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Abstract: The kidney plays a dominant role in the pathogenesis of essential hypertension, but the
initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury
has been linked to many diseases including hypertension in epidemiological and experimental
studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraf-
fin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who
had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the
other 128 were from varied clinicopathological backgrounds without known exposure to mercury.
Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively
coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of
autometallography-detected mercury and to look for other toxic metals. In the 128 people without
known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin
loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury),
(2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The
age-related proportion of people who had any mercury in their kidney was 0% at 1–20 years, 66% at
21–40 years, 77% at 41–60 years, 84% at 61–80 years, and 64% at 81–104 years. LA-ICP-MS confirmed
the presence of mercury in samples staining with autometallography and showed cadmium, lead,
iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult
human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an
advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the
pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of
mercury on blood pressure are warranted.

Keywords: mercury; kidney; essential hypertension; environmental toxicity; heavy metal; toxic
metal; risk factor; cadmium; elemental analysis; renal cell carcinoma

1. Introduction

High systolic blood pressure is the leading risk factor for global disease burden, when
ranked by risk-attributable disability-adjusted life-years, and accounts for 10.4 million
deaths annually [1]. The cause of most cases of hypertension, however, remains un-
known [2]. The kidney has long been considered to play a central role in the pathogenesis
of essential hypertension, with the most likely mechanism being impaired renal sodium
excretion [3,4]. The initial pathogenetic factors leading to this are unclear, but increased
sodium reabsorption in the proximal tubules [5,6], and/or oxidative damage leading to
medullary ischemia [7,8], are suspected to play roles in raising blood pressure.

Epidemiological, experimental, and clinical reports suggest an association between
hypertension and exposure to mercury [9–18]. A meta-analysis of 29 studies investigating
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the relationship between mercury biomarkers and hypertension concluded that mercury is
indeed associated with hypertension and that a dose–response relationship exists between
the two [9]. Furthermore, hypertension is more common in the high methylmercury expo-
sure area of Minamata in Japan than in a nearby area of low methylmercury exposure [10],
and mortality from hypertension is greater in Minamata city than in the surrounding
region [11,12]. Several animal studies indicate that exposure to methylmercury gives rise
to increased blood pressure [13–15], and accidental exposure to mercury in humans can
result in increased blood pressure [16]. The mechanisms underlying mercury-induced
hypertension remain unclear, but either proximal tubule dysfunction causing sodium
retention or the generation of free radicals causing vasoconstriction in the medulla are
possibilities [17,18].

Autometallography is a histochemical technique used to locate inorganic mercury
within cells [19]. Autometallography-detected mercury has been found in the renal prox-
imal tubules of frogs [20], fish [21], whales [22], mice [23], rats [24–26], dogs [27], pri-
mates [28], and two humans [29,30] who had been exposed to mercury. Mechanisms and
consequences of mercury uptake and elimination in proximal tubules have been studied
extensively [31–37]. Proximal tubules take up mercury at low mercury exposure levels,
such as those resulting from the placement of even a few mercury-containing amalgam
dental fillings in primates [28] or after exposure to single low doses of inorganic mercury in
mice [38]. Rarely have other parts of the kidney, such as the glomeruli, Henle loops, distal
tubules, or collecting ducts been shown to contain mercury after experimental exposures,
and then only after administration of large doses of mercury [27].

Given the potential roles of both the kidney and of mercury in hypertension, we
sought to determine the distribution and the prevalence of mercury in the human kidney.
To do this, mercury was located in the kidneys of a large number of people over a wide
range of ages, using two elemental bio-imaging techniques, autometallography and laser
ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

2. Materials and Methods
2.1. Ethics

This study (The role of toxic metals in human diseases, X2014-029) was approved
by the Human Research Committee, Sydney Local Health District (Royal Prince Alfred
Hospital Zone). This institutional review board waived the need for written informed
consent from relatives of individuals studied since this was a de-identified retrospective
study of archived paraffin-embedded tissue.

2.2. Sample Collection

Paraffin-embedded kidney tissue blocks were obtained from the tissue archive of
The New South Wales Department of Forensic Medicine. These had been taken as part
of standard tissue sampling from the autopsies of 129 people (81 male, 48 female) with a
mean age of 54 years, SD 28 years, median 47 years, and age range of 1–104 years. Females
had a higher mean age (60 years, SD 31 years) than males (50 years, SD 25 years) (p = 0.041).
Major pre-mortem medical conditions were: none known (N = 53), neurodegenerative
disease (N = 41), psychosis (N = 29), epilepsy (N = 2), and one each of anorexia nervosa,
Down syndrome, post-traumatic stress disorder, and self-injection with metallic mercury.

The samples were categorised into two groups: (1) Known mercury exposure. A man
who injected himself intravenously with metallic mercury and later committed suicide was
exposed to a consistently high level of circulating inorganic mercury for 5 months. At au-
topsy, mercury was found in several of his organs, including the heart and brain [30,39–41].
(2) Unknown mercury exposure. In 128 people without known sources of mercury expo-
sure, causes of death were: suicide (N = 29), trauma (N = 21), cardiovascular (N = 21),
drowning (N = 14), drug overdose (N = 14), infection (N = 10), undetermined (N = 6),
choking (N = 4), cerebrovascular (N = 3), respiratory (N = 2), and one each of cancer,
asphyxia, sudden unexpected death from epilepsy, and undernutrition.
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2.3. Autometallography

Paraffin blocks were sectioned at 7 µm with a Feather S35 stainless steel disposable
microtome blade, deparaffinised, and stained for inorganic mercury with silver nitrate
autometallography, which represents the presence of mercury as black silver grains sur-
rounding the mercury [42]. Autometallography is a sensitive amplification technique that
can detect as few as 10 mercury sulphide/selenide molecules in a cell [43]. Sections were
placed in physical developer containing 50% gum arabic, citrate buffer, hydroquinone,
and silver nitrate at 26 ◦C for 80 min in the dark; washed in 5% sodium thiosulphate to
remove unbound silver; counterstained with mercury-free hematoxylin; and viewed with
bright-field microscopy. Each staining run included a control section of mouse spinal cord
where motor neuron cell bodies contained mercury following an intraperitoneal injection
of mercuric chloride; sections were from archived paraffin blocks of a previously published
experiment approved by the Animal Ethics Committee of the University of Sydney [44].
Sections were stained with hematoxylin only to act as a control for the autometallography.

Microscopic identification of different subsets of kidney cells was based on standard
histological criteria [45]. To help characterise the cell types in the kidney, autometallography-
stained sections from six samples were immunostained with CD10 (Novocastra-Leica, clone
56C6), which stains proximal tubules and collecting ducts prominently [46], using a Leica
Bond III staining platform (Leica Biosystems, Melbourne, Australia). Heat-mediated anti-
gen retrieval was undertaken and a 1:25 dilution of the primary antibody was incubated at
ambient temperature for 30 min. Bond Polymer Refine Red Detection (DS9390) was used
so as not to obscure the black autometallography grains.

2.4. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)

To confirm which metal autometallography was demonstrating, since autometallog-
raphy can also detect inorganic silver and bismuth [47,48], and to look for the presence
of other toxic metals, 7 µm paraffin sections of six kidney samples were deparaffinised
and subjected to LA-ICP-MS for mercury, silver, bismuth, aluminium, gold, cadmium,
chromium, iron, nickel, and lead. Analyses were carried out on a New Wave Research
NWR-193 laser or a Teledyne Cetac LSX-213 G2+ laser hyphenated to an Agilent Tech-
nologies 7700x ICP-MS, with argon used as the carrier gas. LA-ICP-MS conditions were
optimised on NIST 612 Trace Element in Glass CRM and the sample was ablated with a
50 µm spot size and a scan speed of 100 µm/s at a frequency of 20 Hz. The data were col-
lated into a single image file using in-house developed software and visualised using FIJI.

2.5. Statistical Analyses

Prism v8.4 software was used for chi-square analyses to compare categorical variables
and aging trends, and t-tests to compare continuous variables. Significance was assessed at
the 0.05 level.

3. Results
3.1. Distribution of Mercury in the Kidney
3.1.1. Known Mercury Exposure (N = 1)

In the man who injected himself with metallic mercury, autometallography of the
kidney showed black mercury staining dispersed throughout the cytoplasm of proximal
tubule cells in the cortex, more in straight than in convoluted tubules (Figure 1). In the
medulla, autometallography showed mercury as black particulate deposits in cells of
Henle thin loops (Figure 1). No significant mercury was seen in glomeruli, distal tubules,
juxtaglomerular apparatus, or collecting ducts.
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Figure 1. Autometallography of the kidney of a man who had injected himself with metallic mercury (K24). (A) Black-
staining mercury is seen in the renal cortex (CO) in cells of both the straight (filled arrow) and convoluted (open arrow) 
proximal tubules, with more mercury in straight tubules. The pale cortical regions (closed arrowhead) contain glomeruli 
and distal tubules. Some mercury-containing proximal straight tubules (open arrowhead) extend a short distance into the 
pale-staining medulla (ME). Large pale-staining blood vessels (BV) are present near the cortico-medullary junction. (B) A 

Figure 1. Autometallography of the kidney of a man who had injected himself with metallic mercury (K24). (A) Black-
staining mercury is seen in the renal cortex (CO) in cells of both the straight (filled arrow) and convoluted (open arrow)
proximal tubules, with more mercury in straight tubules. The pale cortical regions (closed arrowhead) contain glomeruli
and distal tubules. Some mercury-containing proximal straight tubules (open arrowhead) extend a short distance into
the pale-staining medulla (ME). Large pale-staining blood vessels (BV) are present near the cortico-medullary junction.
(B) A microscopic field to the left of the image in A shows the difference between the dark-staining mercury in the renal
cortex (CO) and the pale medulla (ME). (C) Mercury is seen in cells of the proximal straight tubules (filled arrow), with
less in the proximal convoluted tubules (open arrow). No mercury is seen in two glomeruli (GL) or in distal tubules
(arrowhead). (D) Red CD10 immunostaining is seen in proximal tubule cells containing black mercury grains (filled arrow).
In CD10-negative distal tubules, either no (open arrow) or minimal (asterisk) mercury staining is seen. No mercury is
seen in the macula densa (open arrowhead) or Lacis cells (filled arrowhead) of the juxtaglomerular apparatus or in a
glomerulus (GL) whose podocytes stain lightly with CD10. (E) Cells in Henle thin loops in the medulla contain black
mercury granules of varying size (arrow). Collecting tubules (arrowhead) do not contain mercury. (F) Cells in Henle thin
loops (not CD10-immunostained) in the medulla contain black mercury granules of varying size (arrow). Collecting tubules
that stain with CD10 (arrowhead) do not contain mercury. Light brown/yellow staining is from red blood cells in capillaries.
AMG/H autometallography/hematoxylin, AMG/CD10/H autometallography/CD10 immunostaining/hematoxylin, K
identity number (see Table 1).
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Table 1. Mercury (autometallography (AMG) staining) in the proximal tubules and Henle thin loops of 129 kidneys.

ID
No. Age Sex

Proximal
Tubule
AMG

Henle
Loop
AMG

ID
No. Age Sex

Proximal
Tubule
AMG

Henle
Loop
AMG

ID
No. Age Sex

Proximal
Tubule
AMG

Henle
Loop
AMG

K1 1 F − − K44 39 M + + K87 69 M − −
K2 2 M − − K45 39 M − + K88 70 M − −
K3 2 F − − K46 39 M − − K89 70 M + +
K4 2 F − − K47 39 M + + K90 71 F − +
K5 3 M − − K48 40 F − + K91 72 F + +
K6 4 M − − K49 40 F + + K92 72 F + +
K7 9 M − − K50 40 M − + K93 74 F − +
K8 16 M − − K51 41 M − − K94 75 M − −
K9 18 M − − K52 41 F − − K95 76 F + +

K10 18 F − − K53 41 M − + K96 76 F + +
K11 18 F − − K54 42 M + + K97 77 F + −
K12 20 M − − K55 43 M − − K98 77 M + −
K13 20 F − − K56 43 M − − K99 79 M − +
K14 20 M − − K57 44 M − + K100 80 F + +
K15 23 M − − K58 44 M + − K101 80 M − +
K16 24 M * + + K59 45 M − + K102 81 M + +
K17 24 M − + K60 45 M + − K103 83 M + +
K18 25 F − − K61 45 M − − K104 85 M − −
K19 25 M + + K62 46 M + − K105 86 M + +
K20 26 F + + K63 46 F + + K106 86 F + +
K21 28 M − − K64 46 M + − K107 87 M − −
K22 29 F − − K65 47 M − + K108 87 F − +
K23 29 M + − K66 47 M + + K109 89 F − +
K24 30 M − − K67 48 F + + K110 95 F − −
K25 30 M − + K68 49 F + + K111 95 F − +
K26 30 M − − K69 49 M + + K112 95 F − +
K27 31 M + − K70 49 M + − K113 95 M − −
K28 32 M − + K71 49 M + + K114 95 M − +
K29 32 M + − K72 53 M − + K115 95 F + −
K30 33 F − − K73 55 M − + K116 95 M − −
K31 33 M − − K74 58 M − − K117 96 F − −
K32 34 M − − K75 59 F + + K118 96 M + +
K33 35 M + + K76 59 M + + K119 96 M + −
K34 35 F + − K77 61 M + − K120 96 F + −
K35 35 F − − K78 61 M + + K121 96 F − −
K36 36 F + + K79 61 M + − K122 97 F − +
K37 36 M − + K80 61 M − − K123 97 F + +
K38 37 M + − K81 61 F + + K124 98 M − −
K39 38 M − − K82 62 M − + K125 98 M − +
K40 38 F + + K83 63 F − + K126 99 F + −
K41 38 M + − K84 66 M + − K127 100 M − −
K42 38 M + − K85 67 F + + K128 104 F − −
K43 38 F − + K86 67 M − + K129 104 F − +

AMG autometallography, ID no. identity number, F female, M male, * mercury self-injection (K16).

3.1.2. Unknown Mercury Exposure (N = 128)

Three patterns of mercury staining were found in the kidneys of the 128 people
without known mercury exposure (Figures 2 and 3 and Table 1). (1) Mercury was seen in
cells of proximal tubules of the cortex as well as in Henle thin loops of the medulla in 32 of
the 128 (25%) kidneys, with more mercury in the proximal convoluted than straight tubules.
This was the same pattern seen in the man who injected himself with mercury. (2) Mercury
was present in proximal tubules only in 21 of the 128 (16%) kidneys. (3) Mercury was seen
in Henle thin loops only in 29 of the 128 (23%) kidneys. Mercury was not seen in glomeruli,
distal tubules, juxtaglomerular apparatus, or collecting ducts.

3.2. Prevalence of Mercury in the Kidney

Overall, mercury (either cortical or medullary) was detected on autometallography
in the kidneys of 82 of the 128 people (64%) without known mercury exposure. The
proportion of people who had mercury in their kidneys varied in different age ranges
(Figure 4). People in the first two decades of life had no kidney mercury, followed by 66%
of people with kidney mercury in the subsequent 21–40 years age group. The prevalence of
kidney mercury increased to 77% in the 41–60 years group, reaching a maximum of 84% of
people in the 61–80 years group, then falling back to 64% of people in the final 81–104 years
group. The overall trend for aging to increase the proportion of mercury-positive kidneys
was significant (p < 0.0001).
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Figure 2. Mercury in the kidney of a man with no known mercury exposure (K44). (A) Black-staining mercury is seen in 
the renal cortex (CO) in cells of the straight (filled arrow) and convoluted (open arrow) proximal tubules, with more mer-
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Figure 2. Mercury in the kidney of a man with no known mercury exposure (K44). (A) Black-staining mercury is seen
in the renal cortex (CO) in cells of the straight (filled arrow) and convoluted (open arrow) proximal tubules, with more
mercury in straight tubules. The pale cortical regions (arrowhead) contain glomeruli and distal tubules. The medulla (ME,
dashed outline) shows no mercury staining at this magnification. (B) A microscopic field to the left of the image in A shows
the difference between the plentiful mercury in the renal cortex (CO) and no obvious mercury staining in the medulla
(ME, dashed outline). (C) Mercury is seen in cells of the proximal straight tubules (filled arrow), with less in the proximal
convoluted tubules (open arrow). No mercury is seen in two glomeruli (GL), or in distal tubules (arrowhead). (D) Red
CD10 immunostaining shows proximal tubule cells containing black mercury grains (filled arrow). No mercury is seen
in CD10-negative distal tubules (open arrow), in the macula densa (open arrowhead) or Lacis cells (filled arrowhead) of
the juxtaglomerular apparatus or in a glomerulus (GL) whose podocytes stain lightly with CD10. (E) Cells in Henle thin
loops in the medulla contain black mercury granules of varying size (arrow). Collecting tubules (arrowhead) do not contain
mercury. (F) Cells in Henle thin loops (not CD10-immunostained) in the medulla contain mercury granules of varying size
(arrow). Collecting tubules that stain with CD10 (arrowhead) do not contain mercury. Light brown/yellow staining is
from red blood cells in capillaries. AMG/H autometallography/hematoxylin, AMG/CD10/H autometallography/CD10
immunostaining/hematoxylin. K identity number (see Table 1).
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tubules (arrowhead) or glomeruli (GL). (B) In the medulla, discrete mercury granules are seen in cells of Henle thin loops 
(arrow) but not in collecting ducts (arrowhead). (C,D) Mercury in the cortex only (K79). (C) In the cortex, mercury is seen 
in cells of proximal tubules (arrow) but not distal tubules (arrowhead) or glomeruli (GL). (D) In the medulla, no mercury 
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Figure 3. Patterns of mercury distribution in three kidneys (no known mercury exposure). (A,B) Mercury in the cortex
and medulla (K19). (A) In the cortex, black-staining mercury is seen in cells of proximal tubules (arrow) but not distal
tubules (arrowhead) or glomeruli (GL). (B) In the medulla, discrete mercury granules are seen in cells of Henle thin loops
(arrow) but not in collecting ducts (arrowhead). (C,D) Mercury in the cortex only (K79). (C) In the cortex, mercury is seen
in cells of proximal tubules (arrow) but not distal tubules (arrowhead) or glomeruli (GL). (D) In the medulla, no mercury
is seen in cells of Henle thin loops (arrow) or collecting ducts (arrowhead). (E,F) Mercury in the medulla only (K101).
(E) In the cortex, no mercury is seen in cells of proximal tubules (arrow), distal tubules (arrowhead), or glomeruli (GL).
(F) In the medulla, mercury is seen in cells of Henle thin loops (arrow) but not in collecting ducts (arrowhead). AMG/H
autometallography/hematoxylin, K identify number (see Table 1).



Toxics 2021, 9, 67 8 of 19

Toxics 2021, 9, x FOR PEER REVIEW 11 of 22 
 

 

the medulla, mercury is seen in cells of Henle thin loops (arrow) but not in collecting ducts (arrowhead). AMG/H auto-
metallography/hematoxylin, K identify number (see Table 1). 

3.2. Prevalence of Mercury in the Kidney 
Overall, mercury (either cortical or medullary) was detected on autometallography 

in the kidneys of 82 of the 128 people (64%) without known mercury exposure. The pro-
portion of people who had mercury in their kidneys varied in different age ranges (Figure 
4). People in the first two decades of life had no kidney mercury, followed by 66% of peo-
ple with kidney mercury in the subsequent 21–40 years age group. The prevalence of kid-
ney mercury increased to 77% in the 41–60 years group, reaching a maximum of 84% of 
people in the 61–80 years group, then falling back to 64% of people in the final 81–104 
years group. The overall trend for aging to increase the proportion of mercury-positive 
kidneys was significant (p < 0.0001). 

 
Figure 4. Prevalence of mercury in the human kidney at different ages. No kidney mercury was seen in the first two 
decades of life. In the 41–60 years age range, mercury was found in 66% of people, rising to 77% in the 41–60 years group 
and 84% in the 61–80 years group, before falling to 64% in the 81–104 years age range. Numbers above bars = numbers in 
age groups. 

Figure 4. Prevalence of mercury in the human kidney at different ages. No kidney mercury was seen in the first two decades
of life. In the 41–60 years age range, mercury was found in 66% of people, rising to 77% in the 41–60 years group and 84% in
the 61–80 years group, before falling to 64% in the 81–104 years age range. Numbers above bars = numbers in age groups.

The 48 females in the study had a slightly (non-significant) higher proportion of
mercury-positive kidneys (69%) compared to the 80 males (61%), probably because females
had a higher mean age (60 years SD 31 years) than males (50 years SD 25).

3.3. Metals Detected in the Kidney on LA-ICP-MS

LA-ICP-MS of six kidney samples (three with cortex only in the field of view) con-
firmed the presence of mercury in the cortex of four samples that stained positively for
inorganic mercury with autometallography (Figure 5, Table 2). In two samples where
autometallography did not detect mercury in the cortex, mercury was seen on LA-ICP-MS,
indicating the presence of organic mercury, which is not detected by autometallography.
The cortex of all six samples contained cadmium and two contained silver. Lead was seen
in the cortex of three samples and in the medulla of one. Iron was widespread in the cortex
and medulla, probably due to iron in intravascular red blood cells. The distribution of
nickel in the cortex of two samples was similar to that of iron, suggesting this too was
due to circulating metal. Despite mercury being found on autometallography in scattered
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Henle thin loops, no mercury was detectable in the medulla on LA-ICP-MS, probably
because of the higher sensitivity of mercury detection by autometallography compared
to LA-ICP-MS [49]. No chromium, aluminium, bismuth, or gold was seen in any kidneys
(data not shown).
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Figure 5. LA-ICP-MS detection of metals in six kidney samples. (A) AMG+ve cortex and medulla (K16). Mercury is detected
in the cortex but not the medulla. Cadmium is present in the cortex, and iron in the cortex and medulla. (B) AMG+ve
cortex and medulla (K32). Mercury is seen in the cortex, but not in the medulla. Cadmium, lead, and iron are seen in the
cortex, and lead and iron in the medulla. (C) AMG+ve cortex and medulla (K19). Mercury, cadmium, and iron are seen
in the cortex, and iron in the medulla. (D) AMG+ cortex (K69). Mercury, cadmium, iron, nickel, and silver are present in
the cortex. (E) AMG-ve cortex (K51). Mercury, cadmium, lead, iron, nickel, and silver (with edge effect) are seen in the
cortex. (F) AMG-ve cortex (K39). Mercury, cadmium, lead, and iron are present in the cortex. Scale = counts per second
(proportional to abundance). CO cortex, ME medulla (within dashed outlines), AMG autometallography, K identify number
(see Table 1).

Table 2. Metals detected by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in six human kidneys.

ID Site AMG LA-ICP-MS

Hg Cd Pb Fe Ni Ag Cr Al Bi Au

K16 Cortex Positive + + − + − − − − − −
Medulla Positive − − − + − − − − − −

K32 Cortex Positive + + + + + − − − − −
Medulla Positive + − + + + − − − − −

K19 Cortex Positive + + − + − − − − − −
Medulla Positive − − − + − − − − − −

K69 Cortex Positive + + + + − + − − − −
K51 Cortex Negative + + + + + + − − − −
K29 Cortex Negative + + + + − − − − − −

AMG autometallography, ID identity number, + detected, − not detected, K identity number (see Table 1).
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4. Discussion

Key findings of this study are that mercury was found commonly in the proximal
tubules and Henle thin loops of human adult kidneys, and that the proportion of people
with mercury in their kidneys increased throughout most of adult life. In addition, several
other toxic metals, most commonly cadmium and lead, were found in some kidneys.

All humans are exposed to mercury emitted into the environment from both anthro-
pogenic and natural sources (Figure 6) [50]. Common human exposures to mercury are
from consuming mercury-contaminated fish, occupations such as gold mining, and from
mercury-containing dental amalgam fillings [51]. Methylmercury crosses cell membranes
readily, mostly by the formation of methylmercury-cysteine complexes that enter cells on
neutral amino acid carriers [52] and is slowly converted in cells into more toxic inorganic
mercury (Hg2+) [53]. Mercury vapor also passes through the cell membrane freely and is
oxidised to Hg2+ within the cell or is oxidised in circulating red blood cells to Hg2+, which
crosses some cell membranes (such as those of renal tubules) via transporters [52,54]. Once
inside the cell, mercury attaches preferentially to intracellular membranous structures such
as lysosomes, mitochondria, and the nuclear envelope [55].

Chemical analyses of mercury in human kidneys report more mercury in people
who had mercury amalgam dental fillings [56–58]. Autometallography of kidney tissue
sections from single individuals found mercury in renal tubules both 5 months [30] and
17 years [29] after mercury exposure. The renal cortex appeared to contain more mercury
on atomic absorption in eight people who committed suicide than in 10 others [59], though
case numbers were small and the authors could not rule out the role of chance. In our
study, there was no significant difference in the proportion of people with mercury in
their kidneys who committed suicide (N = 19 of 29, 66%) compared to others (N = 64 of
100, 64%).

The location of mercury in renal proximal tubules and Henle thin loops suggests
two pathways by which mercury in the kidney could contribute to essential hypertension
(Figure 6): (1) Several studies have stressed the importance of the role proximal tubules
play in the pathogenesis of hypertension [5,6,60,61]. Mercury could preferentially damage
humoral or hormonal agents that decrease ion transport in the proximal tubule [62],
with resultant increased reabsorption of sodium and water. One mechanism could be
that mercury, which has an affinity for sulfhydryl groups (found mostly in cysteine) can
selectively inactivate proteins with a high sulfhydryl content [63]. A comparison of the
sulfhydryl content of the humoral and hormonal agents that either decrease or increase ion
transport in the proximal tubule [62] could provide evidence to support this hypothesis.
(2) Experimental evidence in rats indicates that oxidative stress in the renal medulla results
in vasoconstriction and medullary ischemia, which leads to enhanced sodium and water
reabsorption and subsequent hypertension [8,64]. In these rats, it is suggested that reactive
oxygen species are released by the Henle thick ascending limbs into surrounding capillaries.
In our human samples, mercury was located in the Henle thin loops, and since mercury is
known to promote oxidative stress [37,65,66], a similar mechanism of medullary ischemia
could lead to human hypertension. Both these damaging effects of mercury within the
kidney would be augmented by bioaccumulation of the metal with aging [67], genetic
susceptibilities to mercury toxicity [68], the presence of other heavy metals [69,70], and a
lack of mercury-protective selenium [71].
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Figure 6. Potential mechanisms of kidney mercury-induced hypertension. Exposure to mercury
results in organic and inorganic mercury being taken up by the cells of proximal tubules and/or
Henle thin loops. In proximal tubules of the cortex, mercury-initiated damage to agents that excrete
sodium in response to elevated blood pressure (for example by selective binding of mercury to
sulfhydryl-rich proteins) would enhance sodium reabsorption. In the medulla, free radicals induced
by mercury in Henle thin loops could result in medullary ischemia, also with enhancement of sodium
reabsorption. Both or either of these cortical and medullary mechanisms would increase sodium and
concomitant water reabsorption, with resultant hypertension. Mercury toxicity would be accentuated
by bioaccumulation of mercury over time, genetic susceptibilities to mercury toxicity, the presence of
other heavy metals, or deficiencies in mercury-protective mechanisms such as selenium.
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The finding that mercury is found commonly in adult human kidneys could help
explain several epidemiological findings in hypertension [72–81]. (1) The incidence of
hypertension rises with age [72,82], so it was of interest that in our study, the proportion
of people with mercury in their kidneys also increased with age, at roughly the same
rate. In our final age group of people over the age of 80 years, the proportion with kidney
mercury fell back, which suggests a “survivor” effect, possibly because people who have
been exposed to less mercury during their lives would tend to live longer [83]. (2) Younger
men have higher blood pressure than younger women on average, and in some animals,
males are predisposed to higher blood pressures than females [73,74]. One factor that
could contribute to this gender difference is that the kidney of the male mouse takes up
more of a given dose of mercury than does the female kidney [84]. Unfortunately, we
did not have quantitative data from our project that could assess whether more mercury
was present in male than female kidneys. (3) Renal cell carcinoma arises from proximal
tubule cells, and appears to be associated with hypertension [75,76]. It may therefore be
relevant to the pathogenesis of renal cell carcinoma that our study showed that human
proximal tubules commonly contain mercury, which is genotoxic [85,86]. In addition to
causing somatic mutations in adult kidney cells, mercury in proximal tubule progenitor
cells in the foetus could be genotoxic since mercury in non-toxic doses passes through
the placenta and enters foetal renal tubules [87]. It would be of interest to assess how
often proximal tubules adjacent to human renal cell carcinomas contain mercury, in the
same way as has been done in breast and pancreatic cancers [49,88]. However, because
mercury is so commonly found in adult human proximal tubules, large numbers of tumour
and non-tumour samples would be needed to assess whether kidney mercury is in fact
associated with renal cell carcinoma. (4) Firefighters who worked for 10 years or more
with wildfires have greater odds of being diagnosed with hypertension than those working
fewer than 10 years with wildfires [77]. So it is worth noting that wildfires have long been
recognised as a source of mercury emissions [89,90], especially if they affect regions where
the soil has previously been polluted with mercury from activities such as gold mining [91].
(5) People who live in the vicinity of volcanoes tend to have higher blood pressures [78,79],
and volcanic eruptions are sources of mercury [92]. (6) Exposure to severe particulate
atmospheric pollution has been linked to higher blood pressure [80,81], and atmospheric
pollution often contains mercury [93].

Estimates of mean blood pressure by world region indicate that the prevalence of high
blood pressure has decreased over time in regions such as North America and Western
Europe, but has increased over time in others such as China, India, and Southeast Asia [94].
Several factors could underlie this regional heterogeneity in hypertension prevalence, such
as variations in sodium uptake [94]. Of note, however, geographic regions of increases and
decreases in hypertension prevalence over time [94] overlap with regions where increases
and decreases of anthropogenic emissions of mercury have been reported [50], as well as
with regions with increases and decreases in discharges of mercury into rivers [95]. For
example, the United States has had reductions in mercury atmospheric emissions and
discharges of mercury into rivers, and a decreased prevalence of hypertension; on the
other hand, China and India have had increases in mercury atmospheric emissions and
discharges of mercury into rivers, and an increased prevalence of hypertension [50,94,95].
Mercury exposure, therefore, needs to be considered when assessing possible reasons for
the variation in the prevalence of hypertension between different world regions.

Increased retention of sodium and water due to renal dysfunction is not the sole mech-
anism suspected to underlie essential hypertension, since noradrenaline excess causing in-
creased sympathetic output is a frequent finding in people with raised blood pressure [96–98].
This is reflected in medication regimens used to treat hypertension, which often include
diuretics to promote natriuresis combined with beta-adrenoreceptor blockers that reduce
sympathetic overactivity [99]. Recent work has shown that mercury is found commonly in
the adult human adrenal medulla and could lead to increased noradrenaline output [100].
This raises the possibility that two hits of mercury, one in the kidney and one in the adrenal
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medulla, could underlie the combined renal and sympathetic dysfunction found in many
people with essential hypertension.

Toxic metals other than mercury that were found in our kidney samples were cad-
mium, lead, and silver. Several epidemiological studies have examined possible links
between serum or urine cadmium levels and hypertension, but with inconsistent re-
sults, leading to calls for future longitudinal studies [18,101]. Increased levels of lead
in blood [102–104] and bone [105] have been associated with hypertension. Acute exposure
to silver nitrate causes a decrease in blood pressure, and silver is not currently thought to be
toxic to the cardiovascular system [106]. Synergistic toxic effects have been described for a
range of heavy metals, especially mercury and cadmium [70,107]. It is, therefore, of interest
that some of our kidney samples had mercury, cadmium, and lead together in the cortex.
The effects of these metal interactions on the kidney are complex, however, at least in the rat,
where paradoxical decreases of hypertensive effects have been described for mercury/lead
combinations [69]. We were unable to determine the physiological role of mercury and
these other metals on blood pressure in this autopsy study, and further experiments will
be required to measure the effects on blood pressure of long-term exposure to single and
combinations of toxic metals.

It has long been known that selenium interacts with mercury and appears to decrease
mercury toxicity [108–113]. More recently, it has been proposed that one deleterious effect
of mercury could be its binding to selenium, thus reducing the ability of selenium to
participate in selenoenzyme activity [114–116]. The kidneys of most people appear to have
enough selenium to detoxify mercury [117–119], though the trapping of the freely available
renal selenium by mercury may have adverse effects [119]. These kidney studies have
relied on chemical analyses, so the mercury and selenium levels in individual cells could
not be measured. One way of assessing the mercury–selenium status of individual cells is
by synchrotron X-ray fluorescence microscopy, which has detected the equivalent of 1:1
mercury–selenium molar ratios within individual neurons [120]. However, this technique
requires frozen sections and allows only a small window of tissue sampling. We were
unable to reliably measure selenium in the current project, since trace selenium analysis is
often refractory to LA-ICP-MS imaging using standard single-quadrupole MS technology,
due to polyatomic interferences from the large volumes of argon gas used in creating
the plasma and as the carrier gas. Future studies using triple quadrupole-ICP-MS would
be needed for the accurate determination of renal selenium levels [121]. A complicating
factor in unravelling the relationship between selenium and mercury toxicity is that genetic
polymorphism may affect selenium status and responses to selenium therapy [122], so
future studies in this field may need to take these genetic variants into account. Studies
of the relationship between human selenium levels and hypertension have given mixed
results. A recent study of Inuit in Canada suggested that high selenium exposure decreased
the risk of hypertension [123], but high serum selenium levels have been associated with
an increased prevalence of hypertension [124,125], and most workers are of the opinion
that further studies of the effects of selenium on hypertension are needed [126].

This study has several limitations. (1) This was a retrospective forensic/coronial
autopsy study, so we did not have access to detailed clinical medical information to allow
us to determine whether individuals had been diagnosed with hypertension during life or
if they had been taking antihypertensive medication. Large prospective autopsy studies of
people with known blood pressure recordings would be needed to ascertain a link between
kidney mercury and hypertension. In such a study, further information gathered could
include renal function tests, blood, urine, hair and toenail levels of toxic metals, selenium
levels, and whole-genome analyses to look for genetic susceptibility variants. (2) We did
not have access to occupational data, places lived, dental records, or dietary habits to
assess whether individuals had any known sources of mercury exposure. However, we
do know from a previous study that over 90% of Australians over the age of 40 years eat
seafood regularly and that over 80% have mercury-containing dental fillings [127], both
common sources of human exposure to mercury [51]. (3) We had only modest numbers of
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individuals in the 0–20 years group. Hypertension is unusual at this age [82], and large
numbers of samples would be needed to give an accurate estimation of the proportion of
people in this early age group who have kidney mercury. (4) Forensic/coronial autopsy
populations, aimed largely at investigating unnatural deaths, cannot exactly replicate
conditions in general populations. We tried to minimise the differences by studying people
with a range of disorders, as well as those without known medical conditions who died
suddenly and unexpectedly. (5) We were unable to quantify the amount of mercury in the
kidney using these techniques so the results are qualitative in nature.

5. Conclusions

In conclusion, mercury is found commonly in the proximal tubules and Henle thin
loops of adult human kidneys and increases in aging kidneys until an advanced age.
Dysfunctions of both these kidney regions have been implicated in the pathogenesis
of essential hypertension. Our study was on human autopsy tissue, so the functional
implications of our findings will require confirmation with future experimental studies of
the effects of renal toxic metals on blood pressure. Precautionary measures to lessen the
possibility of mercury-induced hypertension would include making efforts to reduce the
burning of fossil fuels such as coal, reduce artisanal gold mining, limit the consumption of
fish, such as shark and swordfish, that contain more mercury than selenium [128], consider
alternatives to mercury-containing amalgam dental fillings and ensure an adequate intake
of selenium-containing foods [129].
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