g. nintedanib, currently approved for IPF, and sunitinib), aurora 
kinase inhibitor (barasertib), epidermal growth factor receptor inhibitors (erlotinib, gefitinib), 
calcium channel blocker (verapamil), phosphodiesterase inhibitors (roflumilast, sildenafil), 
PPAR agonists (pioglitazone), histone deacetylase inhibitors (entinostat), and opioid receptor 
antagonists (nalbuphine). As a proof of concept, we performed in vitro validations with 
verapamil using lung fibroblasts from IPF and show its potential benefits in pulmonary fibrosis.
Conclusions: As about half of the candidates discovered in this study are either FDA-approved 
or are currently in clinical trials for other diseases, rapid translation of these compounds as 
potential IPF therapeutics is possible. Further, the integrative connectivity analysis framework 
in this study can be adapted in early phase drug discovery for other common and rare diseases 
with transcriptomic profiles.
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drug-induced side-effect profiles of these two 
drugs are formidable and their therapeutic effects 
are suppressive rather than pulmonary fibrosis 
remission or reversal.3,4 The pursuit for safer and 
efficacious therapies or combinatorials that arrest, 
or reverse fibrosis therefore continues. On the 
other hand, technological advances in experimen-
tal and computational biology resulted in rapidly 
expanding genomic and biomedical data, includ-
ing transcriptomic profiles of disease and small 
molecules, disease or drug associated pathways 
and protein–protein interactions.5–7 Various 
approaches have been developed to facilitate  
in silico drug discovery via joint analysis of these 
data including the widely used connectivity map-
ping approach.8

The concept of connectivity mapping between a 
drug and a disease is defined as the gene expres-
sion-based similarity calculated using a 
Kolmogorov–Smirnov statistic-like algorithm.9,10 
It was first introduced as the ConnectivityMap 
(CMap)8 and succeeded by the Library of 
Integrated Network-Based Cellular Signatures 
(LINCS) L1000 project (CLUE platform),8,11 
which currently contains gene expression profiles 
of ~20,000 small molecule perturbagens analyzed 
in up to 72 cell lines. The connectivity mapping 
concept and application have led to the discovery 
of novel candidate compounds for disease, drug 
repurposing candidates, and novel drug mecha-
nism of actions.12–16

Recently, similar in silico drug discovery approaches 
for IPF have been reported, wherein joint analysis 
of systems-biology-level information with drug–
IPF connectivity are used to discover biologically 
relevant candidate therapeutics for IPF. For 
instance, Karatzas et al. developed a scoring for-
mula to evaluate drug–IPF connectivity obtained 
from multiple sources and identified several IPF 
candidate therapeutics.17 Interestingly, neither of 
the two approved IPF drugs (pirfenidone and nin-
tedanib) was re-discovered by their approach.17 In 
another recent study using network-based 
approach and integrated KEGG network with 
connectivity analysis sunitinib, dabrafenib and 
nilotinib were identified as potential repurposing 
candidates for IPF.18

Using a similar approach, namely, by examining 
connectivity between IPF gene signature and 
LINCS small molecules, we have previously 

reported 17-AAG (a known Hsp90 inhibitor) as 
a potential candidate therapeutic that inhibits 
fibroblast activation in a mouse model of pulmo-
nary fibrosis.14 In another study, we screened 
connectivity of LINCS small molecules with 
cystic fibrosis (CF) and integrated with systems-
biology-level information from CFTR to identify 
a candidate therapeutic for CF.13 These results 
suggest that disease–drug connectivity comple-
mented with systems-biology-level information 
of drugs and disease could enable candidate ther-
apeutic discovery. In the current study, we there-
fore calculated both gene expression and enriched 
pathway-based connectivity between IPF and 
small molecules in a semi-supervised manner 
and integrated these results with cheminformat-
ics knowledge to prioritize candidate therapeu-
tics for IPF. We identified 77 (out of ~20,000 
LINCS small molecules) candidate therapeutics 
for IPF. Significantly, among these 77 com-
pounds was the approved drug for IPF (nint-
edanib), as well as several other compounds that 
are either currently being investigated or reported 
as a potential candidate therapeutics for IPF or 
investigated in clinical trial and reported to be 
ineffective (sunitinib, nilotinib, and sildenafil).  
In vitro and in vivo preclinical studies have 
reported beneficial effects of histone deacetylase 
(HDAC) inhibitors (HDACIs) in preventing or 
reversing fibrogenesis.19,20 Likewise, previous 
studies reported the beneficial effects of calcium 
channel blocking in bleomycin-induced pulmo-
nary fibrosis.21,22 All these results suggest that the 
current approach has the potential to identify 
“true” candidate therapeutics. In the current 
study, we have selected verapamil, a US Food 
and Drug Administration (FDA)-approved cal-
cium channel blocker, from our computational 
screening results for in vitro validation.

Methods

IPF studies/cohort selection
We used publicly available gene expression pro-
files from the Gene Expression Omnibus (GEO)23 
database for generating IPF gene expression sig-
natures. As gene expression profiles are known to 
be heterogeneous in different patients,24,25 we 
selected six GEO datasets comparing primary 
healthy human lung tissues with primary IPF 
lung tissues for this study to potentially mitigate 
such heterogeneity (Figure 1 and Table 1).
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Differential analysis of IPF gene expression 
profiles
Differential analysis was performed in R in using 
the package LIMMA (linear models for microarray 
data).31 Genes with fold change ⩾1.5 and adjusted 
p-value ⩽0.05 were considered differentially 
expressed. Each dataset was analyzed separately.

Known pulmonary fibrosis genes. We compiled 
3278 “known” pulmonary fibrosis genes from 
 literature and several data resources (Supplemental 
Table 1). This list contains human genes associated 
with “Pulmonary fibrosis”, “Idiopathic pulmonary 
fibrosis” and “Interstitial Lung Disease” from Open 
Targets platform,32 CTD,33 Phenopedia,34 and 
GeneCards35 databases.

IPF–compound connectivity estimation and 
permutation analysis
To correct for multiple testing problem introduced 
by conducting connectivity analysis (Figure 1) in 
multiple datasets, we used permutation analysis  
to estimate the significance of connectivity. First, 
we constructed a matrix of connectivity score, 
denoted by s, between CLUE compound i and 
IPF dataset d in cell line j. Next, positive, and 
negative connectivity to IPF were determined by 
thresholding connectivity score at 90 and −90, 
respectively:

c

s

s

s

i,d, j

i,d, j

i,d, j
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1, 90
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Overall connectivity, denoted by o, between each 
compound to IPF across all cell lines is summa-
rized as the sum of individual connectivity across 
all datasets and all cell lines:

o ci
d
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Permutation was performed by randomly shuf-
fling rows of the connectivity matrix C, so that 
compound names were randomly assigned. 
Then, the permutated overall compound-to-
IPF connectivity O’ scores were calculated, 
and we recorded incidences where o oi i≤ ’, 
which indicates the observed compound to 
IPF connectivity is not larger than random 
connectivity:
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We repeated the permutation tests for 100,000 
times and estimated significance as the frequency 
of F over all permutations. The significance cut-
off was set at 0.05.

Functional enrichment
Functional enrichment analysis was performed 
using pre-compiled gene annotation libraries 
from the ToppGene Suite.36 Enrichment 
p-values were calculated using hypergeometric 
test in Python using the SciPy package.

Table 1. Summary of six datasets comparing IPF lung tissue with healthy controls.

GEO dataset identifier Sample description Reference

GSE10667 23 IPF samples and 16 controls Konishi et al.; Rosas et al.26,27

GSE24206 17 IPF samples and 6 controls Meltzer et al.28

GSE48149 13 IPF samples and 9 controls Hsu et al.29

GSE53845 40 IPF samples and 8 controls DePianto et al.24

GSE47460 131 IPF samples and 12 controls* LGRC

GSE101286 7 IPF samples and 3 controls Horimasu et al.30

*Only 12 control samples in the LGRC dataset with ‘normal’ clinical and pathological diagnosis were used as control.
GEO, Gene Expression Omnibus; IPF, idiopathic pulmonary fibrosis; LGRC, Lung Genomics Research Consortium. 
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Annotation-based connectivity analysis
Annotation-based compound–IPF connectivity 
(Figure 1) was generated and evaluated as follows:

(1) Identify enriched annotation terms in con-
served IPF genes (genes that were differen-
tially expressed in more than four IPF datasets) 
resulting in two vectors, Iup  and Idown;

(2) Calculate enrichment score, Pi up,
and Pi down, , using the 500 top and 500 bot-
tom genes of each LINCS L1000 small 
molecule expression profile, denoted by i, 
in the upregulated and downregulated IPF 
pathways identified in step (1);

(3) Calculate annotation-based connectivity 
score, defined as Pearson correlation between 
Pi up, and Idown , and between Pi down, and Iup;

(4) To correct for false positives from multiple 
testing, permutation analysis were per-
formed by swapping annotation terms in 
Pi down,  and Pi up, , followed up recalculation 
of annotation-based connectivity. 100,000 
permutations were performed with signifi-
cance threshold set to 0.05.

Primary lung fibroblast cultures and RT–PCR. IPF 
lungs were collected in Dulbecco’s modified eagle 
medium (DMEM) containing 10% FBS (Life 
Technologies, NY, USA) from the Interstitial 
Lung Disease Biorepository at the University of 
Michigan Medical School following the IRB reg-
ulations of the institute. Lung pieces were finely 
minced with sterile razor blades and incubated at 
37°C for 30 min in 5 ml of DMEM containing 
collagenase (2 mg/ml). Digested tissue was passed 
through a 100-µm filter, washed twice with 
DMEM medium, plated onto 100 mm tissue-cul-
ture plates, and incubated at 37°C, 5% CO2 to 
allow cells to adhere and migrate away from larger 
remaining tissue pieces. Adherent primary lung 
fibroblasts were collected on day 5 or 8 and lung-
resident fibroblasts were isolated with a negative 
selection using anti-CD45 beads as described 
earlier (JCI insight 2018). These fibroblasts were 
used for drug treatment studies up to passage 
four or less. After drug treatments, total RNA was 
extracted using RNAeasy Mini kit (QIAGEN Sci-
ences, Valencia, CA, USA) and polymerase chain 
reaction with reverse transcription (RT–PCR) 
assays were performed. Relative quantities of 
messenger RNA for several genes were deter-
mined using SYBR Green PCR Master Mix 
(Applied Biosystems) and target gene transcripts 
in each sample were normalized to 

glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) and expressed as a relative increase or 
decrease compared with controls. As expected, we 
observed no changes in the copy number of 
GAPDH in IPF fibroblasts treated with verapamil 
compared with vehicle [0.0001 % dimethyl sul-
phoxide (DMSO)]. Also, we performed melt 
curve analysis to exclude primer sets producing 
nonspecific PCR products. RT–PCR primer 
sequences for genes, GAPDH (fwd: AGCCA-
CATCGCTCAGACAC; rev: GCCCAATAC-
GACCAAATCC), Col1α1 (fwd: GGGATT 
CCCTGGACCTAAAG; rev: GGAACACCTC-
GCTCTCCA), Col3α1 (fwd: CTGGACCCCA 
GGGTCTTC; rev: CATCTGATCCAGGGTTT 
CCA), Col5α1 (fwd: CAGCCCGGAGAGAA-
CAGA; rev: GGTGCAGCTAGGTCATGTGAT), 
 αSMA (fwd: GCTTTCAGCTTCCCTGAACA; 
rev: GGAGCTGCTTCACAGGATTC) and FN1  
(fwd: CTGGCCGAAAATACATTGTAAA; rev: 
CCACAGTCGGGTCAGGAG).

Results

Differential expression analysis of IPF datasets
We analyzed six gene expression datasets compar-
ing gene expression of IPF lung tissue with healthy 
controls (Table 1). Differential expression analysis 
was performed in each dataset using the R package 
LIMMA. Differentially expressed genes (DEGs) 
were defined as genes with fold change ⩾1.5 and 
Benjamini–Hochberg false discovery rate adjusted 
p-value ⩽0.05. The number of DEGs ranged from 
263 to 2385, and 4677 genes were unambiguously 
upregulated, and 2210 genes were unambiguously 
downregulated in at least one IPF dataset [Figure 
2(a); Supplemental Table 1]. Overall similarity 
between DEG gene lists was low, as reflected by the 
median Jaccard index between gene lists (0.077). 
While the lack of concordance between datasets 
suggests disease heterogeneity in IPF, it also pro-
vides the rationale for meta-analysis using multiple 
datasets to extract high confidence drug candidates 
for IPF. Despite the overall heterogeneity in DEGs 
among different IPF datasets, there were also a 
considerable number of genes that were consist-
ently dysregulated in four or more IPF datasets. We 
call these “conserved” IPF genes (197 upregulated 
genes and 84 downregulated genes). Among these 
conserved DEGs, 179 genes (121 upregulated and 
58 downregulated) were known previously to be 
involved in pulmonary fibrosis [Figure 2(b)]. 
Functional enrichment analysis of conserved IPF 
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Figure 2. Heat map view of differentially expressed genes in six IPF datasets. (a) Expression of 2206 genes 
unambiguously differentially expressed in at least two IPF dataset are shown. Genes are represented in 
rows and patient samples in columns. Cells in heat map were sorted discerningly based on median log fold 
change in six datasets and on number of datasets they were differentially expressed in. (b) Genes that were 
upregulated or downregulated in at least four datasets. Intersection with all known pulmonary fibrosis genes 
are shown in the Venn diagram. 
IPF, idiopathic pulmonary fibrosis.

genes showed that biological processes involved in 
extracellular matrix formation, inflammation 
responses and cell migration were upregulated, 
whereas processes involved in normal lung pro-
cesses such as angiogenesis and alveolar functions 
were downregulated.

Expression-based connectivity analysis and 
permutation analysis
We used the National Institutes of Health LINCS 
as the compound search space for IPF candidate 

therapeutics. The LINCs Touchstone dataset has a 
total of approximately 8400 perturbagens, includ-
ing more than 2000 small molecules that have pro-
duced gene signatures generated from testing on a 
panel of nine cell lines. These cell lines include 
A375, A549, HEPG2, HCC515, HA1E, HT29, 
MCF7, PC3, and VCAP. LINCS has expression 
profiles of ~20,000 small molecules assayed in vari-
ous cell lines. To find potential IPF candidate ther-
apeutics, we adopted the connectivity mapping 
method, which assumes small molecules with gene 
expression profiles negatively correlated with that 

https://journals.sagepub.com/home/tar
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Table 2. List of 39 potential repurposing candidates for IPF.

Compound IPF-related mechanism of action Indication Phase

febuxostat xanthine oxidase inhibitor hyperuricemia Approved

nortriptyline tricyclic antidepressant depression Approved

amsacrine topoisomerase inhibitor cancer Approved

irinotecan topoisomerase inhibitor cancer Approved

camptothecin topoisomerase inhibitor cancer phase III

pioglitazone PPAR receptor agonist, insulin sensitizer diabetes mellitus Approved

roflumilast phosphodiesterase inhibitor COPD Approved

sildenafil phosphodiesterase inhibitor Erectile dysfunction and pulmonary 
hypertension

Approved

nalbuphine opioid receptor antagonist pain relief Approved

everolimus mTOR inhibitor cancer Approved

sunitinib mRTK inhibitor cancer Approved

nintedanib mRTK inhibitor IPF Approved

dovitinib mRTK inhibitor cancer phase III

pazopanib mRTK inhibitor cancer Approved

selegiline monoamine oxidase inhibitor Parkinson's disease Approved

selumetinib MEK inhibitor cancer phase III

curcumin lipoxygenase inhibitor, histone acetyltransferase 
inhibitor, cyclooxygenase inhibitor

Approved

tomelukast leukotriene receptor antagonist asthma phase III

dasatinib mRTK inhibitor cancer Approved

lafutidine histamine receptor antagonist duodenal ulcer disease, peptic ulcer 
disease

Approved

ranitidine histamine receptor antagonist heartburn Approved

amodiaquine histamine receptor agonist malaria Approved

entinostat HDAC inhibitor cancer phase III

remacemide glutamate receptor antagonist epilepsy and neurodegenerative 
diseases

phase III

riluzole glutamate inhibitor amyotrophic lateral sclerosis Approved

erlotinib EGFR inhibitor cancer Approved

gefitinib EGFR inhibitor cancer Approved

sulpiride dopamine receptor antagonist schizophrenia Approved

(Continued)
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Compound IPF-related mechanism of action Indication Phase

mycophenolic acid dehydrogenase inhibitor, inositol monophosphatase 
inhibitor

organ rejection Approved

ketorolac cyclooxygenase inhibitor NSAID Approved

mestinon cholinesterase inhibitor myasthenia gravis Approved

fipronil chloride channel blocker insecticide Approved

verapamil calcium channel blocker hypertension Approved

gaboxadol benzodiazepine receptor agonist insomnia phase III

ivermectin benzodiazepine receptor agonist gastrointestinal parasites Approved

nilotinib Bcr-Abl kinase inhibitor cancer Approved

barasertib-HQPA aurora kinase inhibitor cancer phase II/
phase III

regadenoson adenosine receptor agonist myocardial perfusion imaging Approved

bucladesine adenosine receptor agonist skin ulcer Approved

COPD, chronic obstructive airways disease; EGFR, epidermal growth factor receptor; HDAC, histone deacetylase; IPF, idiopathic pulmonary fibrosis; 
NSAID, nonsteroidal anti-inflammatory drug.

Table 2. (Continued) 

of a disease are likely to be therapeutic for the dis-
ease. We first queried the Connectivity Map web 
platform (CLUE.io) for compounds with a reversed 
gene expression profile compared to IPF. From 
each dataset, a gene signature having up to 150 
most upregulated and downregulated genes was 
extracted and used to query the CLUE platform 
(Supplemental Table 2). Using the hits from 
CLUE results, we applied a “greedy” approach to 
capture the highest number of compounds con-
nected to IPF by selecting compounds with at least 
90 connectivity score in any one of the cell lines. 
This approach returned 1000+ compounds that 
relate to IPF at least once. However, this approach 
results in several compounds that are connected to 
IPF in both directions, that is, potentially inducing, 
and reversing IPF gene expression profiles at the 
same time [Figure 3(a)]. This suggests that the 
gene expression perturbation due to technical vari-
ation is present in our data and is reflected in the 
form of these low-frequency compounds in CLUE 
analysis. Based on the assumption that IPF-related 
gene expression patterns are consistently present in 
our selected six IPF datasets, we performed permu-
tation analysis to estimate the significance of IPF 
disease connectivity and filter out potential false 
positives. With a 0.05 significance cut-off, we found 

82 compounds that were significantly connected 
with IPF [Figure 3(b)]. These compounds were 
associated with 63 different known drug mecha-
nisms of action.

Functional enrichment-based connectivity 
analysis
A major limitation of using the Touchstone 
Library-based CLUE platform to screen for drug 
candidates is that it only covers 2836 out of 
~20,000 small molecules available in the full 
L1000 database. To overcome this, we searched 
for IPF candidate therapeutics among the remain-
ing ~17,000 LINCS small molecules. To do this, 
we used a functional enrichment-based metric to 
evaluate drug–IPF connectivity of these LINCS 
small molecules, wherein gene expression data 
from both the compound and the IPF datasets 
were transformed into enrichment p-values using 
hypergeometric tests against gene functional 
annotations (Gene Ontology Biological Process, 
Mouse Phenotypes and KEGG pathways). To 
minimize the noise introduced by biological pro-
cesses not relevant to IPF, we only considered 
functional annotations enriched in the conserved 
IPF gene sets, and thus, each compound 
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Figure 3. Gene expression-based connectivity score of CLUE compounds. (a) Scatter-plot of positive 
connectivity score against negative connectivity score between each CLUE compound and each IPF dataset 
across all cell lines. Coordinates of each point were determined by the average of highest or lowest six 
connectivity scores among all 54 values across six IPF datasets and nine cell lines in CLUE. (b) Heat map view 
of connectivity score of 82 compounds that were significantly connected to IPF based on permutation analysis. 
IPF, idiopathic pulmonary fibrosis.

enrichment profile was limited to these pathways. 
Connectivity between a compound and IPF was 
defined as the cosine similarity between the p- 
values of pathways enriched in compound 
u- regulated genes and those enriched in IPF 
downregulated genes, and vice versa. Next, we 
used permutation analysis as discussed in the ear-
lier sections to estimate the significance of the 
feature-based compound–IPF connectivity and 
identified 345 compounds that perturbed IPF-
related pathways in an overall opposite manner 
compared with IPF. To find groups of function-
ally related therapeutic candidates that could act 
on IPF-perturbed biological processes, we per-
formed clustering analysis on the compound 
enrichment profiles and prioritized four clusters 
of compounds with high connectivity to IPF. The 
compounds in three clusters selectively downreg-
ulated pathways such as ‘cell adhesion’, ‘collagen 
metabolic process’ and ‘regulation of programmed 
cell death’, which were all upregulated in IPF. On 
the other hand, compounds in the cluster that 
showed upregulation of ‘blood vessel morpho-
genesis’ and ‘angiogenesis’ were downregulated 
in IPF. The approved IPF drug, nintedanib was 
in this cluster of compounds. Combining com-
pounds from these four clusters, we found 103 
candidates as IPF therapeutic candidates from 
annotation- or feature-based connectivity analysis 
(Figure 4). These compounds include epidermal 

growth factor receptor (EGFR) inhibitor gefi-
tinib, platelet-derived growth factor receptor 
(PDGFR) and vascular endothelial growth factor 
receptor (VEGFR) inhibitor dovitinib, and KIT 
inhibitor sunitinib.

Prioritization of IPF candidate therapeutics 
based on shared mechanism of action
In the annotation-based connectivity analysis, we 
observed that most of the discovered compounds 
shared drug mechanisms of action (MOA). For 
instance, EGFR inhibition, PDGFR inhibition 
and VEGFR inhibition were shared across multi-
ple compounds suggesting potential relevance of 
these MOAs to IPF. This also suggests a likeli-
hood of higher therapeutic potential of multiple 
compounds with shared or similar MOAs. 
Leveraging the known MOA information of the 
discovered compounds, we further prioritized 
compounds belonging to MOA that were prior-
itized by annotation-based connectivity analysis. 
After excluding glucocorticoid receptor agonists 
and immunosuppressants from the list because 
of their known detrimental effects in IPF, we 
found 48 MOAs meeting these criteria 
(Supplemental Table 3). Based on these MOAs, 
we selected 77 compounds as our final preclini-
cal candidates for IPF (Supplemental Table 4). 
Among these, 39 were FDA-approved drugs or 
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phase II/III compounds suggesting their reposi-
tioning potential for IPF (Table 2). These drugs 
include Bcr-Abl kinase inhibitors, EGFR inhibi-
tors, opioid receptor inhibitors, receptor tyrosine 
kinase (RTK) inhibitors and aurora kinase inhib-
itors. Notably, the approved IPF drug nintedanib 
was also among this list. This is important 
because nintedanib was not included in the 
CLUE database and would have been missed if 
annotation-based connectivity was not exam-
ined. A closer look at the pharmacological targets 
of these candidates revealed that many of these 
targets such as PDGFRA, EGFR, FGFR4, FYN 

and KDR were differentially expressed in IPF. 
Similarly, CACNA1G, SLC29A4, CACNB3, 
SLC6A4 (all targets of verapamil, a known cal-
cium channel blocker), were differentially 
expressed in IPF. Among these targets, KDR, 
FGFR4 and PDGFRA are associated with nint-
edanib and other multi-targeted RTK inhibitors 
such as dovitinib, pazopanib and sunitinib 
(Figure 5). These genes are involved in VEGF 
and PI3K/AKT signaling and VEGFR2 medi-
ated cell proliferation, suggesting a role for multi-
targeted RTK inhibitors in controlling IPF 
through VEGF signaling inhibition.

Figure 5. Heat map view of candidate compound targets that are differentially expressed in IPF. Log fold 
changes of 48 target genes of 30 compounds in IPF are shown. Only compounds with targets differentially 
expressed in at least two IPF datasets are included. Differentially expressed drug targets in IPF are in 
rows and discovered IPF candidate compounds are in columns. Rows and columns are ordered using two-
dimensional hierarchical clustering.
IPF, idiopathic pulmonary fibrosis.
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Antifibrotic potential of verapamil. Calcium 
channel blockers are commonly used in clinical 
practice and reported to be well tolerated. 
Therefore, in the current study, as a proof of 
concept, we have selected verapamil, a known 
calcium channel blocker and anti-hypertension 
drug, from our computational screening results 
for in vitro validation. IPF lung fibroblasts were 
treated with either vehicle (0.001% DMSO) or 
verapamil (Figure 6). We observed a significant 
reduction in the expression of fibroproliferative 
genes including fibronectin 1 (FN1), collagens 
(COL1A1, COL3A1, and COL5A1), and αSMA 
with verapamil treatment for 16 h. compared to 
vehicle treated IPF fibroblasts (Figure 6). The 
doses of verapamil used did not affect viability 
of IPF fibroblasts suggesting antifibrotic effects 
of verapamil observed above may not be due  
to cell death or drug toxicity (Supplemental  
Figure 1). These findings support the premise 
that candidate small molecules found using in 
silico screening methods are potentially effective 
in inhibiting fibroblast activation and may serve 
as potential drug candidates for further 

validation using in vitro and in vivo preclinical 
IPF models. Testing of additional candidates, 
however, is warranted.

Discussion
In this study, we developed a multiplexed, general-
izable approach to discover novel therapeutics by 
integrating disease-driven and perturbagen-driven 
gene expression profiles, disease-associated bio-
logical pathways, and cheminformatics of pertur-
bagen. Compound–IPF connectivity was examined 
from different dimensions including transcrip-
tome, functional enrichment profiles, and drug 
mechanisms of actions. With this approach, we not 
only identified approved IPF therapeutic drugs 
(nintedanib) but also identified additional FDA-
approved drugs that share similar MOA as IPF 
candidate therapeutics. Notably, these drugs were 
not discoverable using conventional transcrip-
tome-based connectivity analysis alone. Further, 
approved drugs or investigational compounds 
associated with MOAs such as Bcr-Abl inhibitor 
and aurora kinase inhibitor, were also among our 

Figure 6. Verapamil treatment attenuates pro-fibrotic gene expression. IPF fibroblasts were treated 
with either vehicle (DMSO 0.001%) or verapamil (1, 10 and 50 µM) for 16 h. Total RNA was analyzed for the 
expression of αSMA and ECM genes (FN1, Col1α, Col3α and Col5α) using RT–PCR. *p < 0.05; **p < 0.005 
***p < 0.0005; ****p < 0.00005.
DMSO, dimethyl sulphoxide; IPF, idiopathic pulmonary fibrosis; RT–PCR, polymerase chain reaction with reverse 
transcription.
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candidate list, which could provide insights into 
novel intervention strategies against IPF.

Transcriptome-based connectivity mapping was 
first introduced more than a decade ago and has 
been applied to facilitate drug discovery for various 
diseases, including IPF. In a recent study, Karatzas 
et al. proposed nine drugs as IPF therapeutics based 
on their connectivity with expression profiles 
derived from IPF datasets. However, they were not 
able to re-discover approved IPF drugs although 
these drugs were included in the LINCS L1000 
that was queried.17 Likewise, our gene expression-
based connectivity approach through CLUE prior-
itized 82 small molecules as IPF therapeutics 
candidates, but neither of the FDA-approved IPF 
drugs (pirfenidone or nintedanib) was in the list. A 
closer look at the connectivity scores revealed that 
pirfenidone, one of the two approved IPF thera-
peutics, had no connectivity to IPF in any of the six 
queried datasets. There could be several reasons for 
this. Our method uses transcriptomic profiles of 
IPF to find candidate drugs. It is possible that drugs 
that have minimal effect on IPF-specific gene sig-
nature or alter translational modifications involved 
in fibrotic processes may not be captured as top 
candidates in this approach. The mechanisms 
underlying pirfenidone action have remained 
largely unknown.37 Another possible reason could 
be the heterogeneity in the gene signature based on 
whole lung tissue from IPF. As part of ongoing  
and future work, we plan to undertake the compu-
tational screening using transcriptomic data  
from the single-cell RNA-sequencing studies.38–40 
Interestingly, pirfenidone was connected to vera-
pamil (transcriptionally similar, based on gene 
expression profiles of compounds in Clue.io plat-
form). Our preclinical in vitro validations with vera-
pamil using human IPF lung fibroblast revealed 
therapeutic benefit of verapamil in IPF. Earlier 
studies reported the beneficial effects of calcium 
channel blocking in bleomycin-induced pulmonary 
fibrosis.21,22 However, more studies are warranted 
to test therapeutic efficacy of verapamil singly or in 
combination with pirfenidone using experimental 
models of fibrotic lung disease. In addition, mining 
electronic health records and side-effects data 
(FDA’s adverse events reporting system) for testing 
whether patients under both therapy have a better 
response are part of our related ongoing studies.41 
Nintedanib, the second approved therapeutic for 
IPF, was not included in CLUE and therefore we 
were unable to assess its connectivity to IPF using 
the Clue.io platform.

We also examined the connectivity between IPF 
and the ~17,000 compounds not covered in the 
Clue.io platform. The gene expression profiles 
associated with these ~17,000 small molecules are 
from distinct selections of cell lines. Therefore, 
direct connectivity mapping analysis may be sus-
ceptible to biological variation introduced by dif-
ferent cell lines. In addition, it has been shown that 
integration of prior knowledge, particularly in the 
form of gene set information in biological path-
ways, improves the accuracy of drug activity pre-
dictions.42 We evaluated drug–IPF connectivity 
through enriched pathways directly related to IPF 
under the assumption that pathways perturbed by 
drugs are more stable across different host cell 
conditions compared to individual genes. 
Annotation-based connectivity analysis lead to dis-
covery of 14 more small molecules that were not 
included in the CLUE platform. These include 
aurora kinase inhibitor barasertib-HQPA and 
phosphodiesterase inhibitor roflumilast. In a recent 
preclinical study,43 using two mouse models of 
pulmonary fibrosis, we have shown barasertib as a 
possible intervention therapy for IPF. Notably, 
nintedanib was also among the 14 additional small 
molecules, and the enriched pathways that con-
tributed to the connection to IPF were related to 
fibroblast proliferation, ECM production and cell 
migration, which is in consistent with implicated 
MOA of nintedanib against IPF in vitro.44

Among the 77 prioritized candidates, 31 are FDA-
approved drugs and are associated with different 
MOAs. These MOAs include RTK inhibition, 
which is the known MOA for the approved IPF 
drug nintedanib. Other compounds with this 
MOA in our discovered candidate compounds 
include pazopanib and sunitinib. Sunitinib is 
approved for treatment of renal cell carcinoma 
and gastrointestinal stromal tumor, and it has also 
been shown to be efficacious in inhibiting estab-
lished pulmonary fibrosis in the bleomycin-
induced mouse model.45 In addition, MOAs 
involved with these 31 drugs also included those 
associated with compounds that are currently 
investigated or are in clinical trial for IPF drugs, 
such as src-kinase inhibitor and mTOR inhibi-
tor.46 The MOAs associated with the remaining 
IPF repositioning candidates included aurora 
kinase inhibitor, EGFR inhibitor, calcium channel 
blocker, phosphodiesterase inhibitor, PPAR ago-
nist, Bcr-Abl kinase inhibitors and opioid receptor 
antagonist. The EGFR pathway plays an impor-
tant role in pulmonary physiology and chronic 
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lung diseases47 and a recent study reported that 
nintedanib blocks the EGFR paracrine upregula-
tion in IPF.48 PPAR-α agonists have been shown 
to attenuate fibrosis in the bleomycin mouse 
model of pulmonary fibrosis.49 HDACIs have 
been reported to improve resolution of pulmonary 
fibrosis in mice.19,20 Several studies have shown 
that calcium channel blockers are useful in animal 
models of fibrosis in the kidney, heart, liver, and 
skin (reviewed elsewhere50). An earlier study showed 
that felodipine, a known calcium channel blocker, 
improved bleomycin-induced decreases in FVC 
(Forced Vital Capacity) in mice.22 Verapamil was 
also shown to reduce scar tissue formation and pro-
mote axon growth after peripheral nerve repair.51 
Calcium channel blockers are commonly used in 
clinical practice, reported to be well tolerated, and 
are relatively inexpensive. We have recently shown 
that inhibition of AURKB expression or activity can 
attenuate fibroblast activation and barasertib, a 
known AURKB inhibitor attenuates fibrosis in two 
mouse models of pulmonary fibrosis.43

While the computational drug discovery approaches, 
including the current one, are powerful approaches 
for preclinical therapeutic discovery and MOA-
based hypotheses, they albeit suffer with certain 
inherent limitations. For example, sildenafil, 1 of 
the 77 compounds that we have discovered as can-
didate therapeutics for IPF, has already been inves-
tigated in combination with nintedanib in clinical 
trials52,53 and was reported to have no significant 
benefit when compared to patients on nintedanib 
alone. Nevertheless, discovering a compound (silde-
nafil) that is tested in a clinical trial for IPF demon-
strates the preclinical discovery power of our 
approach for candidate therapeutics. Second, the 
current approach is monotherapy-centric and does 
not consider potential drug–drug interactions. For 
example, the current approach cannot deduce 
which of the 77 compounds can be a potential com-
bination compound with nintedanib or pirfenidone. 
Advanced knowledge mining (e.g. known drug–
drug interactions) and machine-learning-based 
approaches can be potentially explored to address 
this problem. Third, ours, and other computational 
approaches do not consider the potential off-target 
effects leading to adverse events. For example, as a 
previous study also reported,21 off-target effects of 
calcium channel blockers on other cell types cannot 
be ruled out especially because the lung is com-
posed of more than 50 different cell types with sev-
eral of these expressing voltage-dependent calcium 
channels. Three recent single-cell RNA-sequencing 

studies38–40 provide high-resolution insights into the 
cellular architecture of the normal and fibrotic lung. 
Leveraging the unique cell types from the normal 
disease lung has the potential to provide novel ther-
apeutic targets for IPF and also prioritize the results 
from the computational compound screens. Finally, 
the signatures in LINCS are based on mostly epi-
thelial cell lines, and the compound concentrations 
used may not be translatable. Hence, further studies 
are warranted using both in vitro and in vivo pre-
clinical models of pulmonary fibrosis.

In conclusion, we have developed an integrative 
connectivity analysis combining information 
from transcriptomic profiles, disease systems 
biology and drug cheminformatics for in silico 
IPF drug discovery. Application of our approach 
earlier in the IPF drug discovery pipeline may 
help to avert late-stage clinical trial failures. As 
about half of the candidates we have discovered 
in this study are FDA-approved or are currently 
in clinical trials for several diseases, rapid transla-
tion of these compounds is possible. Finally, we 
have suggested novel drug mechanisms that 
could shed new insights in the search for better 
IPF drugs.
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